A Recyclable Magnetic Aminated Lignin Supported Zr-La Dual-Metal Hydroxide for Rapid Separation and Highly Efficient Sequestration of Phosphate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the LG-NH2@Fe3O4@Zr-La Adsorbent
2.1.1. SEM and TEM Analysis
2.1.2. XPS, XRD and FTIR Analysis
2.1.3. BET and VSM Analysis
2.2. Phosphate Adsorption
2.2.1. Phosphate Adsorption by Lignin-Based Materials
2.2.2. Adsorption Kinetics
2.2.3. Effect of Temperature and Adsorption Thermodynamics
2.2.4. Effect of Coexisting Ions
2.2.5. Effect of pH Value
2.2.6. Phosphate Removal from Low Concentration and Real Sewage
2.2.7. Regeneration of LG-NH2@Fe3O4@Zr-La
2.3. Proposed Mechanisms for Phosphate Adsorption
2.3.1. FTIR Analysis
2.3.2. XPS Analysis
2.3.3. Zeta Potential Analysis
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of LG-NH2@Fe3O4@Zr-La Adsorbent
3.2.1. Synthesis of LG-NH2
3.2.2. Preparation of LG-NH2@Fe3O4
3.2.3. Preparation of LG-NH2@Fe3O4@Zr-La
3.3. Phosphate Adsorption Evaluation of the LG-NH2@Fe3O4@Zr-La Adsorbent
3.4. Data Analysis and Modeling
3.5. Structural Characterization of the LG-NH2@Fe3O4@Zr-La Adsorbent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mei, M.; Du, P.; Li, W.; Xu, L.; Wang, T.; Liu, J.; Chen, S.; Li, J. Amino-functionalization of lignocellulosic biopolymer to be used as a green and sustainable adsorbent for anionic contaminant removal. Int. J. Biol. Macromol. 2023, 227, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Zong, E.; Wang, C.; Yang, J.; Zhu, H.; Jiang, S.; Liu, X.; Song, P. Preparation of TiO2/cellulose nanocomposites as antibacterial bio-adsorbents for effective phosphate removal from aqueous medium. Int. J. Biol. Macromol. 2021, 182, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Zhang, X.; Zhang, A.H.; Guo, F.; Yang, Y.; Lu, Z.; Ying, G.; Zhang, J. Concurrent removal of phosphate and ammonium from wastewater for utilization using Mg-doped biochar/bentonite composite beads. Sep. Purif. Technol. 2022, 285, 120399. [Google Scholar] [CrossRef]
- Zong, E.; Guo, B.; Yang, J.; Shi, C.; Jiang, S.; Ma, Z.; Liu, X. Reusable hyperbranched polyethylenimine-functionalized ethyl cellulose film for the removal of phosphate with easy separation. ACS Omega 2020, 6, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Zhang, J.; Liang, S.; Lee, D.J.; Nguyen, P.D.; Bui, X.T. Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: Potential and obstacles. Bioresour. Technol. 2014, 169, 750–762. [Google Scholar] [CrossRef]
- Stanisz, M.; Klapiszewski, Ł.; Kołodyńska, D.; Jesionowski, T. Development of functional lignin-based spherical particles for the removal of vanadium(V) from an aqueous system. Int. J. Biol. Macromol. 2021, 186, 181–193. [Google Scholar]
- Liu, X.; Zong, E.; Hu, W.; Song, P.; Wang, J.; Liu, Q.; Ma, Z.; Fu, S. Lignin-derived porous carbon loaded with La(OH)3 nanorods for highly efficient removal of phosphate. ACS Sustain. Chem. Eng. 2019, 7, 758–768. [Google Scholar] [CrossRef]
- Liu, X.; He, X.; Zhang, J.; Yang, J.; Xiang, X.; Ma, Z.; Liu, L.; Zong, E. Cerium oxide nanoparticle functionalized lignin as a nano-biosorbent for efficient phosphate removal. RSC Adv. 2020, 10, 1249–1260. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Shi, B.; Zhang, A.; Xue, Y.; Zhang, J.; Dai, J.; Hassanpour, M.; Tang, C.; Shi, Y.; Song, P. A polyphosphoramide-grafted lignin enabled thermostable and fire-retardant polylactide with preserved mechanical properties. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107028. [Google Scholar] [CrossRef]
- Dai, L.; Liu, R.; Hu, L.-Q.; Zou, Z.-F.; Si, C.-L. Lignin Nanoparticle as a Novel Green Carrier for the Efficient Delivery of Resveratrol. ACS Sustain. Chem. Eng. 2017, 5, 8241–8249. [Google Scholar] [CrossRef]
- Wang, B.; Wen, J.-L.; Sun, S.-L.; Wang, H.-M.; Wang, S.-F.; Liu, Q.-Y.; Charlton, A.; Sun, R.-C. Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II). Ind. Crops Prod. 2017, 108, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ma, Z.; Xu, X.; Liu, X.; Liu, L.; Huang, G.; Liu, L.; Wang, H.; Song, P. Grafting Lignin with Bioderived Polyacrylates for Low-Cost, Ductile, and Fully Biobased Poly(lactic acid) Composites. ACS Sustain. Chem. Eng. 2020, 8, 2267–2276. [Google Scholar] [CrossRef]
- Zong, E.; Liu, X.; Jiang, J.; Fu, S.; Chu, F. Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution. Appl. Surf. Sci. 2016, 387, 419–430. [Google Scholar] [CrossRef]
- Li, T.; Tong, Z.; Zheng, Q.; Bao, H.; Partow, A.; Meng, S.; Li, L.; Li, Y.C. Fabrication of a Lignin-Based Magnetic Nanocomposite Adsorbent to Recover Phosphorus in Water for Agricultural Reuse. ACS Sustain. Chem. Eng. 2021, 9, 10468–10478. [Google Scholar] [CrossRef]
- Luo, X.; Liu, C.; Yuan, J.; Zhu, X.; Liu, S. Interfacial Solid-Phase Chemical Modification with Mannich Reaction and Fe(III) Chelation for Designing Lignin-Based Spherical Nanoparticle Adsorbents for Highly Efficient Removal of Low Concentration Phosphate from Water. ACS Sustain. Chem. Eng. 2017, 5, 6539–6547. [Google Scholar] [CrossRef]
- Zong, E.; Fan, R.; Hua, H.; Yang, J.; Jiang, S.; Dai, J.; Liu, X.; Song, P. A magnetically recyclable lignin-based bio-adsorbent for efficient removal of Congo red from aqueous solution. Int. J. Biol. Macromol. 2023, 226, 443–453. [Google Scholar] [CrossRef]
- Zong, E.; Huang, G.; Liu, X.; Lei, W.; Jiang, S.; Ma, Z.; Wang, J.; Song, P. A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate. J. Mater. Chem. A 2018, 6, 9971–9983. [Google Scholar] [CrossRef]
- Liao, T.; Li, T.; Su, X.; Yu, X.; Song, H.; Zhu, Y.; Zhang, Y. La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal. Bioresour. Technol. 2018, 263, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Zhao, Y.; Bo, S.; Yang, L.; Xiao, Z.; An, Q.; Zhai, S. Magnetic aminated lignin/CeO2/Fe3O4 composites with tailored interfacial chemistry and affinity for selective phosphate removal. Sci. Total Environ. 2021, 796, 148984. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, Y.; Zhang, W.; Zhao, R.; Ru, Y.; Liu, T. One-pot method to prepare lignin-based magnetic biosorbents for bioadsorption of heavy metal ions. Ind. Crops Prod. 2022, 176, 114387. [Google Scholar] [CrossRef]
- Du, Y.; Wang, X.; Nie, G.; Xu, L.; Hu, Y. Enhanced phosphate removal by using La-Zr binary metal oxide nanoparticles confined in millimeter-sized anion exchanger. J. Colloid Interface Sci. 2020, 580, 234–244. [Google Scholar] [CrossRef]
- Lin, X.; Xie, Y.; Lu, H.; Xin, Y.; Altaf, R.; Zhu, S.; Liu, D. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery. Chem. Eng. J. 2021, 413, 127530. [Google Scholar] [CrossRef]
- Du, W.; Li, Y.; Xu, X.; Shang, Y.; Gao, B.; Yue, Q. Selective removal of phosphate by dual Zr and La hydroxide/cellulose-based bio-composites. J. Colloid Interface Sci. 2019, 533, 692–699. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Li, J.; Dong, S.; Hao, H.; Liu, C.; Tong, Y.; Zhou, Y. Rapid and selective harvest of low-concentration phosphate by La(OH)3 loaded magnetic cationic hydrogel from aqueous solution: Surface migration of phosphate from –N+(CH3)3 to La(OH)3. Sci. Total Environ. 2021, 800, 149418. [Google Scholar] [CrossRef]
- Zhao, Y.; Shan, X.; An, Q.; Xiao, Z.; Zhai, S. Interfacial integration of zirconium components with amino-modified lignin for selective and efficient phosphate capture. Chem. Eng. J. 2020, 398, 125561. [Google Scholar] [CrossRef]
- Zong, E.; Liu, X.; Liu, L.; Wang, J.; Song, P.; Ma, Z.; Ding, J.; Fu, S. Graft polymerization of acrylic monomers onto lignin with CaCl2–H2O2 as initiator: Preparation, mechanism, characterization, and application in poly (lactic acid). ACS Sustain. Chem. Eng. 2018, 6, 337–348. [Google Scholar] [CrossRef]
- He, J.; Wang, W.; Sun, F.; Shi, W.; Qi, D.; Wang, K.; Shi, R.; Cui, F.; Wang, C.; Chen, X. Highly Efficient Phosphate Scavenger Based on Well-Dispersed La(OH)3 Nanorods in Polyacrylonitrile Nanofibers for Nutrient-Starvation Antibacteria. ACS Nano 2015, 9, 9292–9302. [Google Scholar] [CrossRef] [PubMed]
- Zong, E.; Liu, X.; Wang, J.; Yang, S.; Jiang, J.; Fu, S. Facile preparation and characterization of lanthanum-loaded carboxylated multi-walled carbon nanotubes and their application for the adsorption of phosphate ions. J. Mater. Sci. 2017, 52, 7294–7310. [Google Scholar] [CrossRef]
- Darwish, M.; El-Sabbagh, A.; Stibor, I. Hyperthermia properties of magnetic polyethylenimine core/shell nanoparticles: Influence of carrier and magnetic field strength. J. Polym. Res. 2015, 22, 1–6. [Google Scholar] [CrossRef]
- Mo, L.; Pang, H.; Tan, Y.; Zhang, S.; Li, J. 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water. Chem. Eng. J. 2019, 378, 122157. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, W.; Yu, Y.; Jiang, S.; Xu, Y.; Zong, E. Magnetic ZrO2/PEI/Fe3O4 functionalized MWCNTs composite with enhanced phosphate removal performance and easy separability. Compos. Part B Eng. 2022, 237, 109861–109873. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Hosseinzadeh, G.; Davar, F. Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 2011, 509, 4098–4103. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Li, Y.; Yang, C. Microwave-assisted synthesis of hierarchical mesoporous nano-TiO2/cellulose composites for rapid adsorption of Pb2+. Chem. Eng. J. 2017, 313, 1132–1141. [Google Scholar] [CrossRef]
- Issa, B.; Obaidat, I.; Albiss, B.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Chang, B.; Wu, K. The performance of phosphate removal using aluminium-manganese bimetal oxide coated zeolite: Batch and dynamic adsorption studies. Desalin. Water Treat. 2016, 57, 4220–4233. [Google Scholar] [CrossRef]
- Long, F.; Gong, J.-L.; Zeng, G.-M.; Chen, L.; Wang, X.-Y.; Deng, J.-H.; Niu, Q.-Y.; Zhang, H.-Y.; Zhang, X.-R. Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chem. Eng. J. 2011, 171, 448–455. [Google Scholar] [CrossRef]
- Lu, J.; Liu, D.; Hao, J.; Zhang, G.; Lu, B. Phosphate removal from aqueous solutions by a nano-structured Fe–Ti bimetal oxide sorbent. Chem. Eng. Res. Des. 2015, 93, 652–661. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Q.; Chen, J.; Zhang, L.; Chang, N. Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber. Chem. Eng. J. 2013, 215–216, 859–867. [Google Scholar] [CrossRef]
- Han, M.; Zhang, J.; Hu, Y.; Han, R. Preparation of Novel Magnetic Microspheres with the La and Ce-Bimetal Oxide Shell for Excellent Adsorption of Fluoride and Phosphate from Solution. J. Chem. Eng. Data 2019, 64, 3641–3651. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, D.; Ge, Y.; Koehler, S. Surface-Functionalized Porous Lignin for Fast and Efficient Lead Removal from Aqueous Solution. ACS Appl. Mater. Interfaces 2015, 7, 15000–15009. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, Y.; Wu, X.; Fan, P.; Song, R. La(III)-bentonite/chitosan composite: A new type adsorbent for rapid removal of phosphate from water bodies. Appl. Clay Sci. 2020, 190, 105547. [Google Scholar] [CrossRef]
- Shan, S.; Zhang, T.; Wang, W.; Liu, D.; Shi, W.; Cui, F. Magnetite/hydrated cerium(III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation. Chem. Eng. J. 2021, 425, 128894. [Google Scholar] [CrossRef]
- Nie, G.; Wu, L.; Du, Y.; Wang, H.; Xu, Y.; Ding, Z.; Liu, Z. Efficient removal of phosphate by a millimeter-sized nanocomposite of titanium oxides encapsulated in positively charged polymer. Chem. Eng. J. 2019, 360, 1128–1136. [Google Scholar] [CrossRef]
- Qiu, H.; Liang, C.; Zhang, X.; Chen, M.; Zhao, Y.; Tao, T.; Xu, Z.; Liu, G. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery. ACS Appl. Mater. Interfaces 2015, 7, 20835–20844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Yuan, Y.; Si, Y.; Xu, J.; Li, M.; Peng, X. La(OH)3 loaded magnetic nanocomposites derived from sugarcane bagasse cellulose for phosphate adsorption: Characterization, performance and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127060. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, N.; Lou, Y.; Ren, S.; Pang, S.; He, Y.; Chen, X.-B.; Shi, Z.; Feng, S. A stable nanoscaled Zr-MOF for the detection of toxic mycotoxin through a pH-modulated ratiometric luminescent switch. Chem. Commun. 2020, 56, 5389–5392. [Google Scholar] [CrossRef]
- Abdellaoui, Y.; Abou Oualid, H.; Hsini, A.; El Ibrahimi, B.; Laabd, M.; El Ouardi, M.; Giácoman-Vallejos, G.; Gamero-Melo, P. Synthesis of zirconium-modified Merlinoite from fly ash for enhanced removal of phosphate in aqueous medium: Experimental studies supported by Monte Carlo/SA simulations. Chem. Eng. J. 2021, 404, 126600. [Google Scholar] [CrossRef]
- Luo, F.; Feng, X.; Li, Y.; Zheng, G.; Zhou, A.; Xie, P.; Wang, Z.; Tao, T.; Long, X.; Wan, J. Magnetic amino-functionalized lanthanum metal-organic framework for selective phosphate removal from water. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125906. [Google Scholar] [CrossRef]
- Jiang, L.; Li, S.; Yu, H.; Zou, Z.; Hou, X.; Shen, F.; Li, C.; Yao, X. Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl. Surf. Sci. 2016, 369, 398–413. [Google Scholar] [CrossRef]
Samples | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
b (L mg−1) | qm (mg g−1) | R2 | Kf (L mg−1) | n | R2 | |
LG-NH2 | 0.085 | 34.97 | 0.9107 | 4.444 | 2.088 | 0.9861 |
LG-NH2@Fe3O4 | 0.112 | 30.58 | 0.9328 | 5.356 | 2.491 | 0.9589 |
LG-NH2@Fe3O4@Zr-La | 0.259 | 57.80 | 0.9448 | 11.409 | 1.923 | 0.7577 |
Absorbents | Temperature | pH | Recovery Efficiency | Adsorption Capacity (mg P g−1) | References |
---|---|---|---|---|---|
La-Zr-D201 | T = 298 K | pH = 6.5 ± 0.3 | Over 95% of original adsorption capacity (5 cycles) | 61.31 | Du et al. [21] |
La-Zr@Fe3O4 | T = 298 K | pH = 3 | Over 90% removal efficiency (5 cycles) | 49.3 | Lin et al. [22] |
SP-Zr-La | T = 298 K | pH = 3 | Over 90% of original adsorption capacity (10 cycles) | 45.2 | Du et al. [23] |
AMOCZ | T = 298 K | pH = 7 | 70.6% of original adsorption capacity (5 cycles) | 7.56 | Liu et al. [35] |
Magnetic Fe-Zr binary oxide | T = 298 K, | pH = 4 | 66.7% of original adsorption capacity (5 cycles) | 13.65 | Long et al. [36] |
Fe-Ti bimetal oxide | T = 293.15 K | pH = 6.8 | 82% of original adsorption capacity (5 cycles) | 35.4 | Lu et al. [37] |
ACF-LaFe | T = 298 K | / | / | 29.44 | Liu et al. [38] |
Fe3O4@La-Ce | T = 313 K | pH = 3 | / | 53.2 | Han et al. [39] |
LG-NH2@Fe3O4@Zr-La | T = 298 K, | pH = 6.0 ± 0.2 | 91.8% removal efficiency (5 cycles) | 57.8 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, E.; Wang, X.; Zhang, L.; Yang, J.; Liu, X. A Recyclable Magnetic Aminated Lignin Supported Zr-La Dual-Metal Hydroxide for Rapid Separation and Highly Efficient Sequestration of Phosphate. Molecules 2023, 28, 2923. https://doi.org/10.3390/molecules28072923
Zong E, Wang X, Zhang L, Yang J, Liu X. A Recyclable Magnetic Aminated Lignin Supported Zr-La Dual-Metal Hydroxide for Rapid Separation and Highly Efficient Sequestration of Phosphate. Molecules. 2023; 28(7):2923. https://doi.org/10.3390/molecules28072923
Chicago/Turabian StyleZong, Enmin, Xuanren Wang, Lirong Zhang, Jiayao Yang, and Xiaohuan Liu. 2023. "A Recyclable Magnetic Aminated Lignin Supported Zr-La Dual-Metal Hydroxide for Rapid Separation and Highly Efficient Sequestration of Phosphate" Molecules 28, no. 7: 2923. https://doi.org/10.3390/molecules28072923
APA StyleZong, E., Wang, X., Zhang, L., Yang, J., & Liu, X. (2023). A Recyclable Magnetic Aminated Lignin Supported Zr-La Dual-Metal Hydroxide for Rapid Separation and Highly Efficient Sequestration of Phosphate. Molecules, 28(7), 2923. https://doi.org/10.3390/molecules28072923