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Abstract: Cancer incidence varies around the globe, implying a relationship between food and
cancer risk. Plant polyphenols are a class of secondary metabolites that have recently attracted
attention as possible anticancer agents. The subclass of polyphenols, known as isoflavones, includes
genistein and daidzein, which are present in soybeans and are regarded as potent chemopreventive
agents. According to epidemiological studies, those who eat soy have a lower risk of developing
certain cancers. Several mechanisms for the anticancer effects of isoflavones have been proposed, but
none are conclusive. We show that isoflavones suppress prostate cancer cell growth by mobilizing
endogenous copper. The copper-specific chelator neocuproine decreases the apoptotic potential
of isoflavones, whereas the iron and zinc chelators desferroxamine mesylate and histidine do not,
confirming the role of copper. Reactive oxygen species (ROS) scavengers reduce isoflavone-induced
apoptosis in these cells, implying that ROS are cell death effectors. Our research also clearly shows
that isoflavones interfere with the expression of the two copper transporter genes, CTR1 and ATP7A,
in cancerous cells. Copper levels are widely known to be significantly raised in all malignancies,
and we confirm that isoflavones can target endogenous copper, causing prooxidant signaling and,
eventually, cell death. These results highlight the importance of copper dynamics within cancer cells
and provide new insight into the potential of isoflavones as cancer-fighting nutraceuticals.
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1. Introduction

Cancer is still the biggest cause of death worldwide [1]. Cancer formation and pro-
gression is a dynamic and long-term process driven by changes in genetic sequences and
the acquisition of particular traits that allow for the establishment of full malignancy [2].
It has been suggested that even within a single type of tumor, various genetic variations
can be found in different altered cells [3]. Furthermore, a comparable tumor in various
people tends to have distinct mutations and genetic components involved. Despite the
complexity of the carcinogenesis process and the various types of mutations, the arising
characteristic changes are often a small number of molecular, biochemical, and cellular
traits, which frequently lead to changes in the metabolic status of the tumor as compared
to normal cells [4]. Consequently, targeting the emerging metabolic alterations, which are
unique to all types of cancer, rather than the mutations responsible for these metabolic
changes, can speed up the discovery of prospective anticancer drugs.

In recent years, there has been a lot of interest in the possibility that some diet-
derived substances can prevent or postpone the initiation of cancer. It is thought that
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appropriate lifestyle adjustments, including food habits, might avert more than two-thirds
of human cancers [5]. Polyphenols, abundant in plants, are the most common group of
physiologically active secondary metabolites. Plant polyphenols are important components
of the human diet, and several have anticancer properties [6]. Epidemiology studies
have shown that people who eat a lot of soy have a lower chance of developing various
cancers, including colon, breast, and prostate cancer [7,8]. Two major isoflavones found
in a variety of soybeans and soy-based products are genistein and daidzein [9–11]. Both
of these isoflavones have been found to exhibit anticancer properties in both in vitro and
in vivo cancer models [12–17]. Despite the fact that these polyphenolic compounds have
been shown to induce apoptosis in cancer cell lines, the mechanism of anticancer action,
which must operate as an upstream signal, is unknown. Flavonoids [18], tannic acid and
gallic acid [19], curcumin [20], gallocatechin [21], and resveratrol [22] are all known to
cause oxidative DNA damage. Copper is an important redox active metal ion present in
chromatin, closely associated with DNA bases and mobilized by metal chelating agents [23].

Previously, we had proposed a hypothesis according to our observations as well
as similar to those of other researchers, which stated that the anticancer mechanism of
plant polyphenols includes intracellular copper mobilization [24,25]. Perhaps chromatin-
bound copper and the prooxidant effect initiate ROS-mediated cellular DNA breakage and
consequent cell death [24,25]. Such a prooxidant mechanism results from a redox-active
microenvironment in cancer cells due to elevated levels of copper [26].

Over the decades, there has been solid evidence suggesting a large elevation of serum,
plasma, and intracellular copper levels in all types of malignancies [27–31]. Copper is
required by tumor cells to increase the proliferation and migration of endothelial cells
as well as required for the release of angiogenic factors by tumor cells [32]. Copper and
zinc are the predominant ions in the nucleus [24], despite the fact that iron is present in
significantly greater quantities in typical biological systems. In light of our findings and
those of others, our hypothesis has gained considerable attention in recent years [24–26].

In the present study, we confirm the mechanism of action of plant-derived polyphe-
nolic compounds by utilizing the isoflavone family. We demonstrate that both genistein
and daidzein decrease cell proliferation and induce apoptosis in prostate cancer cell lines.
Such cell death is significantly inhibited by the cuprous chelator neocuproine and other
ROS scavengers, including superoxide dismutase, catalase, and thiourea. Copper chelation
inhibits this ROS formation, validating the conclusion that the mobilization of intracellular
copper by isoflavone results in the development of ROS that induces prooxidant cell death.
In addition, normal prostate epithelial cells grown in a medium containing copper become
susceptible to isoflavone-induced growth inhibition. We also demonstrate the importance
of the copper transporters genes CTR1 and ATP7A in the survival dynamics of malignant
cells after exposure to isoflavone. The chemical structures of the genistein and daidzein
used in the studies are given in Figure 1.
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Figure 1. Chemical structure of genistein and daidzein.
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2. Results
2.1. Isoflavones Inhibit Growth and Induce Apoptosis in Prostate Cancer Cells

The effects of genistein and daidzein on the proliferation potential of prostate cancer
cells LNCaP and DU145 were detected. The MTT assay revealed that the two isoflavones
inhibited the growth of these cells in a concentration-dependent manner (Figure 2).
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Figure 2. The effect of genistein and daidzein on the proliferation of prostate cancer cell lines
determined by the MTT assay. The LNCaP and DU145 cancer cell lines were grown with genistein
and daidzein at the given concentrations for 96 h. The effect on cell proliferation was performed
by MTT assay as described in Section 4. Values reported are mean ± S.E of triplicate experiments.
* p < 0.01 compared to the untreated control (0 µM of the isoflavone).

For further validation of these results, a Histone/DNA ELISA assay was used (Figure 3).
This experiment confirmed that both isoflavones (genistein and daidzein) are potent apop-
tosis inducers and exhibit a dose-dependent cytotoxic effect.
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Figure 3. Analysis of genistein and daidzein on apoptosis in prostate cancer cell lines. After incu-
bating prostate cancer cell lines for 96 h with increasing doses of both the isoflavones, apoptosis was 
detected using the Cell Death Detection ELISA Kit (Roche, Palo Alto, CA, USA), as shown in the
figure and discussed in Section 4. Values reported are mean ± S.E of three independent experiments.
* p value < 0.01 when compared to control. 

2.2. Copper Chelation Decreases Isoflavone-Induced Growth Inhibition and Apoptosis
We previously demonstrated that neocuproine, a membrane-permeable copper che-

lator, reduces isoflavone-induced oxidative DNA breakage in lymphocytes [33], implying 
the involvement of intracellular copper in the process. We pondered whether cancer cells 
were also susceptible to this copper chelator effect. We conducted the MTT assay using 
the cancer cells LNCaP and DU145 to study the antiproliferative effects of different metal 
chelators. Figure 4 shows that only the copper chelator neocuproine could considerably 
protect cells from the growth-inhibiting effects of genistein and daidzein, while desferri-
oxamine mesylate (an iron chelator) and histidine (a zinc chelator) both had negligible
effects. The concentration of the various metal chelators used was 50 µM. 

  
 

 

 

 
 

 

  
 

 

 

Figure 3. Analysis of genistein and daidzein on apoptosis in prostate cancer cell lines. After incubat-
ing prostate cancer cell lines for 96 h with increasing doses of both the isoflavones, apoptosis was
detected using the Cell Death Detection ELISA Kit (Roche, Palo Alto, CA, USA), as shown in the
figure and discussed in Section 4. Values reported are mean ± S.E of three independent experiments.
* p value < 0.01 when compared to control.

2.2. Copper Chelation Decreases Isoflavone-Induced Growth Inhibition and Apoptosis

We previously demonstrated that neocuproine, a membrane-permeable copper chela-
tor, reduces isoflavone-induced oxidative DNA breakage in lymphocytes [33], implying
the involvement of intracellular copper in the process. We pondered whether cancer cells
were also susceptible to this copper chelator effect. We conducted the MTT assay using
the cancer cells LNCaP and DU145 to study the antiproliferative effects of different metal
chelators. Figure 4 shows that only the copper chelator neocuproine could considerably
protect cells from the growth-inhibiting effects of genistein and daidzein, while desferriox-
amine mesylate (an iron chelator) and histidine (a zinc chelator) both had negligible effects.
The concentration of the various metal chelators used was 50 µM.



Molecules 2023, 28, 2925 5 of 16Molecules 2023, 28, x FOR PEER REVIEW 5 of 17

Figure 4. The effect of different metal chelators on the antiproliferative effects of genistein and dai-
dzein in prostate cancer cell lines. As indicated in the figure, LNCaP and DU145 cancer cells were 
treated with 50 µM genistein/and daidzein either alone or in the presence of copper chelator neocu-
proine (Neo), iron chelator desferrioxamine mesylate (DM) or zinc chelator histidine (His). Metal 
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ment, as stated in Section 4. Values reported are mean ± S.E of three independent experiments. * p
value < 0.01 when compared to control. 
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mechanism of isoflavones requires the mobilization of copper [24–26]. 

  
 

 

 

   

   
 

 
 

Figure 4. The effect of different metal chelators on the antiproliferative effects of genistein and
daidzein in prostate cancer cell lines. As indicated in the figure, LNCaP and DU145 cancer cells
were treated with 50 µM genistein/and daidzein either alone or in the presence of copper chelator
neocuproine (Neo), iron chelator desferrioxamine mesylate (DM) or zinc chelator histidine (His).
Metal chelators were utilized at a concentration of 50 µM. The MTT assay was done 96 h following
treatment, as stated in Section 4. Values reported are mean ± S.E of three independent experiments.
* p value < 0.01 when compared to control.

To confirm the interesting results obtained in Figure 4, we decided to investigate the
capacity of metal chelators to inhibit isoflavone-induced apoptosis. The copper chelator
neocuproine provided a considerable reduction of isoflavone on apoptosis induction. That
was not seen with iron or zinc chelators. Figure 5 supports the idea that the anticancer
mechanism of isoflavones requires the mobilization of copper [24–26].

2.3. Apoptosis of Cancer Cells Induced by Isoflavones Is Mediated by Reactive Oxygen Species

Reactive oxygen species are generated during DNA breaks by prooxidant anticancer
compounds [24–26]. The effect of ROS scavengers (thiourea, catalase, and superoxide
dismutase) on genistein/and daidzein-induced apoptosis of cancer cells was investigated
with the explicit purpose of determining whether isoflavone-induced DNA damage in
cancer cell lines involves ROS. In the prostate cancer cell lines studied, all three ROS
scavengers exhibited moderate to significant suppression of isoflavone-induced apoptotic
activity (Table 1). According to these results, ROS is indeed an important effector of
isoflavone-induced apoptosis [34,35], probably via a Fenton-type physiologically active
reaction, as has been previously shown [36–38].
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Figure 5. The effect of metal chelators on isoflavone-induced apoptosis in prostate cancer cell lines.
LNCaP and DU145 cancer cells were treated with 50 µM genistein/and daidzein alone or in the
presence of the copper chelator neocuproine (Neo), iron chelator desferrioxamine mesylate (DM),
or zinc chelator histidine (His). The chelators used had a concentration of 50 µM. Apoptosis was
detected using the Cell Death Detection ELISA Kit (Roche, Palo Alto, CA, USA). Values reported are
mean ± S.E of three independent experiments. * p value < 0.01 when compared to control.

Table 1. Effect of ROS scavengers on isoflavone activity in prostate cancer cells.

Cancer Cell Line Dose Apoptosis (Folds) Effect of Scavengers

LNCaP

Untreated - -
Genistein (50 µM) 4.42 * -

Thiourea 2.48 * 43.89
Catalase 3.15 * 28.73

Superoxide dismutase 3.43 * 22.39

LNCaP

Untreated - -
Daidzein (50 µM) 4.62 * -

Thiourea 2.86 * 38.09
Catalase 3.38 * 26.83

Superoxide dismutase 3.64 * 21.21

DU145

Untreated - -
Genistein (50 µM) 5.81 * -

Thiourea 3.79 * 34.76
Catalase 4.23 * 27.19

Superoxide dismutase 4.55 * 21.68

DU145

Untreated - -
Daidzein (50 µM) 5.34 * -

Thiourea 3.48 * 34.83
Catalase 3.73 * 30.14

Superoxide dismutase 4.06 * 23.97
* p value < 0.05 when compared to respective control.

The effect on apoptosis was evaluated using the Histone/DNA ELISA as described in
Section 4. A variety of ROS-scavengers, in addition to isoflavones, were utilized to treat
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cancer cells, including 700 µM Thiourea, 100 µg/mL Catalase, and 100 µg/mL Superoxide
dismutase. The values are mean± S.E. of three separate experiments. “Apoptosis (folds)” is
the fold increase in apoptosis compared to control. The effect of scavengers was calculated
using the formula:

Effect of scavengers =
Isoflavone alone − (Isoflavone + ROS scavenger)

Isoflavone alone
× 100

2.4. Copper Chelation Suppresses Isoflavone-Induced Inhibition of Migration by Cancer Cells

It is well-known that metastasis and spreading to new sites is a hallmark of cancer
cells. We suggested determining the effect of the migration of prostate cancer cells in the
presence of isoflavone with or without a copper chelator. As was expected based on the
above results, Figure 6 shows that isoflavone inhibited the capacity of LNCaP and DU145
cells to migrate, making them less likely to metastasize. Interestingly, the malignant cells
metastatic potential was significantly restored when copper was chelated from the cells
using neocuprione in the presence of genistein/and daidzein (Figure 6), suggesting that
cellular copper plays a role in isoflavone-induced inhibition of malignant cell migration.
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Figure 6. The effect of isoflavones on prostate cancer cell migration in the presence of the copper
chelator neocuproine. The assay was carried out as described in Section 4. The cells were cultured
with and without genistein/and daidzein (50 µM) and with or without neocuprione (50 µM). Values
reported are mean ± S.E. of three independent experiments. * p value < 0.01 when compared
to control.

2.5. Copper Supplementation Sensitizes Normal Prostate Epithelial Cells to Antiproliferative
Action of Isoflavones

To elucidate the importance of copper on cell proliferation in the presence of isoflavones,
we used HPrEC (normal (non-malignant) prostate epithelial cells). These cells were grown
in a medium containing 25 µM copper. When such copper-supplemented cells (HPrEC-
Cu) were treated with genistein/and daidzein, there was a substantial decrease in cell
proliferation compared to non-copper-supplemented HPrEC cells (Figure 7).
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Figure 7. The effect of isoflavones on cell proliferation inhibition in normal prostate epithelial cells 
(HPrEC) and HPrEC cells cultured in copper-supplemented media (HPrEC-Cu). HPrEC and
HPrEC-Cu (normal cells cultured in a medium containing 25 µM CuCl2) were treated for 96 h with 
a 50 µM concentration of genistein/and daidzein. The cell proliferation was then assessed using the 
MTT assay, as indicated in Section 4. Values reported are mean ± S.E. of three independent experi-
ments. * p value < 0.01 when compared to respective control. 

Since malignant transformation is accompanied by a drastic rise in intracellular cop-
per levels of malignant cells [31,39], it is reasonable to infer that the isoflavone-induced 
growth inhibition of malignant cells is a consequence of its interaction with cellular cop-
per. Exogenous copper supplementation has made non-malignant epithelial cells more 
susceptible to isoflavone-induced cell growth suppression (Figure 7).

2.6. Isoflavone Suppresses the Expression of Copper Transporters CTR1 and ATP7A in
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Isoflavone inhibits growth in malignant cells (Figures 4 and 5) and non-malignant 
epithelial cells cultivated in copper-supplemented media, as shown by the interaction be-
tween the isoflavone and intracellular copper (Figure 7). Due to the higher levels of CTR1
and ATP7A produced by malignant cells [39], we have investigated whether copper sup-
plementation increases copper transporter expression in epithelial cells that are not ma-
lignant. Expression of the copper transporters CTR1 and ATP7A was significantly upreg-
ulated when copper was added to the HPrEC cell growth medium (Figure 8). The expres-
sion of both copper transporters was significantly suppressed upon further addition of
genistein/and daidzein to the medium (Figure 8), suggesting an action of isoflavones on 
copper metabolism in cancer cells.

  
 

 

 

  

   
 

   
 

 
  

   

    
 

   
 

 
  

 
 

  
 

Figure 7. The effect of isoflavones on cell proliferation inhibition in normal prostate epithelial cells
(HPrEC) and HPrEC cells cultured in copper-supplemented media (HPrEC-Cu). HPrEC and HPrEC-
Cu (normal cells cultured in a medium containing 25 µM CuCl2) were treated for 96 h with a 50 µM
concentration of genistein/and daidzein. The cell proliferation was then assessed using the MTT
assay, as indicated in Section 4. Values reported are mean ± S.E. of three independent experiments.
* p value < 0.01 when compared to respective control.

Since malignant transformation is accompanied by a drastic rise in intracellular copper
levels of malignant cells [31,39], it is reasonable to infer that the isoflavone-induced growth
inhibition of malignant cells is a consequence of its interaction with cellular copper. Exoge-
nous copper supplementation has made non-malignant epithelial cells more susceptible to
isoflavone-induced cell growth suppression (Figure 7).

2.6. Isoflavone Suppresses the Expression of Copper Transporters CTR1 and ATP7A in
Cancer Cells

Isoflavone inhibits growth in malignant cells (Figures 4 and 5) and non-malignant
epithelial cells cultivated in copper-supplemented media, as shown by the interaction
between the isoflavone and intracellular copper (Figure 7). Due to the higher levels of
CTR1 and ATP7A produced by malignant cells [39], we have investigated whether copper
supplementation increases copper transporter expression in epithelial cells that are not
malignant. Expression of the copper transporters CTR1 and ATP7A was significantly
upregulated when copper was added to the HPrEC cell growth medium (Figure 8). The
expression of both copper transporters was significantly suppressed upon further addition
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of genistein/and daidzein to the medium (Figure 8), suggesting an action of isoflavones on
copper metabolism in cancer cells.
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Figure 8. The effect of isoflavones on the increased mRNA levels of copper transporters CTR1 and
ATP7A in HPrEC-Cu cells relative to parental HPrEC cells. As mentioned in Section 4, CTR1 and
ATP7A mRNA expression was measured using real-time PCR. Only HPrEC-Cu cells (regular HPrEC
cells cultured in a medium containing 25 µM CuCl2) with elevated mRNA expression of copper
transporters were treated with genistein/and daidzein (50 µM). Values reported are mean ± S.E. of
three independent experiments. * p value < 0.01 when compared to control.

2.7. Silencing of CTR1 and ATP7A in HPrEC Cells Grown in Copper-Supplemented Medium
Reduces Isoflavone-Induced Inhibition of Proliferation

To further substantiate the role of copper in isoflavone-induced growth suppression,
we silenced the copper transporters CTR1 and ATP7A with targeted siRNA (Figure 9).
As shown in Figure 8, HPrEC cells are more sensitive to isoflavone-induced growth sup-
pression (inhibition of cell proliferation) when CTR1 and ATP7A are expressed. CTR1
and ATP7A proteins promote copper uptake in cells [40]. The silencing of the copper
transporters CTR1/ATP7A compromised the sensitivity of HPrEC cells to genistein/and
daidzein in the copper-enriched medium. Such evidence conclusively demonstrates that
isoflavones interact with cellular copper, which is required for the isoflavone’s growth-
suppressing effect against cancer cells.

This provides conclusive evidence that isoflavones affect intracellular copper and that
this interaction is required for isoflavones to prevent the proliferation of cancer cells.
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Figure 9. The effect of isoflavones on cell proliferation of HPrEC-Cu cells (normal HPrEC cells
cultured in a medium containing 25 µM CuCl2) was compromised after the knock-down of CTR1 and
ATP7A. HPrEC-Cu cells were initially treated for 48 h with targeted siRNA against CTR1 (siCTR1)
and ATP7A (siATP7A), followed by 96 h with the indicated doses of genistein/and daidzein. Values
reported are mean ± S.E. of three independent experiments. * p value < 0.01 when compared to
respective control.

3. Discussion

Over the past years, our research group has devoted much attention to investigating
oxidative DNA-breaking processes mediated by polyphenolic compounds while copper
ions are present [41–46]. The most important findings are as follows, based on the results
presented above (a) The proliferation of human prostate cancer cell lines is suppressed by
isoflavones in a concentration-dependent order. Genistein/and daidzein inhibited cancer
cell growth, leading to death in such cells, although the copper chelator neocuproine re-
versed this effect. This finding demonstrates the role of copper in the cytotoxicity caused
by isoflavones. (b) Additionally, copper redox cycling in the presence of the isoflavones ex-
amined generates ROS, as evidenced by a reduction in apoptosis induction when ROS scav-
engers are present; this implicates copper as a molecular target for the cancer-cell-inhibitory
effect of isoflavones. (c) According to our findings, daidzein, which differs structurally from
genistein only by the absence of a hydroxyl group (OH) in position C-5, has slightly lesser
inhibitory effects in human prostate cancer cells. It has also previously been observed with
different polyphenols that the number of hydroxyl substitutions in a flavonoid’s backbone
structure influences its prooxidant and antioxidant properties [33,45–47]. Our findings
are consistent with these observations, and we conclude that hydroxyl groups are critical
components of isoflavone biological activity.
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It is exciting to see that normal prostate epithelial HPrEC cells are more resistant to the
cytotoxicity caused by isoflavones than malignant prostate cells. This data demonstrates the
selectivity of the isoflavone cytotoxicity in cancer cells [26,34]. Our research has shown that
when HPrEC cells are cultivated in the presence of copper, they become more susceptible
to the cytotoxicity caused by isoflavone. This provides more evidence that copper plays
an essential role in the physiological reactions mediated by isoflavones and ultimately
ends in cell death [26]. While Fe3+ and Cu2+ are the most redox-active metal ions in living
cells, it has been established in multiple studies that only copper is considerably raised
in the cancer cells of patients [27–31]. Previous research has demonstrated that normal
breast epithelial MCF10A cells had no detectable copper [34], which may account for their
resistance to isoflavone in the present study.

Copper’s physiological significance in cancer is only vaguely known at this point.
Despite this, there are plenty of available pieces of evidence showing that elevated copper
levels contribute to tumor angiogenesis [26,48]. Our experimental hypothesis [24,25]
suggests that plant polyphenols interact with copper within the cell and trigger oxidative
DNA breakage has recently been confirmed by using a wide range of experiments and a
variety of polyphenols [40,49–52]. The results of the current investigation provide even
more support for the ideas we have generated as a result of our prior research.

When normal prostate epithelial cells were grown in the presence of copper, it was
shown that the expression of both CTR1 and ATP7A, the two copper transporters genes
investigated in this work, was upregulated. The expression of these transporter genes
was suppressed by genistein/and daidzein. This observation supports our theory that
isoflavones interfere with copper metabolism in transformed cells by inhibiting copper
transporters in addition to interacting with copper and causing oxidative DNA damage, as
was confirmed in prior research [26,31,39,48].

To better understand the significance of copper transporters genes CTR1 and ATP7A,
we used siRNA (Figure 9) to silence the representative copper transporters investigated
in this study. In HPrEC cultures supplemented with copper, inhibiting CTR1/and ATP7A
led to a reduction in the sensitivity of the cells to isoflavone. This finding established and
verified that copper is necessary for isoflavone-mediated selective cell death.

Evidence shows that those whose diets include soy have a reduced cancer rate [33,34].
Soy products were found to significantly protect against death from prostate cancer in
a major investigation conducted in 1998 & 2014, respectively [53,54]. Despite promising
epidemiological and preclinical data, it is difficult to draw definitive conclusions regarding
the clinical efficacy of isoflavones.

It has been noted that the average daily intake of isoflavones is 15–60 mg in Asian
nations with high soy and soy-derived food consumption [55,56], but only 1–2 mg in
Western countries [57,58]. After digestion and excretion, the plasma level of genistein
in soy-rich diet eaters is only 1–5 mM [34]. The bioavailability of isoflavones is a topic
that requires more research because its mechanisms and the molecules involved in the
signaling pathways that cause the death of cancerous cells are still a mystery and need
to be investigated in future research. Further, genistein/or daidzein is only one of the
polyphenols consumed in the diet. The combined concentration, bioavailability, and action
of polyphenols, such as flavonoids, tannins, etc., may be greater than those of dietary
isoflavone alone, as all polyphenols are active prooxidants [26,59–62]. Nonetheless, it is im-
portant to note that different dietary polyphenols have a relatively limited half-life in vivo
since they are rapidly digested [60–62]. For this reason, it is possible that plant polyphenols
are not as effective as anticancer medications already in use in clinical settings. In this
sense, establishing plant polyphenols as powerful lead compounds to manufacture novel
anticancer medicines would benefit from identifying a definitive anticancer mechanism.
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4. Materials and Methods
4.1. Materials

Genistein, daidzein, DMSO, phosphate-buffered saline (PBS) Ca2+ and Mg2+, RPMI,
cupric chloride (purity ≥ 99%), metal chelators: neocuproine, desferrioxamine mesylate,
and histidine were acquired from Sigma Chemical Co. (St. Louis, MO, USA). All additional
compounds were of analytical grade and purchased from commercial suppliers.

4.2. Cell Lines and Reagents

The immortalized non-transformed prostate cell line HPrEC and the prostate cancer
cell lines LNCaP and DU145 were obtained from ATCC (Manassas, VA, USA) and main-
tained following the protocol as described previously [40]. The stock solutions of genistein
and daidzein were prepared in DMSO, whereas the stock solutions of metal chelators were
prepared in PBS. A normal prostate epithelial cell line, HPrEC, was propagated using the
protocol described earlier [40]. HPrEC-Cu cells are HPrEC cells that were cultivated in their
standard culture media with additional supplementation of CuCl2 (25 µM) for thirty days.

4.3. Cell Growth Inhibition Studies by 3-(4,5-Dimethylthiazol-2-yl)-2,5 Diphenyl-Tetra-Zolium
Bromide (MTT) Assay

The MTT experiment was carried out exactly as stated previously [40]. LNCaP and
DU145 cells were seeded at a density of 2 × 103 cells per well on 96-well microtiter culture
plates. Cells were exposed to the mentioned isoflavone concentrations after overnight
incubation. Metal chelators were used in individual assays, as mentioned in their specific
experiments. Each treatment contained eight replicate wells, and the amount of DMSO
in the reaction mixture was never more than 0.1%. Furthermore, each experiment was
performed three times.

4.4. Histone/DNA ELISA for Detection of Apoptosis

Following the manufacturer’s instructions, the cell death detection ELISA Kit (Roche,
Palo Alto, CA, USA) was used to detect apoptosis in LNCaP and DU145 prostate cancer
cells treated with isoflavones, following the protocol reported as previously described [40].
At the concentrations indicated, metal chelators and ROS scavengers were added.

4.5. Cell Migration Assay

The migration of cells was measured using 24-well transwell permeable supports
with 8-mm pores (Corning), as previously described [40]. Using ULTRA Multifunctional
Micro-plate Peruser (TECAN), we analyzed the migrated cells by reading their fluorescence.
Cells were cultured at the indicated concentrations with and without neocuprione and
isoflavones.

4.6. Real-Time Reverse Transcriptase PCR

Total RNA was extracted using the TRIzol (Invitrogen, Carlsbad, CA, USA) reagent
according to the manufacturer’s instructions. Real-time PCR was used to measure mRNA
expression. The primer sequences for CTR1 (forward: 5′-GCT GGA AGA AGG CAG TGG
TA-3′; reverse: 5′-AAA GAG GAG CAA GAA GGG ATG-3′), ATP7A (forward: 5′-ACG
AAT GAG CCG TTG GTA GTA-3′; reverse: 5′-CCT CCT TGT CTT GAA CTG GTG-3′) and
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) (forward: 5′-TGG GTG TGA ACC
ATG AGA AGT-3′; reverse: 5′-TGA GTC CTT CCA CGA TAC CAA-3′) were the same as
previously reported [40,63], and the amount of RNA was normalized to the housekeeping
gene GAPDH expression.

4.7. siRNA (Small Interfering RNA) Transfection

siRNA transfections were carried out as previously described [40]. Santa Cruz Biotech-
nology, Inc. (Santa Cruz, Dallas, TX, USA). provided siRNA for CTR1 and ATP7A.
Scrambled siRNA was employed as a nonspecific control. Transfections were carried
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out using Lipofectamine RNA iMAX Transfection Reagent (Invitrogen) according to the
manufacturer’s instructions. CTR1 and ATP7A were silenced by siRNA for 48 h before
the experiment.

4.8. Statistical Analysis

The results are expressed as the mean ± S.E. of three independent experiments. The
Student’s t-test was performed to look for statistically significant differences. ANOVA was
used for variance analysis. p-values < 0.05 were considered statistically significant.

5. Conclusions

Overall, the results of our study are consistent with the notion that the oxidative DNA
damage caused by isoflavones is significantly influenced by the internal copper concentra-
tion in cancer cells (Figure 10). In addition to providing new insight into how isoflavones
function as chemopreventive agents, the above findings also contribute to a general ex-
planation of why many polyphenolic compounds with various chemical structures have
anticancer activities. This paves the way for later mechanism-based research and clinical
trials that will concentrate on focusing on the microenvironment of tumors to achieve the
necessary degree of efficacy of non-toxic anticancer drugs employing naturally occurring
plant-based polyphenols.
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Figure 10. A proposed schematic diagram showing the interaction of isoflavones and copper in
the down-regulation of CTR1 and ATP7A. In addition, the involvement of redox cycling generates
reactive oxygen species, leading to DNA damage and, ultimately, apoptosis.
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