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Abstract: Coordination polymers of transition metal ions are fascinating and important to coordina-
tion chemistry. One of the ligands known to form particularly interesting coordination polymers is
3,3′,5,5′-tetramethyl-4,4′-bipyrazole (Me4bpzH2). Group 11 metal(I) ion coordination polymers, other
than those of copper(I), are relatively easy to handle because of their low reactivity towards dioxygen
and moisture. However, the known silver(I) coordination polymers often have poor solubility in
common solvents and so cannot be easily analyzed in solution. By using a tetramethyl substituted
bipyrazole ligand, we have synthesized more soluble silver(I) complexes that contain the trifluo-
romethyl group in the coordinated ions CF3CO2

− and CF3SO3
− in [Ag(CF3CO2)(Me4bpzH2)] and

[Ag(CF3SO3)(Me4bpzH2)]. We determined both structures by single-crystal X-ray analysis at low
temperatures and compared them in detail. Moreover, we investigated the solution behavior of these
coordination polymers by 1H-NMR, IR, Raman, UV–Vis spectroscopies, and their low-temperature,
solid-state photoluminescence. The high-energy band at ~330 nm corresponded to ligand-centered
(bipyrazole) fluorescence, and the low-energy band at ~400 nm to ligand-centered phosphorescence
resulting from the heavy atom effect.

Keywords: coordination polymer; silver; crystal structure; bipyrazole ligand; photoluminescence

1. Introduction

Cyclic trinuclear complexes (CTCs) with coinage metal(I) ions are of theoretical and
practical interest to inorganic and coordination chemists [1–3]. A useful class of ligands
for the formation of these CTCs is pyrazolate, which is known to act as a linking ligand.
The simple, neutral 1H-pyrazoles and their deprotonated pyrazolate anions have two
adjoining nitrogen donors in the five-membered aromatic rings; thus, they can coordinate
and bridge metal ions with an Npz–M–Npz linear coordination mode (pz = pyrazolate
anion, C3H3N2

−) [4–7]. Many substituents have been introduced at the three, four, and
five positions of the five-membered ring (Figure 1).
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Figure 1. Pyrazole ligand with numbering.
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We have been interested in modeling the structure and function of transition metal-
containing proteins [8]. The active sites of some copper-containing proteins have been
investigated by X-ray structural analysis, which revealed N2S and N3 donor ligands co-
ordinating to the metal center [9]. We similarly used N3 tripodal ligands in which three
pyrazoles linked by a boron atom in hydridotris(pyrazolyl)borate gave copper(II) dioxygen
complexes as simple hemocyanin models [8,10,11] and copper(II) thiolato complexes for
copper-containing electron transfer model complexes [12]. As part of these investigations,
we made numerous pyrazoles, varying in their steric and electronic properties. In the
present work, we have explored the use of pyrazole to make new CTC compounds.

Our first publication reported silver(I) CTCs with 3,5-diisopropyl, 3-isopropyl-5-
tertiary butyl, and 3,5-ditertiary butyl pyrazoles (Figure 2). We showed that the geometries
of these complexes were greatly influenced by the steric influence exerted by the substituent
groups on the pyrazolyl rings, and the differences in the central metal(I) ionic radius in
trinuclear complexes [Ag(µ-3,5-iPr2pz)]3, [Ag(µ-3-tBu-5-iPrpz)]3, and tetranuclear [Ag(µ-
3,5-tBu2pz)]4 [13]. Halogen atoms were introduced using N-halosuccinimides, and the
electronegativity of the halogen substituent could be correlated with the strength of the
Ag· · ·Ag interaction and the wavelength of solid-state photoluminescence in dimeric trin-
uclear (hexanuclear) complexes {[Ag(µ-4-X-3,5-R2pz)]3}2 (R = iPr, X = Cl, Br, and I) and trinu-
clear [Ag(µ-4-X-3,5-R2pz)]3 (R = iPr, X = I; R = Ph, X = Cl, R = Ph,
X = Br) [14]. Phenyl substituents in [Ag(µ-4-Ph-3,5-iPr2pz)]3 altered the solid-state crys-
tal packing to a stair-type structure, which was quite distinct from that observed for the
parent [Ag(µ-3,5-iPr2pz)]3 [15]. Employing the less hindered ethyl group gave a dimeric
trinuclear (hexanuclear) complex with two intermolecular argentophilic interactions {[Ag(µ-
4-Ph-3,5-Et2pz)]3}2 [16]. This complex easily incorporated aromatic guests to form arene-
sandwiched, π acid/base complexes, [Ag(µ-4-Ph-3,5-Et2pz)]3(toluene), and [Ag(µ-4-Ph-
3,5-Et2pz)]3(mesitylene). An unexpected synthetic outcome yielded a silver(I) coordina-
tion polymer [Ag(µ-4-Cl-3,5-iPr2pz)]n from the reaction of {[Ag(µ-4-Cl-3,5-iPr2pz)]}2 with
(nBu4N)[Ag(CN)2] [17]. We have expanded this study to make a silver(I) coordination
polymer with 3,3′,5,5′-tetramethyl-4,4′-bipyrazole (Me4bpzH2).
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Figure 2. Various pyrazoles used to make silver(I) CTCs [13–17].

Many transition metals ligated by 3,3′,5,5′-tetramethyl-4,4′-bipyrazole (Me4bpzH2)
have been reported [18]. The geometry of this bipyrazole is presumably controlled by
the steric repulsion of the four-methyl groups, which influence the configuration of the
two pyrazole rings and interplanar angle (ϕ), which is also controlled by the metal ion
and its coordination environment (Figure 3). Single-crystal structures reported for silver(I)
complexes ligated by bipyrazoles include the following: [Ag(NO3)(Me4bpzH2)]·MeOH [19],
[Ag(Me4bpzH2)](ClO4) [20], [Ag(Me4bpzH2)](PO2F2) [20], [Ag4(NO3)4(Me4bpzH2)5]·2H2O [20],
[Ag(CF3SO3)(Me4bpzH2)] [20], [Ag2(CF3CO2)2(Me4bpzH2)3] [20], [Ag(C2F5CO2)
(Me4bpzH2)] [20], [Ag2(Me4bpz)] [21,22], [Ag30(Me4bpz)15]·10(C6H6) [21,22], [Ag30(Me4bpz)15]·
9(C6H5CH3) [21,22], [Ag(p-HO2C6H4CO2)(Me4bpzH2)] [23], [Ag2(m-O2C6H4CO2)



Molecules 2023, 28, 2936 3 of 13

(Me4bpzH2)2] [23], [Ag(CH3CO2)(Me4bpzH2)]·5.4H2O [23], [Ag6(Ph4bpz)3] (Ph2bpz =
3,3′,5,5′-tetraphenyl-4,4′-bipyrazole dianion) [24], and [Ag2(SO4)(Me4bpzH2)2]·3H2O [25].
Depending on the metal-to-ligand ratio, and other factors, it is possible to form many
structures, such as coordination polymers with trinuclear structures. However, silver(I)
coordination polymers are insoluble in most solvents once formed. To overcome this
disadvantage, anions with trifluoromethyl groups such as CF3CO2

− and CF3SO3
− were

used in the present study as coordinated ions. We have previously reported the use of the
trifluoromethyl group to make the manganese(II) complex [MnII{HB(3-CF3-5-Mepz)3}2],
where HB(3-CF3-5-Mepz)3

− = hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borate
anion [26] and copper(I) complexes [CuI{HB(3-CF3-5-Mepz)3}(CO)] and [CuI{HB(3-CF3-5-
Mepz)3}(PPh3)] [27]. The trifluoromethyl group has unique electronegativity, hydropho-
bicity, metabolic stability, and bioavailability. It is therefore widely employed in medicine,
agrochemicals, and organic materials [28]. In the present work, we report the synthesis of sil-
ver(I) coordination polymers, [Ag(CF3CO2)(Me4bpzH2)] and [Ag(CF3SO3)(Me4bpzH2)],
and their characterization by 1H-NMR, IR, Raman, UV–Vis, and photoluminescence spec-
troscopies. The reported structure of [Ag(CF3SO3)(Me4bpzH2)] [20] had a severe disorder
in the trifluoromethyl groups, and this problem was avoided in the present study by
acquiring the diffraction data at −95 ◦C.
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Figure 3. 3,3′,5,5′-Tetramethyl-4,4′-bipyrazole (Me4bpzH2) and the interplanar angle (ϕ) of bipyra-
zole.

2. Results and Discussion
2.1. Synthesis

The reactions of 3,3′,5,5′-tetramethyl-4,4′-bipyrazole (Me4bpzH2) [19,29] with one
equivalent of silver(I) ions, Ag(CF3CO2) and Ag(CF3SO3), were carried out at room tem-
perature (Figure 4), and they were given white powders after 48 h. The yields were modest
(50–60%). Single crystals were obtained from the filtrate by slow evaporation at room
temperature.
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Figure 4. Synthesis of silver(I) coordination polymers [Ag(X)(Me4bpzH2)], X = CF3CO2
–, and

CF3SO3
–.

Powder X-ray diffraction analysis of the white powders matched the single-crystal
structures, indicating phase purity (Figures S1 and S2 from Supplementary Materials).

2.2. Structures

Single-crystal X-ray structures of coordination polymers (Figures 5–9), [Ag(CF3CO2)
(Me4bpzH2)] and [Ag(CF3SO3)(Me4bpzH2)], are shown in Figures 5 and 7, respectively.
The 1-D polynuclear structures of [Ag(CF3CO2)(Me4bpzH2)] and [Ag(CF3SO3)(Me4bpzH2)]
are presented in Figures 6 and 8, respectively. Fragments of the double-chain structures of
[Ag(CF3SO3)(Me4bpzH2)] are shown in Figure 9.
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Figure 5. Crystal structure of [Ag(CF3CO2)(Me4bpzH2)] (silver(I) core) showing 50% displacement
ellipsoids and the atom labeling scheme. Hydrogen atoms are omitted for clarity. Relevant bond
lengths (Å) and angles (◦): Ag1–N11, 2.143(2); Ag1–N21, 2.127(2); Ag1–O1, 2.544(2); Ag1···O2,
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123.29(7); and O2···Ag1–N21, 72.96(7).
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The Ag(I) atoms in [Ag(CF3CO2)(Me4bpzH2)] (Figure 5) were coordinated by two
pyrazole N atoms of two Me4bpzH2 and one O atom of a CF3CO2

− anion, giving a distorted
trigonal pyramidal geometry with 0.27 Å distance between the Ag(I) ion and the plane
created by the coordinated atoms of the N2O ligand donor set. The coordinated pyrazoles’
dihedral angle in Me4bpzH2 was 42.9◦, and the shortest Ag· · ·Ag distance was 9.9857(4) Å.
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The dihedral angle of the bipyrazole (ϕ) in Figure 3 is 62.7◦, which is within the range of
the reported values. Therefore, in the 1-D polynuclear structure, a zig-zag configuration
was formed (Figure 6). Likewise, the coordinated CF3CO2

− anions were also located in a
zig-zag pattern. The distance to the next Ag(I) ion was 18.5775(4) Å, and the dihedral angle
between these pyrazoles was 0◦. The carboxylate oxygen was coordinated to the Ag(I) ions
at a relatively long distance of Ag1–O1, 2.544(2) Å with a very weak Ag1···O2 interaction
of 3.349(2) Å. This conformation was stabilized by two intramolecular hydrogen bonds
of 2.801(3) Å N12· · ·O1 and 2.738(3) N22· · ·O2. The interdimer Ag· · ·Ag distances were
3.4250(4) and 8.6779(3) Å (Figure 6). The former is almost the same as the sum of twice
Bondi’s van der Waals radius (3.44 Å) [30], indicating small argentophilic interactions [31].

The Ag(I) atoms in [Ag(CF3SO3)(Me4bpzH2)] (Figure 7) were coordinated by two
pyrazole N atoms of two Me4bpzH2 and one O atom of the CF3SO3

− anion, giving a
distorted trigonal pyramidal geometry with 0.08 Å in distance between the Ag(I) ion and
the plane created by the coordinated atoms. The coordinated pyrazoles’ dihedral angle in
Me4bpzH2 was 77.05◦, and the shortest Ag· · ·Ag distance was 9.9158(4) Å. The dihedral
angle of the bipyrazole (ϕ) was 77.05◦ (Figure 3), which is in the range of the reported values.
Therefore, in the 1-D polynuclear structure, a linear configuration was formed (Figure 8).
The coordinated anions CF3SO3

− were oriented in the same direction. The distance to
the next Ag(I) ion was 19.815(5) Å, this value is twice the Ag1···Ag1 distance of 9.9158(4)
Å, so that each Ag(I) ion was linear. The dihedral angle between these pyrazoles was 0◦.
The carboxylate oxygen was coordinated to the Ag(I) ions at a relatively long distance of
Ag1···O1, 2.678(3) Å with no interaction between Ag1···O2, 4.233(2) Å. This conformation
was stabilized by two intermolecular hydrogen bonds of 2.844(4) Å N12· · ·O3 and 2.865(4)
N22· · ·O2. Moreover, the interdimer Ag· · ·Ag distance was 4.4592(4), which is longer
than the sum of twice the Bondi’s van der Waals radius (3.44 Å) [30], indicating almost
no argentophilic interaction [31] (Figure 9). However, [Ag(CF3SO3)(Me4bpzH2)] forms a
double-chain structure (Figure 9).

2.3. Solution-State Properties

The 1H-NMR spectrum of the obtained white powder [Ag(CF3SO3)(Me4bpzH2)] in
CDCl3 revealed only a broad 1.61 ppm signal (Figure S3 from Supplementary Materials),
which was different from that of the ligand, Me4bpzH2 at 2.10 ppm (Figure S4 from
Supplementary Materials). This observation is also supported by its solution-state UV–
Vis spectra in MeOH (Figure S5 from Supplementary Materials). A broad absorption
of Me4bpzH2 in the UV region was observed at around 230 nm, and the shoulder of
[Ag(CF3SO3)(Me4bpzH2)] was observed at almost the same energy, but with a different
molecular extinction coefficient. Therefore, the structure of [Ag(CF3SO3)(Me4bpzH2)] in
the solution remains intact. However, we did not measure concentration dependences in the
NMR or UV–Vis experiments. Unfortunately, the solubility of [Ag(CF3CO2)(Me4bpzH2)]
was poor, and we could not obtain a UV–Vis spectrum in the MeOH solution.

2.4. Solid-State Properties

In [Ag(CF3CO2)(Me4bpzH2)], the characteristic CO2 stretching vibrations could be
observed in the IR region at 1683 cm−1, and in [Ag(CF3CO2)(Me4bpzH2)], the characteris-
tic stretching vibrations from the CF3SO3

− group were observed at 1260 cm−1 νas(SO3),
1175 cm−1 νas(CF3), 1026 cm−1 νs(SO3) in the IR spectrum, and 1027 cm−1 νs(SO3) in
the Raman spectrum [32,33]. Strong peaks in the far-IR region were assigned to the
ν(C–C) of bipyrazole, which was observed at 627 cm−1 (IR) and 625 cm−1 (Raman) in
[Ag(CF3CO2)(Me4bpzH2)], and at 627 cm−1 (shoulder) (IR) and 624 cm−1 (Raman) in
[Ag(CF3SO3)(Me4bpzH2)], and at 628 cm−1 (IR) and 619 cm−1 (Raman) in Me4bpzH2. An
additional peak at 644 cm−1 was assigned to δs(SO3) (Figure 10, Figures S6 and S7 from
Supplementary Materials).
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Figure 10. Far-IR spectra of the ligand Me4bpzH2 (green line), and silver(I) polymers
[Ag(CF3CO2)(Me4bpzH2)] (red line), and [Ag(CF3SO3)(Me4bpzH2)] (blue line) at room temperature.

The Ag–N stretching vibration has been previously reported at ~500 cm−1 [13–17,32].
However, the ligand Me4bpzH2 exhibited some peaks in this region. Therefore, we
cannot conclusively assign this vibration as ν(Ag–N). The Ag–O stretching vibration
could be assigned at 519 cm−1 (IR) in [Ag(CF3CO2)(Me4bpzH2)] and 520 cm−1 (IR) in
[Ag(CF3SO3)(Me4bpzH2)], compared with the Ag–O stretching vibration of its precursors,
518 cm−1 (IR) in [Ag(CF3CO2)] and 519 cm−1 (IR) in [Ag(CF3SO3)]. These vibration data
confirm the solid-state structure observed by X-ray crystallography.

The emission spectra of the silver(I) complexes [Ag(CF3CO2)(Me4bpzH2)], [Ag(CF3SO3)
(Me4bpzH2)], and Me4bpzH2 are shown in Figure S8 from Supplementary Materials (solid-
state and solution-state at 298 K), Figure S9 from Supplementary Materials (temperature
dependence, Me4bpzH2), Figure S10 from Supplementary Materials (temperature depen-
dence, [Ag(CF3CO2)(Me4bpzH2)]), Figure S11 from Supplementary Materials (tempera-
ture dependence, [Ag(CF3SO3)(Me4bpzH2)]), Figure S12 from Supplementary Materials
(solid-state at 173 K, comparison), and Figure S13 from Supplementary Materials (solid-state
at 298 K, comparison).

At 298 K, there were no significant differences between silver(I) complexes [Ag(CF3CO2)
(Me4bpzH2)] and [Ag(CF3SO3)(Me4bpzH2)] and the ligand Me4bpzH2. However, some
shift was observed between the solid-state and solution-state spectra of [Ag(CF3SO3)
(Me4bpzH2)] (Figures S8 and S13 from Supplementary Materials). This may be caused by
the dissociation of [Ag(CF3SO3)(Me4bpzH2)] in the solution. At lower temperatures of 173 K
and 83 K, a new broad emission band was observed at 420 nm in [Ag(CF3CO2)(Me4bpzH2)]
and at 397 nm in [Ag(CF3SO3)(Me4bpzH2)] (Figure 11, Figure S10–S12 from Supplemen-
tary Materials).
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Figure 11. Solid-state photoluminescence spectra of ligand Me4bpzH2 (green line, 250 nm ex-
citation), and silver(I) polymers [Ag(CF3CO2)(Me4bpzH2)], (red line, 250 nm excitation), and
[Ag(CF3SO3)(Me4bpzH2)] (blue line, 240 nm excitation) at 83 K.

In addition to the most intense 420 nm emission band of [Ag(CF3CO2)(Me4bpzH2)]
and the 397 nm emission of [Ag(CF3SO3)(Me4bpzH2)], the corresponding measurements
at 83 K revealed an additional band around ~330 nm, which was also observed in the
ligand Me4bpzH2 at the same temperature (Figure 11). This higher energy emission band
may be from ligand-based phosphorescence [25]. The lower energy emission band was
attributed to metal-based phosphorescence arising from closed shell d10–d10 intermolecular
argentophilic (Ag···Ag) interactions [13–17,34–36]. Both ~330 nm and ~400 nm bands
were ascribed to ligand-based phosphorescence, since [Ag(CF3SO3)(Me4bpzH2)] has no
argentophilic interaction, as indicated by the interdimer Ag· · ·Ag distance of 4.4592(4) Å.
The latter emission was also attributed to the heavy metal effect [1–3]. This explana-
tion has been proposed based on experimental observations of the previously reported
[Ag2(SO4)(Me4bpzH2)2]·3H2O [25]. We are now in the process of probing the origin of this
behavior through theoretical and more detailed physicochemical research.

3. Materials and Methods
3.1. Material and General Techniques

The preparation and handling of the two silver(I) complexes were performed under an
argon atmosphere using standard Schlenk tube techniques under light-shielded conditions.
Ultra-dry methanol was purchased from Wako Pure Chemical Ind. Ltd. and deoxygenated
by purging with argon gas. Deuteriochloroform was obtained from Cambridge Isotope
Laboratories, Inc. Other reagents were commercially available and used without further pu-
rification. The 3,3′,5,5′-tetramethyl-4,4′-bipyrazole (Me4bpzH2) was prepared by published
methods [19,28]. The purity of the ligand was checked by 1H-NMR spectroscopy.

3.2. Instrumentation

IR spectra (4000–400 cm−1) and far-IR spectra (680–150 cm−1) were recorded as KBr
pellets using a JASCO FT/IR-6300 spectrophotometer under ambient conditions (JASCO,
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Tokyo, Japan) and as CsI pellets using a JASCO FT/IR 6700 spectrophotometer under vac-
uum (JASCO, Tokyo, Japan), respectively. Raman spectra (4000–200 cm−1) were measured
as powders on a JASCO RFT600 spectrophotometer with a YAG laser 600 mW (JASCO,
Tokyo, Japan). Abbreviations used in the description of vibration data are as follows: s,
strong; m, medium; and w, weak. 1H-NMR (500 MHz) and 13C-NMR spectra (125 MHz)
were obtained on a Bruker AVANCE III-500 NMR spectrometer at room temperature (298 K)
in CDCl3-d1 or CD3OD-d3 (Bruker Japan, Yokohama, Japan). 1H and 13C chemical shifts
were reported as δ values relative to residual solvent peaks. UV–Vis spectra (solution and
solid, 1000–200 nm) were recorded on a JASCO V-570 spectrophotometer (JASCO, Tokyo,
Japan). The values of ε were calculated per silver(I) ion. Solid samples (mulls) for UV–Vis
spectroscopy were prepared by finely grinding microcrystalline material into powders
with a mortar and pestle and then adding mulling agents (nujol, poly(dimethylsiloxane),
viscosity 10,000) (Aldrich)) before uniformly spreading between quartz plates. Lumi-
nescence spectra were recorded on a JASCO FP-6500 (solution and solid, 600–300 nm)
spectrofluorometer (JASCO, Tokyo, Japan). Low-temperature luminescence spectra were
recorded using solid samples, which were prepared by finely grinding microcrystalline
material into powders with a mortar between quartz plates cooled with a liquid nitrogen
cryostat (CoolSpeK USP-203) from Unisoku Scientific Instruments (Osaka, Japan). Powder
X-ray diffraction (XRD) measurements were conducted on a Rigaku SmartLab-SP/IUA
X-ray diffractometer (Rigaku, Tokyo, Japan) with a Cu Kα radiation (λ = 1.54 Å) source
(40 kV, 30 mA) and a high-speed one-dimensional detector D/teX Ultra 250. The 2θ was
measured in the range of 5–90◦ with a scan step of 0.02◦ and scan speed of 10◦ min−1.
Solid samples for XRD were prepared by finely grinding microcrystalline materials into
powders with a mortar and pestle and then placing them on an aluminum dish (0.2 mm
thickness). Simulated powdered XRD patterns were calculated from single-crystal data
using the MERCURY software suite from CCDC. The elemental analyses (C, H, and N)
were performed by the Chemical Analysis Center of Ibaraki University.

3.3. Preparation of Ligand and Complexes

• 3,3′,5,5′-Tetramethyl-4,4′-bipyrazole (Me4bpzH2)

The bispyrazole ligand was prepared by published methods [19,28]. The purity of the
ligand was checked by 1H-NMR spectroscopy and characterized as indicated below.

Calcd for C10H16N4O = Me4bpzH2•H2O: C, 57.67; H, 7.74; N, 26.90. Found: C, 57.95;
H, 7.82; N 27.13. 1H-NMR (CDCl3, 500 MHz): δ/ppm (assignments): 2.18 (s, 12 H, Me).
1H-NMR (CD3OD, 500 MHz): δ/ppm (assignments): 2.05 (s, br, 12 H, Me). 13C-NMR
(CD3OD, 125 MHz): δ/ppm (assignments): 9.8 (3- or 5-Me), 12.2 (3- or 5-Me), 109.8 (pz-4C),
139.6 (3- or 5-pzC), 149.4 (3- or 5-pzC). IR (KBr, cm−1): 3200 s ν(N–H), 3082 s ν(N–H),
2925 s ν(C–H), 2824 s ν(C–H), 1614 w, 1568 m, 1545 m, 1416 s, 1371 w, 1309 m, 1291 m,
1256 m, 1172 w, 1062 w, 1041 w, 1016 s, 842 m, 786 s, 625 w, 519 w, 479 w. Far–IR (CsI,
cm−1): 662 w, 628 s ν(C–C), 591 w, 521 s, 480 s, 429 m, 351 m, 338 m, 277 s, 180 s. Far–IR
(CsI, cm−1): 662 w, 628 s ν(C–C), 591 w, 521 s, 480 s, 429 m, 351 m, 338 m, 277 s, 180 s.
Raman (solid, cm−1): 2928 s ν(C–H), 1623 m, 1539 w, 1473 m, 1421 m, 1375 w, 1307 w,
1156 w, 1139 w, 973 w, 783 w, 710 w, 619 s ν(C–C), 592 m, 518 w, 486 w, 423 w, 343 m.
UV–Vis (solution, methanol, λmax/nm (ε/cm−1 mol−1 dm3)): 223 (5100). Emission (solid,
ex. 250 nm, λmax/nm): 83 K, 327; 173 K, 328, 83 K, 328.

• [Ag(CF3CO2)(Me4bpzH2)]

A solution of 3,3′,5,5′-tetramethyl-4,4′-bipyrazole (Me4bpzH2) (388 mg, 2.04 mmol) in
methanol (10 cm3) was added to a solution of silver(I) trifluoroacetate (446 mg, 2.02 mmol)
in methanol (10 cm3). The mixture was stirred for 48 h, and the resulting powder was
filtered and dried under vacuum. The colorless powder was obtained by filtration (561 mg,
1.36 mmol, 67%). Colorless crystals for X-ray analysis were obtained from the filtrate.

Calcd for C12H14AgF3N4O2: C, 35.06; H, 3.43; N, 13.63. Found: C, 34.94; H, 3.51;
N 13.67.
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IR (KBr, cm−1): 3305 s, 3079 s, 2929 s, 1683 s ν(C=O), 1558 m, 1542 m, 1496 m, 1462 m,
1429 m, 1374 w, 1281 m, 1261 m, 1206 s, 1132 s, 1042 m, 835 m, 798 m, 780 m, 720 m, 708 m,
616 w, 597 w, 566 w. Far–IR (CsI, cm−1): 627 s ν(C–C), 597 w, 519 s ν(Ag–O), 496 w, 479 m
ν(Ag–N), 429 w, 351 m, 266 s, 179 s. Raman (solid, cm−1): 2970 m ν(C–H), 2932 s ν(C–H),
1619 s ν(C=O), 1544 w, 1489 m, 1450 m, 1428 s, 1388 m, 1303 w, 1188 w, 835 w, 625 s ν(C–C),
592 w, 533 w, 454 m ν(Ag–N), 412 w, 349 w, 300 w. Emission (solid, ex. 250 nm, λmax/nm):
83 K, 420; 173 K, 423; 298 K, 331.

• [Ag(CF3SO3)(Me4bpzH2)]

A solution of 3,3′,5,5′-tetramethyl-4,4′-bipyrazole (Me4bpzH2) (271 mg, 1.43 mmol) in
methanol (10 cm3) was added to a solution of silver(I) trifluoromethanesulfonate (366 mg,
1.43 mmol) in methanol (10 cm3). The mixture was stirred for 48 h. A colorless powder
was obtained (349 mg, 0.78 mmol, 55%) by slow evaporation of the transparent solution.
Colorless crystals for X-ray analysis were obtained by recrystallization from methanol at
room temperature.

Calcd for C11H14AgF3N4O3S: C, 29.54; H, 3.16; N, 12.53. Found: C, 29.52; H, 3.19;
N, 12.56.

IR (KBr, cm−1): 3315 s, 3245 s, 3099 m, 2964 m, 2927 m, 1628 w, 1598 m, 1563 m, 1545 m,
1463 m, 1420 m, 1378 w, 1377 w, 1260 s νas(SO3), 1227 s, 1175 s νas(CF3), 1157 m, 1104 w,
1026 s νs(SO3), 800 m, 784 w, 732 m, 707 w, 638 s, 576 w, 519 m. Far-IR (CsI, cm−1): 689 w,
644 s δs(SO3), 627 sh ν(C–C), 596 w, 578 m, 520 s ν(Ag–O), 480 w ν(Ag–N), 429 w, 351 w,
267 m, 180 m. Raman (solid, cm−1): 2932 s, 1628 s, 1544 m, 1484 m, 1424 m, 1385 m, 1307 w,
1226 w, 1170 w, 1154 w, 1027 s νs(SO3), 761 m, 707 w, 625 s ν(C–C), 593 m, 577 w, 523 w,
442 w, 353 m, 340 w, 319 m. 1H-NMR (CDCl3, 500 MHz): δ/ppm (assignments): 1.61 (s,
br, 12 H, Me). UV–Vis (solution, MeOH, λmax/nm (ε/cm−1 mol−1 dm3)): 230 (shoulder,
8300). Emission (solution, MeOH, ex. 260 nm, λmax/nm): 337. Emission (solid, ex. 250 nm,
λmax/nm): 83 K, 397; 173 K, 393; 298 K, 324.

3.4. X-ray Crystal Structure Determination

The diffraction data of [Ag(CF3CO2)(Me4bpzH2)] and [Ag(CF3SO3)(Me4bpzH2)]
were obtained on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror monochro-
mated Mo Kα (λ = 0.71073 Å) radiation at –95 ± 2 ◦C. A crystal of suitable size and quality
was coated with Paratone-N oil (Hampton Research, Aliso Viejo, CA, USA) and mounted
on a Dual-Thickness MicroLoop LD (200 µM) (MiTeGen, New York, NY, USA). The unit cell
parameters were determined using CrystalClear from 18 images [37]. The crystal to detector
distance was ca. 45 mm. Data were collected at 0.5◦ intervals in ϕ and ω to a maximum
2θ value of 55.0◦. The highly redundant data sets were reduced using CrysAlisPro [38].
An empirical absorption correction was applied for each complex. Structures were solved
by direct methods (SIR2008 [39] and SIR2004 [40]). The position of the silver ions and
their first coordination sphere were located using a direct method (E-map). Other non-
hydrogen atoms were found in alternating difference Fourier syntheses, and least squares
refinement cycles. During the final refinement cycles, the temperature factors were refined
anisotropically. Refinement was carried out by a full matrix least-squares method on F2.
All calculations were performed with the CrystalStructure [41] crystallographic software
package except for refinement, which was performed using SHELXL 2013 [42]. Hydrogen
atoms were placed in calculated positions. Crystallographic data and structure refinement
parameters, including the final discrepancies (R and Rw), are listed in Table 1.
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Table 1. Crystal data and structure refinement of [Ag(CF3SO3)(Me4bpzH2)] and
[Ag(CF3CO2)(Me4bpzH2)].

Complex [Ag(CF3CO2)(Me4bpzH2)] [Ag(CF3SO3)(Me4bpzH2)]

CCDC number 2,227,168 2,227,169
Empirical formula C12H14AgF3N4O2 C11H14AgF3N4O3S
Formula weight 411.13 447.18
Crystal system Monoclinic Triclinic
Space group P21/n (#14) P1 (#2)
a/Å 13.2724(2) 8.66665(15)
b/Å 8.67316(15) 9.91576(18)
c/Å 13.3047(2) 10.2913(2)
α/◦ 90 111.6690(19)
β/◦ 91.3059(17) 102.4538(17)
γ/◦ 90 90.8501(14)
V/Å3 1531.15(4) 798.20(3)
Z 4 2
Dcalc/g cm−3 1.783 1.860
µ(MoKα)/cm−1 13.560 14.391
2θ range, ◦ 6–55 6–55
Reflections collected 23895 25699
Unique reflections 3516 3666
Rint 0.0304 0.0270
Number of variables 199 208
Refls./Para. ratio 17.67 17.63
Residuals: R1 (I > 2 σ (I)) 0.0337 0.0320
Residuals: R (All refl.) 0.0359 0.0351
Residuals: wR2 (All refl.) 0.0999 0.0965
Goodness of fit ind. 1.054 1.078
Max/min peak,/e Å−3 1.27/–0.73 1.21/–0.45

a R = Σ ||Fo| − |Fc||/Σ |Fo |; wR2 = [(Σ (w (|Fo|2 − |Fc|2)2)/Σ w (Fo2))2]1/2.

4. Conclusions

Silver(I) coordination polymers are important in coordination chemistry, but they often
have very poor solubility in common solvents. To overcome this disadvantage, we synthe-
sized silver(I) complexes with a trifluoromethyl group, viz [Ag(CF3CO2)(Me4bpzH2)] and
[Ag(CF3SO3)(Me4bpzH2)]. We determined both solid-state structures at a low tempera-
ture. The Ag(I) atoms in [Ag(CF3CO2)(Me4bpzH2)] were coordinated by two pyrazole N
atoms of two Me4bpzH2 and one O atom of a CF3CO2

− anion, giving a distorted trigonal
pyramidal geometry. In the 1-D polynuclear structure, a zig-zag configuration was formed.
Likewise, the coordinated CF3CO2

− anions were also located in a zig-zag pattern. By
comparison, the Ag(I) atoms in [Ag(CF3SO3)(Me4bpzH2)] were coordinated by two pyra-
zole N atoms of two Me4bpzH2 and one O atom of the CF3SO3

− anion, giving a distorted
trigonal pyramidal geometry. In the 1-D polynuclear structure, a linear configuration was
formed. The coordinated anions CF3SO3

− were oriented in the same direction. This con-
formation was stabilized by two intermolecular hydrogen bonds, forming a double-chain
structure. Solution properties were measured by 1H-NMR, UV–Vis absorption, and photo-
luminescence spectroscopies. These silver(I) coordination polymers exhibited interesting
photoluminescence properties resulting from the presence of intermolecular argentophilic
(Ag···Ag) interactions and/or ligand-based phosphorescence with the heavy atom effect.
Further efforts to probe how the structures of coinage silver(I) coordination polymers are
affected by ligand and coordination environments are in progress in our laboratory.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/molecules28072936/s1, CIFs and check CIF reports. Figure S1: PXRD of [Ag(CF3CO2)(Me4bpzH2)]
and the simulated diffractogram, Figure S2: PXRD of [Ag(CF3SO3)(Me4bpzH2)] and the simulated
diffractogram, Figure S3: 1H-NMR spectrum of [Ag(CF3SO3)(Me4bpzH2)], Figure S4: 1H-NMR

https://www.mdpi.com/article/10.3390/molecules28072936/s1
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spectrum of Me4bpzH2, Figure S5: UV spectra of the ligand and[Ag(CF3SO3)(Me4bpzH2)]. Figure S6:
IR spectra of the ligand and silver(I) complexes, Figure S7: FT-Raman spectra of the ligand and
silver(I) complexes, Figure S8: Photoluminescence spectra of the ligand and silver(I) complexes
at 298 K, Figure S9: Temperature dependent photoluminescence spectra of the ligand Me4bpzH2,
Figure S10: Temperature dependent photoluminescence spectra of [Ag(CF3CO2)(Me4bpzH2)], Figure
S11: Temperature dependent photoluminescence spectra of [Ag(CF3SO3)(Me4bpzH2)], Figure S12:
Solid-state photoluminescence spectra of the ligand and silver(I) complexes at 173 K, Figure S13:
Solid-state photoluminescence spectra of the ligand and silver(I) complexes at 298 K.
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