Efficient Synthesis of Imine-Carboxylic Acid Functionalized Compounds: Single Crystal, Hirshfeld Surface and Quantum Chemical Exploration
Abstract
:1. Introduction
2. Result and Discussion
2.1. Description of SC-XRD Analysis of HMBA and DHBA
2.2. Hirshfeld Surface Analysis
2.3. Natural Population and Molecular Electrostatic Potential Analyses
2.4. NBO Analysis
2.5. FMO Analysis
2.6. Global Reactivity Parameters
2.7. Dipole Moment and Liner Polarizability
3. Methodology
3.1. Experimental Details
3.2. Synthesis of the Carboxylic Acid Functionalized Imines
3.2.1. Synthesis of (E)-4-((3,5-Diiodo-2-Hydroxybenzylidene)Amino)Benzoic Acid (DHBA)
3.2.2. Synthesis of (E)-4-((2-Hydroxy-3-Methoxybenzylidene)Amino)Benzoic Acid (HMBA)
3.3. Computational Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cimerman, Z.; Miljanić, S.; Galić, N. Schiff Bases Derived from Aminopyridines as Spectrofluorimetric Analytical Reagents. Croat. Chem. Acta 2000, 73, 81–95. [Google Scholar]
- Abu-Dief, A.M.; Mohamed, I.M. A Review on Versatile Applications of Transition Metal Complexes Incorporating Schiff Bases. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.N.; Kuznetsov, A.; Ali, A.; Ashfaq, M.; Tahir, M.N.; Siddique, A. Imine-Based Zwitterion: Synthesis, Single-Crystal Characterization, and Computational Investigation. J. Mol. Struct. 2022, 1253, 132237. [Google Scholar] [CrossRef]
- Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff Bases: A Versatile Pharmacophore. J. Catal. 2013, 2013, 893512. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.M.; Azad, M.A.K.; Jesmin, M.; Ahsan, S.; Rahman, M.M.; Khanam, J.A.; Islam, M.N.; Shahriar, S.M.S. In Vivo Anticancer Activity of Vanillin Semicarbazone. Asian Pac. J. Trop. Biomed. 2012, 2, 438–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboul-Fadl, T.; Mohammed, F.A.-H.; Hassan, E.A.-S. Synthesis, Antitubercular Activity and Pharmacokinetic Studies of Some Schiff Bases Derived from 1-Alkylisatin and Isonicotinic Acid Hydrazide (INH). Arch. Pharm. Res. 2003, 26, 778–784. [Google Scholar] [CrossRef]
- Sondhi, S.M.; Singh, N.; Kumar, A.; Lozach, O.; Meijer, L. Synthesis, Anti-Inflammatory, Analgesic and Kinase (CDK-1, CDK-5 and GSK-3) Inhibition Activity Evaluation of Benzimidazole/Benzoxazole Derivatives and Some Schiff’s Bases. Bioorg. Med. Chem. 2006, 14, 3758–3765. [Google Scholar] [CrossRef]
- Mounika, K.; Pragathi, A.; Gyanakumari, C. Synthesis Characterization and Biological Activity of a Schiff Base Derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic Acid and Its Transition Metal Complexes. J. Sci. Res. 2010, 2, 513. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, D.; Das, D.; Nag, S.; Bhattacharyya, M.; Singh, D.K.; Parai, D.; Bankura, K.; Mishra, D. A Rare Hetero-Bimetallic Zn (II)/Ca (II) Schiff Base Complex: Synthesis, Crystal Structure, DFT, Molecular Docking and Unveiling Antimicrobial Activity. J. Mol. Struct. 2020, 1222, 128951. [Google Scholar] [CrossRef]
- Wei, D.; Li, N.; Lu, G.; Yao, K. Synthesis, Catalytic and Biological Activity of Novel Dinuclear Copper Complex with Schiff Base. Sci. China Ser. B 2006, 49, 225–229. [Google Scholar] [CrossRef]
- Mahmood, A.; Saqib, M.; Ali, M.; Abdullah, M.I.; Khalid, B. Theoretical Investigation for the Designing of Novel Antioxidants. Can. J. Chem. 2013, 91, 126–130. [Google Scholar] [CrossRef]
- Avaji, P.G.; Kumar, C.V.; Patil, S.A.; Shivananda, K.N.; Nagaraju, C. Synthesis, Spectral Characterization, in-Vitro Microbiological Evaluation and Cytotoxic Activities of Novel Macrocyclic Bis Hydrazone. Eur. J. Med. Chem. 2009, 44, 3552–3559. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-F.; Wang, C.-J.; Feng, Q.-Z.; Zhai, J.-J.; Qi, S.-S.; Zhong, A.-G.; Chu, M.-M.; Xu, D.-Q. Copper-Catalyzed Asymmetric 1, 6-Conjugate Addition of in Situ Generated Para-Quinone Methides with β-Ketoesters. Chem. Commun. 2022, 58, 6653–6656. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Zhong, A.; Wang, S.; Shao, Y. Transition-Metal-Free Catalytic Hydroboration Reduction of Amides to Amines. Org. Chem. Front. 2020, 7, 3515–3520. [Google Scholar] [CrossRef]
- Yao, W.; Fang, H.; He, Q.; Peng, D.; Liu, G.; Huang, Z. A BEt3-Base Catalyst for Amide Reduction with Silane. J. Org. Chem. 2019, 84, 6084–6093. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, A.K.; Pandeya, S.N. Synthesis & Anticonvulsant Activity (Chemo Shock) of Schiff and Mannich Bases of Isatin Derivatives with 2-Amino Pyridine (Mechanism of Action). Int. J. PharmTech Res. 2012, 4, 590–598. [Google Scholar]
- Yao, W.; He, L.; Han, D.; Zhong, A. Sodium Triethylborohydride-Catalyzed Controlled Reduction of Unactivated Amides to Secondary or Tertiary Amines. J. Org. Chem. 2019, 84, 14627–14635. [Google Scholar] [CrossRef]
- Tamer, Ö.; Dege, N.; Demirtaş, G.; Avcı, D.; Atalay, Y.; Macit, M.; Şahin, S. Crystal Structure and Spectroscopic Characterization of (E)-2-(((4-Bromo-2-(Trifluoromethoxy) Phenyl) Imino) Methyl)-4-Nitrophenol: A Combined Experimental and Computational Study. J. Mol. Struct. 2014, 1063, 295–306. [Google Scholar] [CrossRef]
- Kanmazalp, S.D.; Macit, M.; Dege, N. Hirshfeld Surface, Crystal Structure and Spectroscopic Characterization of (E)-4-(Diethylamino)-2-((4-Phenoxyphenylimino) Methyl) Phenol with DFT Studies. J. Mol. Struct. 2019, 1179, 181–191. [Google Scholar] [CrossRef]
- Erkkilä, A.; Majander, I.; Pihko, P.M. Iminium Catalysis. Chem. Rev. 2007, 107, 5416–5470. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.F. Recent Applications of Imines as Key Intermediates in the Synthesis of Alkaloids and Novel Nitrogen Heterocycles. Pure Appl. Chem. 2009, 81, 195–204. [Google Scholar] [CrossRef] [Green Version]
- de la Torre, A.F.; Ali, A.; Galetto, F.Z.; Braga, A.L.; Delgado, J.A.; Paixão, M.W. One-Pot Organocatalytic/Multicomponent Approach for the Preparation of Novel Enantioenriched Non-Natural Selenium-Based Peptoids and Peptide–Peptoid Conjugates. Mol. Divers. 2020, 24, 1–10. [Google Scholar] [CrossRef]
- Alexander, F.; Ali, A.; Concepcion, O.; Montero-Alejo, A.L.; Muñiz, F.M.; Jiménez, C.A.; Belmar, J.; Velázquez-Libera, J.L.; Hernández-Rodríguez, E.W.; Caballero, J. A Study of the Cis–Trans Isomerization Preference of N-Alkylated Peptides Containing Phosphorus in the Side Chain and Backbone. New J. Chem. 2019, 43, 12804–12813. [Google Scholar] [CrossRef]
- Berge, S.M.; Bighley, L.D.; Monkhouse, D.C. Pharmaceutical Salts. J. Pharm. Sci. 1977, 66, 1–19. [Google Scholar] [CrossRef]
- Khan, I.; Khalid, M.; Adeel, M.; Niaz, S.I.; Shafiq, I.; Muhammad, S.; Braga, A.A.C. Palladium-Catalyzed Synthesis of 5-(Arylated) Pyrimidines, Their Characterization, Electronic Communication, and Non-Linear Optical Evaluations. J. Mol. Struct. 2021, 1237, 130408. [Google Scholar] [CrossRef]
- Badea, G.-I.; Radu, G.L. Carboxylic Acid: Key Role in Life Sciences; BoD—Books on Demand: Norderstedt, Germany, 2018. [Google Scholar]
- Tamer, Ö.; Mahmoody, H.; Feyzioğlu, K.F.; Kılınç, O.; Avci, D.; Orun, O.; Dege, N.; Atalay, Y. Synthesis of the First Mixed Ligand Mn (II) and Cd (II) Complexes of 4-Methoxy-Pyridine-2-Carboxylic Acid, Molecular Docking Studies and Investigation of Their Anti-Tumor Effects in Vitro. Appl. Organomet. Chem. 2020, 34, e5416. [Google Scholar] [CrossRef]
- Avcı, D.; Altürk, S.; Sönmez, F.; Tamer, Ö.; Başoğlu, A.; Atalay, Y.; Zengin Kurt, B.; Dege, N. Novel Metal Complexes Containing 6-Methylpyridine-2-Carboxylic Acid as Potent α-Glucosidase Inhibitor: Synthesis, Crystal Structures, DFT Calculations, and Molecular Docking. Mol. Divers. 2021, 25, 171–189. [Google Scholar] [CrossRef]
- Avcı, D.; Saeedi, Y.; Başoğlu, A.; Dege, N.; Altürk, S.; Tamer, Ö.; Atalay, Y. Novel Mn (II) and Zn (II) Complexes of 6-Bromopicolinic Acid as a Potential Optical Material: Synthesis, Spectral Characterizations, Linear, and Nonlinear Optical Properties and Density Functional Theory Calculations. Appl. Organomet. Chem. 2021, 35, e6125. [Google Scholar] [CrossRef]
- Ali, A.; Khalid, M.; Rehman, M.F.U.; Haq, S.; Ali, A.; Tahir, M.N.; Ashfaq, M.; Rasool, F.; Braga, A.A.C. Efficient Synthesis, SC-XRD, and Theoretical Studies of O-Benzenesulfonylated Pyrimidines: Role of Noncovalent Interaction Influence in Their Supramolecular Network. ACS Omega 2020, 5, 15115–15128. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Ali, A.; Abid, S.; Tahir, M.N.; Khan, M.U.; Ashfaq, M.; Imran, M.; Ahmad, A. Facile Ultrasound-Based Synthesis, SC-XRD, DFT Exploration of the Substituted Acyl-Hydrazones: An Experimental and Theoretical Slant towards Supramolecular Chemistry. ChemistrySelect 2020, 5, 14844–14856. [Google Scholar] [CrossRef]
- Khalid, M.; Ali, A.; De la Torre, A.F.; Marrugo, K.P.; Concepcion, O.; Kamal, G.M.; Muhammad, S.; Al-Sehemi, A.G. Facile Synthesis, Spectral (IR, Mass, UV- Vis, NMR), Linear and Nonlinear Investigation of the Novel Phosphonate Compounds: A Combined Experimental and Simulation Study. ChemistrySelect 2020, 5, 2994–3006. [Google Scholar] [CrossRef]
- Ali, A.; Khalid, M.; Marrugo, K.P.; Kamal, G.M.; Saleem, M.; Khan, M.U.; Concepción, O.; Alexander, F. Spectroscopic and DFT/TDDFT Insights of the Novel Phosphonate Imine Compounds. J. Mol. Struct. 2020, 1207, 127838. [Google Scholar] [CrossRef]
- Amin, S.; Sher, M.; Ali, A.; Rehman, M.F.; Hayat, A.; Ikram, M.; Abbas, A.; Amin, H.M. Sulfonamide-Functionalized Silver Nanoparticles as an Analytical Nanoprobe for Selective Ni (II) Sensing with Synergistic Antimicrobial Activity. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100735. [Google Scholar] [CrossRef]
- Siddiqui, W.A.; Khalid, M.; Ashraf, A.; Shafiq, I.; Parvez, M.; Imran, M.; Irfan, A.; Hanif, M.; Khan, M.U.; Sher, F.; et al. Antibacterial Metal Complexes of O-Sulfamoylbenzoic Acid: Synthesis, Characterization, and DFT Study. Appl. Organomet. Chem. 2022, 36, e6464. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Bürgi, H.B.; Dunitz, J.D. Crystal and Molecular Structures of Benzylideneaniline, Benzylideneaniline-p-Carboxylic Acid and p-Methylbenzylidene-p-Nitroaniline. Helv. Chim. Acta 1970, 53, 1747–1764. [Google Scholar] [CrossRef]
- Harada, J.; Harakawa, M.; Ogawa, K. Torsional Vibration and Central Bond Length of N-Benzylideneanilines. Acta Crystallogr. B 2004, 60, 578–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkurt, M.; Yıldırım, S.Ö.; Asiri, A.M.; McKee, V. 4-[(2-Hydroxy-1-Naphthyl) Methylideneamino] Benzoic Acid. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64, o682. [Google Scholar] [CrossRef] [Green Version]
- Johmoto, K.; Ishida, T.; Sekine, A.; Uekusa, H.; Ohashi, Y. Relation between Photochromic Properties and Molecular Structures in Salicylideneaniline Crystals. Acta Crystallogr. B 2012, 68, 297–304. [Google Scholar] [CrossRef]
- Johmoto, K.; Sekine, A.; Uekusa, H. Photochromism Control of Salicylideneaniline Derivatives by Acid–Base Co-Crystallization. Cryst. Growth Des. 2012, 12, 4779–4786. [Google Scholar] [CrossRef]
- Han, T.; Wei, W.; Yuan, J.; Duan, Y.; Li, Y.; Hu, L.; Dong, Y. Solvent-Assistant Self-Assembly of an AIE+ TICT Fluorescent Schiff Base for the Improved Ammonia Detection. Talanta 2016, 150, 104–112. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Madni, M.; Ahmed, M.N.; Hafeez, M.; Ashfaq, M.; Tahir, M.N.; Gil, D.M.; Galmés, B.; Hameed, S.; Frontera, A. Recurrent π–π Stacking Motifs in Three New 4,5-Dihydropyrazolyl–Thiazole–Coumarin Hybrids: X-ray Characterization, Hirshfeld Surface Analysis and DFT Calculations. New J. Chem. 2020, 44, 14592–14603. [Google Scholar] [CrossRef]
- Khalid, M.; Ali, A.; Tariq, J.; Tahir, M.N.; Aliabad, H.A.R.; Hussain, I.; Ashfaq, M.; Khan, M.U. Stabilization of Supramolecular Assembly of N-Substituted Benzylidene Acetohydrazide Analogs by Non-Covalent Interactions: A Concise Experimental and Theoretical Approach. ChemistrySelect 2020, 5, 10618–10631. [Google Scholar] [CrossRef]
- Ashfaq, M.; Bogdanov, G.; Glebov, V.; Ali, A.; Tahir, M.N.; Abdullah, S. Single Crystal Investigation, Hirshfeld Surface Analysis and DFT Exploration of the Pyrimethamine-Based Novel Organic Salt: 2,4-Diamino-5-(4-Chlorophenyl)-6-Ethylpyrimidin-1-Ium 3-Carboxybenzoate Hydrate (1:1:1). J. Mol. Struct. 2021, 1224, 129309. [Google Scholar] [CrossRef]
- Ashfaq, M.; Ali, A.; Kuznetsov, A.; Tahir, M.N.; Khalid, M. DFT and Single-Crystal Investigation of the Pyrimethamine-Based Novel Co-Crystal Salt: 2,4-Diamino-5-(4-Chlorophenyl)-6-Ethylpyrimidin-1-Ium-4-Methylbenzoate Hydrate (1:1:1)(DEMH). J. Mol. Struct. 2021, 1228, 129445. [Google Scholar] [CrossRef]
- Ashfaq, M.; Munawar, K.S.; Tahir, M.N.; Dege, N.; Yaman, M.; Muhammad, S.; Alarfaji, S.S.; Kargar, H.; Arshad, M.U. Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Computational Study of a Novel Organic Salt Obtained from Benzylamine and an Acidic Component. ACS Omega 2021, 6, 22357–22366. [Google Scholar] [CrossRef] [PubMed]
- Jelsch, C.; Ejsmont, K.; Huder, L. The Enrichment Ratio of Atomic Contacts in Crystals, an Indicator Derived from the Hirshfeld Surface Analysis. IUCrJ 2014, 1, 119–128. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and Characterisation of Voids in Crystalline Materials. CrystEngComm 2011, 13, 1804–1813. [Google Scholar] [CrossRef]
- Khan, B.A.; Hamdani, S.S.; Ahmed, M.N.; Hameed, S.; Ashfaq, M.; Shawky, A.M.; Ibrahim, M.A.; Sidhom, P.A. Synthesis, X-Ray Diffraction Analysis, Quantum Chemical Studies and α-Amylase Inhibition of Probenecid Derived S-Alkylphthalimide-Oxadiazole-Benzenesulfonamide Hybrids. J. Enzyme Inhib. Med. Chem. 2022, 37, 1464–1478. [Google Scholar] [CrossRef]
- Khosravi, I.; Hosseini, F.; Khorshidifard, M.; Sahihi, M.; Rudbari, H.A. Synthesis, Characterization, Crystal Structure and HSA Binding of Two New N, O, O-Donor Schiff-Base Ligands Derived from Dihydroxybenzaldehyde and Tert-Butylamine. J. Mol. Struct. 2016, 1119, 373–384. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wu, C.; Wang, Z.; Zhao, L.; Li, Z.; Sun, C.; Sun, T. Density Functional Theory (DFT) and Natural Bond Orbital (NBO) Study of Vibrational Spectra and Intramolecular Hydrogen Bond Interaction of l-Ornithine–l-Aspartate. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 136, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Liu, S.; Rong, C.; Zhong, A.; Liu, S. Toward Understanding the Isomeric Stability of Fullerenes with Density Functional Theory and the Information-Theoretic Approach. ACS Omega 2018, 3, 17986–17990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Rong, C.; Zhong, A.; Lu, T.; Liu, S. Molecular Acidity: An Accurate Description with Information-Theoretic Approach in Density Functional Reactivity Theory. J. Comput. Chem. 2018, 39, 117–129. [Google Scholar] [CrossRef]
- Khalid, M.; Ali, A.; Khan, M.U.; Tahir, M.N.; Ahmad, A.; Ashfaq, M.; Hussain, R.; de Alcantara Morais, S.F.; Braga, A.A.C. Non-Covalent Interactions Abetted Supramolecular Arrangements of N-Substituted Benzylidene Acetohydrazide to Direct Its Solid-State Network. J. Mol. Struct. 2021, 1230, 129827. [Google Scholar] [CrossRef]
- James, C.; Raj, A.A.; Reghunathan, R.; Jayakumar, V.S.; Joe, I.H. Structural Conformation and Vibrational Spectroscopic Studies of 2, 6-Bis (p-N, N-Dimethyl Benzylidene) Cyclohexanone Using Density Functional Theory. J. Raman Spectrosc. Int. J. Orig. Work Asp. Raman Spectrosc. High. Order Process. Also Brillouin Rayleigh Scatt. 2006, 37, 1381–1392. [Google Scholar] [CrossRef]
- Khan, M.U.; Khalid, M.; Shafiq, I.; Khera, R.A.; Shafiq, Z.; Jawaria, R.; Shafiq, M.; Alam, M.M.; Braga, A.A.C.; Imran, M. Theoretical Investigation of Nonlinear Optical Behavior for Rod and T-Shaped Phenothiazine Based D-π-A Organic Compounds and Their Derivatives. J. Saudi Chem. Soc. 2021, 25, 101339. [Google Scholar] [CrossRef]
- Ali, A.; Kuznetsov, A.; Khan, M.U.; Tahir, M.N.; Ashfaq, M.; Raza, A.R.; Muhammad, S. 2-Amino-6-Methylpyridine Based Co-Crystal Salt Formation Using Succinic Acid: Single-Crystal Analysis and Computational Exploration. J. Mol. Struct. 2021, 1230, 129893. [Google Scholar] [CrossRef]
- Mahmood, A.; Khan, S.U.-D.; Rana, U.A.; Tahir, M.H. Red Shifting of Absorption Maxima of Phenothiazine Based Dyes by Incorporating Electron-Deficient Thiadiazole Derivatives as π-Spacer. Arab. J. Chem. 2019, 12, 1447–1453. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Khalid, M.; Din, Z.U.; Asif, H.M.; Imran, M.; Tahir, M.N.; Ashfaq, M.; Rodrigues-Filho, E. Exploration of Structural, Electronic and Third Order Nonlinear Optical Properties of Crystalline Chalcone Systems: Monoarylidene and Unsymmetrical Diarylidene Cycloalkanones. J. Mol. Struct. 2021, 1241, 130685. [Google Scholar] [CrossRef]
- Mahmood, A.; Irfan, A. Effect of Fluorination on Exciton Binding Energy and Electronic Coupling in Small Molecule Acceptors for Organic Solar Cells. Comput. Theor. Chem. 2020, 1179, 112797. [Google Scholar] [CrossRef]
- Srnec, M.; Solomon, E.I. Frontier Molecular Orbital Contributions to Chlorination versus Hydroxylation Selectivity in the Non-Heme Iron Halogenase SyrB2. J. Am. Chem. Soc. 2017, 139, 2396–2407. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M.; Shafiq, I.; Zhu, M.; Khan, M.U.; Shafiq, Z.; Iqbal, J.; Alam, M.M.; Braga, A.A.C.; Imran, M. Efficient Tuning of Small Acceptor Chromophores with A1-π-A2-π-A1 Configuration for High Efficacy of Organic Solar Cells via End Group Manipulation. J. Saudi Chem. Soc. 2021, 25, 101305. [Google Scholar] [CrossRef]
- Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The Density Functional Viewpoint. J. Chem. Phys. 1978, 68, 3801–3807. [Google Scholar] [CrossRef]
- Fukui, K. Role of Frontier Orbitals in Chemical Reactions. Science 1982, 218, 747–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesar, A.; Milošev, I. Density Functional Study of the Corrosion Inhibition Properties of 1,2,4-Triazole and Its Amino Derivatives. Chem. Phys. Lett. 2009, 483, 198–203. [Google Scholar] [CrossRef]
- Parthasarathi, R.; Padmanabhan, J.; Elango, M.; Subramanian, V.; Chattaraj, P.K. Intermolecular Reactivity through the Generalized Philicity Concept. Chem. Phys. Lett. 2004, 394, 225–230. [Google Scholar] [CrossRef]
- Politzer, P.; Truhlar, D.G. Introduction: The Role of the Electrostatic Potential in Chemistry. In Chemical Applications of Atomic and Molecular Electrostatic Potentials; Springer: Berlin/Heidelberg, Germany, 1981; pp. 1–6. [Google Scholar]
- Parr, R.G.; Pearson, R.G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Peng, Z.; Yu, L. Second-Order Nonlinear Optical Polyimide with High-Temperature Stability. Macromolecules 1994, 27, 2638–2640. [Google Scholar] [CrossRef]
- Schmitt, J.; Heitz, V.; Sour, A.; Bolze, F.; Ftouni, H.; Nicoud, J.-F.; Flamigni, L.; Ventura, B. Diketopyrrolopyrrole-Porphyrin Conjugates with High Two-Photon Absorption and Singlet Oxygen Generation for Two-Photon Photodynamic Therapy. Angew. Chem. 2015, 127, 171–175. [Google Scholar] [CrossRef]
- Khalid, M.; Khan, M.U.; Shafiq, I.; Hussain, R.; Mahmood, K.; Hussain, A.; Jawaria, R.; Hussain, A.; Imran, M.; Assiri, M.A. NLO Potential Exploration for D–π–A Heterocyclic Organic Compounds by Incorporation of Various π-Linkers and Acceptor Units. Arab. J. Chem. 2021, 14, 103295. [Google Scholar] [CrossRef]
- Prasad, P.N.; Williams, D.J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley: New York, NY, USA, 1991; Volume 1. [Google Scholar]
- Khalid, M.; Arshad, M.N.; Tahir, M.N.; Asiri, A.M.; Naseer, M.M.; Ishaq, M.; Khan, M.U.; Shafiq, Z. An Efficient Synthesis, Structural (SC-XRD) and Spectroscopic (FTIR, 1HNMR, MS Spectroscopic) Characterization of Novel Benzofuran-Based Hydrazones: An Experimental and Theoretical Studies. J. Mol. Struct. 2020, 1216, 128318. [Google Scholar] [CrossRef]
- Mohandas, T.; Inbaseelan, C.R.D.; Saravanan, S.; Sakthivel, P. Glycine–D-Tartaric Acid (1/1). Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69, o236. [Google Scholar] [CrossRef]
- Sanz, R.; Martínez, F.; Orcajo, G.; Wojtas, L.; Briones, D. Synthesis of a Honeycomb-like Cu-Based Metal–Organic Framework and Its Carbon Dioxide Adsorption Behaviour. Dalton Trans. 2013, 42, 2392–2398. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kratzert, D.; Holstein, J.J.; Krossing, I. DSR: Enhanced Modelling and Refinement of Disordered Structures with SHELXL. J. Appl. Crystallogr. 2015, 48, 933–938. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure Validation in Chemical Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision D. 01 2009; Gaussian: Wallingford, CT, USA, 2009. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M.; Ali, A.; Rehman, M.F.U.; Mustaqeem, M.; Ali, S.; Khan, M.U.; Asim, S.; Ahmad, N.; Saleem, M. Exploration of Noncovalent Interactions, Chemical Reactivity, and Nonlinear Optical Properties of Piperidone Derivatives: A Concise Theoretical Approach. ACS Omega 2020, 5, 13236–13249. [Google Scholar] [CrossRef] [PubMed]
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. Nbo Version 3.1, Tci; University of Wisconsin–Madison: Madison, WI, USA, 1998; Volume 65. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5; Semichem Inc.: Shawnee, KS, USA, 2009.
- O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Zhurko, G.A. Chemcraft. Receiv. Oct. 2014, 22. Available online: http://www.chemcraftprog.com (accessed on 19 March 2023).
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
D—H⋯A | D—H | H⋯A | D⋯A | <(D—H⋯A)° | |
---|---|---|---|---|---|
HMBA | O2—H2⋯O5 i | 0.89 (9) | 1.76 (9) | 2.628 (9) | 164 (10) |
N1—H1⋯O3 | 0.95 (8) | 1.77 (8) | 2.560 (8) | 138 (7) | |
C8—H8⋯O1 ii | 0.93 | 2.55 | 3.410 (11) | 155 | |
O5—H5A⋯O3 iii | 0.82 | 1.98 | 2.765 (9) | 159 | |
O2—H2⋯S1 i | 0.82 | 2.95 | 3.707 (4) | 154 | |
O2—H2⋯O4 i | 0.82 | 1.81 | 2.601 (5) | 162 | |
DHBA | O3—H3⋯N1 | 0.82 | 1.84 | 2.567 (5) | 148 |
C8—H8⋯O4 v | 0.93 | 2.55 | 3.445 (7) | 162 | |
C12—H12⋯I2 vi | 0.93 | 3.19 | 4.090 (5) | 163 | |
C14—H14⋯S1 v | 0.93 | 2.89 | 3.767 (6) | 159 | |
C15—H15A⋯O3 vii | 0.96 | 2.57 | 3.290 (7) | 132 | |
C15—H15B⋯O1 i | 0.96 | 2.36 | 3.247 (7) | 154 | |
C15—H15C⋯O1 iv | 0.96 | 2.51 | 3.359 (7) | 147 | |
C—I⋯π | C—I | I⋯π | C⋯π | <(C—I⋯π)° | |
C11—I2⋯Cg1 viii | 2.083 (5) | 3.783 (2) | 4.338 (5) | 90.62 (13) |
Compound | Donor (i) | Type | Acceptor (j) | Type | E(2) a [kcal/mol] | E (j)–E (i)
[a.u] | F (i,j) [a.u] |
---|---|---|---|---|---|---|---|
HMBA | C8-H20 | σ | C9-C10 | σ* | 5.15 | 1.06 | 0.066 |
C15-H31 | σ | O4-C11 | σ* | 0.55 | 0.92 | 0.02 | |
C4-C5 | π | C2-C3 | π* | 26.32 | 0.31 | 0.08 | |
C2-C3 | π | C2-C3 | π* | 0.61 | 0.3 | 0.012 | |
O2 | LP(2) | O1-C1 | π* | 47.09 | 0.37 | 0.121 | |
O1 | LP(2) | O2-C1 | σ* | 34.41 | 0.65 | 0.135 | |
DHBA | C9-C10 | σ | C10-C11 | σ* | 6.42 | 1.26 | 0.08 |
O3-H7 | σ | N1-C5 | σ* | 0.52 | 1.21 | 0.022 | |
C10-C11 | π | C12-C13 | π* | 30.68 | 0.3 | 0.086 | |
C9-C14 | π | C9-C14 | π* | 0.67 | 0.29 | 0.013 | |
O2 | LP(2) | O1-C1 | π* | 47.53 | 0.37 | 0.121 | |
O1 | LP(2) | O2-C1 | σ* | 34.35 | 0.65 | 0.135 |
MOs | HMBA | DHBA | ||
---|---|---|---|---|
E | ∆E | E | ∆E | |
HOMO | −5.894 | 3.477 | −6.533 | 3.793 |
LUMO | −2.417 | −2.740 | ||
HOMO-1 | −6.969 | 5.891 | −6.924 | 5.181 |
LUMO+1 | −1.078 | −1.743 | ||
HOMO-2 | −7.567 | 6.917 | −7.362 | 6.001 |
LUMO+2 | −0.650 | −1.361 |
Compounds | I | A | X | η | μ | ω | σ |
---|---|---|---|---|---|---|---|
HMBA | 5.894 | 2.417 | 4.155 | 1.738 | −4.155 | 4.966 | 3.484 |
DHBA | 6.533 | 2.740 | 4.636 | 1.896 | −4.636 | 5.667 | 3.802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, M.N.; Ali, A.; Khalid, M.; Ashfaq, M.; Naveed, M.; Murtaza, S.; Shafiq, I.; Asghar, M.A.; Orfali, R.; Perveen, S. Efficient Synthesis of Imine-Carboxylic Acid Functionalized Compounds: Single Crystal, Hirshfeld Surface and Quantum Chemical Exploration. Molecules 2023, 28, 2967. https://doi.org/10.3390/molecules28072967
Tahir MN, Ali A, Khalid M, Ashfaq M, Naveed M, Murtaza S, Shafiq I, Asghar MA, Orfali R, Perveen S. Efficient Synthesis of Imine-Carboxylic Acid Functionalized Compounds: Single Crystal, Hirshfeld Surface and Quantum Chemical Exploration. Molecules. 2023; 28(7):2967. https://doi.org/10.3390/molecules28072967
Chicago/Turabian StyleTahir, Muhammad Nawaz, Akbar Ali, Muhammad Khalid, Muhammad Ashfaq, Mubashir Naveed, Shahzad Murtaza, Iqra Shafiq, Muhammad Adnan Asghar, Raha Orfali, and Shagufta Perveen. 2023. "Efficient Synthesis of Imine-Carboxylic Acid Functionalized Compounds: Single Crystal, Hirshfeld Surface and Quantum Chemical Exploration" Molecules 28, no. 7: 2967. https://doi.org/10.3390/molecules28072967
APA StyleTahir, M. N., Ali, A., Khalid, M., Ashfaq, M., Naveed, M., Murtaza, S., Shafiq, I., Asghar, M. A., Orfali, R., & Perveen, S. (2023). Efficient Synthesis of Imine-Carboxylic Acid Functionalized Compounds: Single Crystal, Hirshfeld Surface and Quantum Chemical Exploration. Molecules, 28(7), 2967. https://doi.org/10.3390/molecules28072967