Fe–Decorated Nitrogen–Doped Carbon Nanospheres as an Electrochemical Sensing Platform for the Detection of Acetaminophen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology Studies
2.2. Electrochemical Behavior of Fe–NC/GCE
2.3. Repeatability, Stability, and Selectivity
2.4. Real Sample Studies
3. Experimental
3.1. Reagents
3.2. Synthesis of Fe–NC
3.3. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, W.; Liu, L.; Li, Y.; Ren, H.; Zhu, T.; Xu, Y.; Ye, B.-C. Nitrogen–rich porous carbon modified electrochemical sensor for the detection of acetaminophen. J. Electroanal. Chem. 2019, 855, 113496. [Google Scholar] [CrossRef]
- Anuar, N.S.; Basirun, W.J.; Ladan, M.; Shalauddin; Mehmood, M.S. Fabrication of platinum nitrogen–doped graphene nanocomposite modified electrode for the electrochemical detection of acetaminophen. Sens. Actuators B Chem. 2018, 266, 375–383. [Google Scholar] [CrossRef]
- Glavanović, S.; Glavanović, M.; Tomišić, V. Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 157, 258–264. [Google Scholar] [CrossRef]
- Campos, A.M.; Raymundo-Pereira, P.A.; Mendonça, C.D.; Calegaro, M.L.; Machado, S.A.S.; Oliveira, J.O.N. Size Control of Carbon Spherical Shells for Sensitive Detection of Paracetamol in Sweat, Saliva, and Urine. ACS Appl. Nano Mater. 2018, 1, 654–661. [Google Scholar] [CrossRef]
- Balram, D.; Lian, K.-Y.; Sebastian, N.; Rasana, N. Surface functionalization of CNTs with amine group and decoration of begonia–like ZnO for detection of antipyretic drug acetaminophen. Appl. Surf. Sci. 2021, 559, 149981. [Google Scholar] [CrossRef]
- Liu, X.; Na, W.; Liu, H.; Su, X. Fluorescence turn–off–on probe based on polypyrrole/graphene quantum composites for selective and sensitive detection of paracetamol and ascorbic acid. Biosens. Bioelectron. 2017, 98, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Montaseri, H.; Forbes, P.B. Analytical techniques for the determination of acetaminophen: A review. TrAC Trends Anal. Chem. 2018, 108, 122–134. [Google Scholar] [CrossRef]
- Kang, X.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. A graphene–based electrochemical sensor for sensitive detection of paracetamol. Talanta 2010, 81, 754–759. [Google Scholar] [CrossRef]
- Campos, A.M.; Raymundo-Pereira, P.A.; Cincotto, F.H.; Canevari, T.C.; Machado, S.A. Sensitive determination of the endocrine disruptor bisphenol A at ultrathin film based on nanostructured hybrid material SiO2/GO/AgNP. J. Solid State Electrochem. 2015, 20, 2503–2507. [Google Scholar] [CrossRef]
- Raymundo-Pereira, P.A.; Campos, A.M.; Vicentini, F.C.; Janegitz, B.C.; Mendonça, C.D.; Furini, L.N.; Boas, N.V.; Calegaro, M.L.; Constantino, C.J.; Machado, S.A.; et al. Sensitive detection of estriol hormone in creek water using a sensor platform based on carbon black and silver nanoparticles. Talanta 2017, 174, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Hao, L.; Zhang, Y.; Yang, X.; Wang, Q.; Wang, Z.; Wang, C. Metal–organic framework precursors derived Ni–doping porous carbon spheres for sensitive electrochemical detection of acetaminophen. Talanta 2021, 228, 122228. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wu, C.; Wang, F.; Jing, N.; Jiang, G. Co/Co3O4 Nanoparticles Coupled with Hollow Nanoporous Carbon Polyhedrons for the Enhanced Electro–chemical Sensing of Acetaminophen. ACS Sustain. Chem. Eng. 2019, 7, 18582–18592. [Google Scholar] [CrossRef]
- Quintero-Jaime, A.F.; Quílez-Bermejo, J.; Cazorla-Amorós, D.; Morallón, E. Metal free electrochemical glucose biosensor based on N–doped porous carbon material. Electrochim. Acta 2020, 367, 137434. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Ihara, H.; Guan, M.; Qiu, H. Preparation of porous carbon nanomaterials and their application in sample preparation: A review. TrAC Trends Anal. Chem. 2021, 143, 116421. [Google Scholar] [CrossRef]
- Xing, Y.; Yao, Z.; Li, W.; Wu, W.; Lu, X.; Tian, J.; Li, Z.; Hu, H.; Wu, M. Fe/Fe3 C Boosts H2O2 Utilization for Methane Conversion Overwhelming O2 Generation. Angew. Chem. Int. Ed. Engl. 2021, 60, 8889–8895. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Shao, C.; Cui, B.; Chu, H.; Qiu, S.; Zou, Y.; Xu, F.; Sun, L. Honeycomb–like Fe/Fe3C–doped porous carbon with more Fe–Nx active sites for promoting the electrocatalytic activity of oxygen reduction. Sustain. Energy Fuels 2021, 5, 5295–5304. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Qu, J.; Ji, Q.-Y.; Zhang, T.-T.; Chang, W.; Hao, S.-M.; Yu, Z.-Z. Freestanding cellulose paper–derived carbon/Fe/Fe3C with enhanced electrochemical kinetics for high–performance lithium–sulfur batteries. Carbon 2019, 155, 353–360. [Google Scholar] [CrossRef]
- Zhang, B.; Le, M.; Chen, J.; Guo, H.; Wu, J.; Wang, L. Enhancing Defects of N–Doped Carbon Nanospheres Via Ultralow Co Atom Loading Engineering for a High–Efficiency Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2021, 4, 3439–3447. [Google Scholar] [CrossRef]
- Wang, H.; Yin, F.X.; Liu, N.; Kou, R.H.; He, X.B.; Sun, C.J.; Chen, B.H.; Liu, D.J.; Yin, H.Q. Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2O2 Fuel Cell and LiO2 Battery. Adv. Funct. Mater. 2019, 29, 1901531. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, P.; Sun, F.; Zhang, G.; Liu, X.; Wang, L. The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries. J. Mater. Chem. A 2021, 9, 6831–6840. [Google Scholar] [CrossRef]
- Ma, R.; Zhou, Y.; Hu, C.; Yang, M.; Wang, F.; Yan, K.; Liu, Q.; Wang, J. Post iron–doping of activated nitrogen–doped carbon spheres as a high–activity oxygen reduction electrocatalyst. Energy Storage Mater. 2018, 13, 142–150. [Google Scholar] [CrossRef]
- Xu, C.; Chen, L.; Wen, Y.; Qin, S.; Li, H.; Hou, Z.; Huang, Z.; Zhou, H.; Kuang, Y. A co-operative protection strategy to synthesize highly active and durable Fe/N co–doped carbon towards oxygen reduction reaction in Zn–air batteries. Mater. Today Energy 2021, 21, 100721. [Google Scholar] [CrossRef]
- Fu, N.; Wei, H.M.; Lin, H.L.; Li, L.; Ji, C.H.; Yu, N.B.; Chen, H.J.; Han, S.; Xiao, G.Y. Iron Nanoclusters as Template/Activator for the Synthesis of Nitrogen Doped Porous Carbon and Its CO2 Ad–sorption Application. ACS Appl. Mater. Interfaces 2017, 9, 9955–9963. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Hu, B.; Zhao, S.; Zhang, S.; Wang, M.; Jia, Q.; He, L.; Zhang, Z.; Du, M. Multiple catalytic sites of Fe–N and Fe–N–C single atoms embedded N–doped carbon heterostructures for high–efficiency removal of malachite green. Chem. Eng. J. 2021, 430, 132933. [Google Scholar] [CrossRef]
- Liu, W.; Chu, L.; Zhang, C.; Ni, P.; Jiang, Y.; Wang, B.; Lu, Y.; Chen, C. Hemin–assisted synthesis of peroxidase–like Fe–N–C nanozymes for detection of ascorbic acid–generating bio–enzymes. Chem. Eng. J. 2021, 415, 128876. [Google Scholar] [CrossRef]
- He, C.; Zhang, T.; Sun, F.; Li, C.; Lin, Y. Fe/N co–doped mesoporous carbon nanomaterial as an efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2017, 231, 549–556. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, F.; Zeng, Q.; Li, Z.; Yang, B.; Lei, L.; Zhang, Q.; He, F.; Wu, X.; Hou, Y. A Universal Principle to Accurately Synthesize Atomically Dispersed Metal–N4 Sites for CO2 Electroreduction. Nano-Micro Lett. 2020, 12, 108. [Google Scholar]
- Naveen, M.H.; Shim, K.; Hossain, S.A.; Kim, J.H.; Shim, Y.-B. Template Free Preparation of Heteroatoms Doped Carbon Spheres with Trace Fe for Efficient Oxygen Reduction Reaction and Supercapacitor. Adv. Energy Mater. 2016, 7, 1602002. [Google Scholar] [CrossRef]
- Qi, Y.; Cao, Y.; Meng, X.; Cao, J.; Li, X.; Hao, Q.; Lei, W.; Li, Q.; Li, J.; Si, W. Facile synthesis of 3D sulfur/nitrogen co–doped graphene derived from graphene oxide hydrogel and the simul–taneous determination of hydroquinone and catechol. Sens. Actuators B Chem. 2019, 279, 170–176. [Google Scholar] [CrossRef]
- Ren, G.; Lu, X.; Li, Y.; Zhu, Y.; Dai, L.; Jiang, L. Porous Core–Shell Fe3C Embedded N–doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 4118–4125. [Google Scholar] [CrossRef]
- Wabo, S.G.; Klepel, O. Nitrogen release and pore formation through KOH activation of nitrogen–doped carbon materials: An evaluation of the literature. Carbon Lett. 2021, 31, 581–592. [Google Scholar] [CrossRef]
- Wei, X.; Song, S.; Song, W.; Xu, W.; Jiao, L.; Luo, X.; Wu, N.; Yan, H.; Wang, X.; Gu, W.; et al. Fe3C–Assisted Single Atomic Fe Sites for Sensitive Electrochemical Biosensing. Anal. Chem. 2021, 93, 5334–5342. [Google Scholar] [PubMed]
- Tang, J.; Hui, Z.-Z.; Hu, T.; Cheng, X.; Guo, J.-H.; Li, Z.-R.; Yu, H. A sensitive acetaminophen sensor based on Co metal–organic framework (ZIF–67) and macroporous carbon composite. Rare Met. 2021, 41, 189–198. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Perveen, S.; Hussain, S.G.; Khan, A.A.; Ejaz, S.M.W.; Rizvi, S.M.A. Design of a facile, green and efficient graphene oxide–based electrochemical sensor for analysis of aceta–minophen drug. Chem. Pap. 2022, 77, 2275–2294. [Google Scholar] [CrossRef] [PubMed]
- Raymundo-Pereira, P.A.; Campos, A.M.; Mendonça, C.D.; Calegaro, M.L.; Machado, S.A.S.; Oliveira, O.N. Printex 6L Carbon Nanoballs used in Electrochemical Sensors for Simultaneous Detection of Emerging Pollutants Hydroquinone and Paracetamol. Sens. Actuators B Chem. 2017, 252, 165–174. [Google Scholar] [CrossRef]
- Wang, M.; Zhong, L.; Cui, M.; Liu, W.; Liu, X. Nanomolar Level Acetaminophen Sensor Based on Novel Polypyrrole Hydrogel Derived N-doped Porous Carbon. Electroanalysis 2019, 31, 711–717. [Google Scholar] [CrossRef]
- Mao, A.; Li, H.; Jin, D.; Yu, L.; Hu, X. Fabrication of electrochemical sensor for paracetamol based on multi–walled carbon nanotubes and chi–tosan–copper complex by self–assembly technique. Talanta 2015, 144, 252–257. [Google Scholar] [CrossRef]
- Chen, F.; Fang, B.; Wang, S. A Fast and Validated HPLC Method for Simultaneous Determination of Dopamine, Dobutamine, Phentolamine, Furosemide, and Aminophylline in Infusion Samples and Injection Formulations. J. Anal. Methods Chem. 2021, 2021, 8821126. [Google Scholar] [CrossRef]
- Afkhami, A.; Nematollahi, D.; Khalafi, L.; Rafiee, M. Kinetic study of the oxidation of some catecholamines by digital simulation of cyclic voltammograms. Int. J. Chem. Kinet. 2004, 37, 17–24. [Google Scholar] [CrossRef]
- Dorraji, P.S.; Jalali, F. Novel sensitive electrochemical sensor for simultaneous determination of epinephrine and uric acid by using a nanocomposite of MWCNTs–chitosan and gold nanoparticles attached to thioglycolic acid. Sens. Actuators B: Chem. 2014, 200, 251–258. [Google Scholar] [CrossRef]
- Wiench, P.; González, Z.; Menéndez, R.; Grzyb, B.; Gryglewicz, G. Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N–doped reduced graphene oxides. Sens. Actuators B Chem. 2017, 257, 143–153. [Google Scholar] [CrossRef]
- Adhikari, B.-R.; Govindhan, M.; Chen, A. Sensitive Detection of Acetaminophen with Graphene–Based Electrochemical Sensor. Electrochim. Acta 2015, 162, 198–204. [Google Scholar] [CrossRef]
- Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Reddy, K.R.; Reddy, C.V.; Ravindranadh, K. Silica gel–modified electrode as an electrochemical sensor for the detection of acetaminophen. Microchem. J. 2019, 150, 104206. [Google Scholar] [CrossRef]
- Qin, Y.; Hang, C.; Huang, L.; Cheng, H.; Hu, J.; Li, W.; Wu, J. An electrochemical biosensor of Sn@C derived from ZnSn(OH)6 for sensitive determination of acetaminophen. Microchem. J. 2022, 175, 107128. [Google Scholar] [CrossRef]
- Kuralay, F.; Çağlayan, T.; Ilhan, H.; Dumangöz, M.; Çelebi, M.S. Fabrication of self-functionalized polymeric surfaces and their application in electrochemical acetaminophen detection. J. Appl. Polym. Sci. 2020, 137, 49572. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Liang, H.; Wu, N.; Peng, X.; Wang, L.; Song, Y. A novel N,S–rich COF and its derived hollow N,S–doped carbon@Pd nanorods for electrochemical detection of Hg(2+) and paracetamol. J. Hazard. Mater. 2021, 409, 124528. [Google Scholar] [CrossRef] [PubMed]
- Mangaiyarkarasi, R.; Premlatha, S.; Khan, R.; Pratibha, R.; Umadevi, S. Electrochemical performance of a new imidazolium ionic liquid crystal and carbon paste composite electrode for the sensitive detection of paracetamol. J. Mol. Liq. 2020, 319, 114255. [Google Scholar] [CrossRef]
- Chokkareddy, R.; Thondavada, N.; Bhajanthri, N.K.; Redhi, G.G. An amino functionalized magnetite nanoparticle and ionic liquid based electrochemical sensor for the detection of acetaminophen. Anal. Methods 2019, 11, 6204–6212. [Google Scholar] [CrossRef]
- Demir, N.; Atacan, K.; Ozmen, M.; Bas, S.Z. Design of a new electrochemical sensing system based on MoS2–TiO2/reduced graphene oxide nanocomposite for the detection of paracetamol. N. J. Chem. 2020, 44, 11759–11767. [Google Scholar] [CrossRef]
- Hefnawy, M.A.; Medany, S.S.; Fadlallah, S.A.; El-Sherif, R.M.; Hassan, S.S. Novel Self–assembly Pd(II)–Schiff Base Complex Modified Glassy Carbon Electrode for Electrochemical Detection of Paracetamol. Electrocatalysis 2022, 13, 598–610. [Google Scholar] [CrossRef]
- Sun, L.; Yang, M.; Guo, H.; Zhang, T.; Wu, N.; Wang, M.; Yang, F.; Zhang, J.; Yang, W. COOH–MWCNT connected COF and chemical activated CTF as a novel electrochemical sensing platform for simultaneous detection of acetaminophen and p–aminophenol. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129092. [Google Scholar] [CrossRef]
- Tao, T.; Gao, N.; He, H.; Zhou, R.; Tu, B.; Cai, Z.; Chang, G.; He, Y.; Ji, X. Au–PEDOT/rGO nanocomposites functionalized graphene electrochemical transistor for ultra–sensitive detection of acetaminophen in human urine. Anal. Chim. Acta 2022, 1191, 339306. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, D.P.; Guo, C.; Liu, Y.; Rao, Q.; Lou, F.; Li, Q.; Dong, Y.; Li, Q.; Bin Yang, H.; et al. Single–Atom Ruthenium Biomimetic Enzyme for Simultaneous Electrochemical Detection of Dopamine and Uric Acid. Anal. Chem. 2021, 93, 4916–4923. [Google Scholar] [CrossRef] [PubMed]
Materials (Method) | Linear Range | LoD | Analytical Methods | Ref. |
---|---|---|---|---|
P–NC a/GCE | 3–110 μM | 0.5 μM | DPV | [1] |
PPy/PPa–PGE b | 0.2–500 μM | 0.89 μM | DPV | [45] |
N,S–doped C@Pd nanorods | 0.033–120 μM | 0.011 μM | DPV | [46] |
ILC–CPE c | 0–120 μM | 2.8 μM | DPV | [47] |
IL–NH2–Fe3O4NP–MWCNT d–GCE | 0–0.7 μM | 0.4 μM | DPV | [48] |
MoS2–TiO2/rGO/SPE | 0.1–125 μM | 0.046 μM | DPV | [49] |
Pd–SB/GCE | 0–50 μM | 0.067 μM | CV | [50] |
TFPB–BD–COF/caCTF–1–700/COOH–MWCNT/GCE e | 0.6–150 μM | 0.053 μM | DPV | [51] |
Au–PEDOT f/rGO/GCE | 0.001–8000 μM | 0.001 μM | i–t g | [52] |
Fe–NC–800/GCE | 0–100 μM | 0.026 μM | DPV | This work |
Sample | Detected (µM) | Spiked (μM) | Found (μM) | Recovery (%) |
---|---|---|---|---|
Paracetamol Tablet (500 mg/tablet) | 12.7 | 10 | 23.2 | 102.2 |
30 | 41.8 | 97.9 | ||
50 | 60.3 | 96.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhang, L.; Chu, Z.; Wang, Q.; Cao, Y.; Cao, J.; Li, J.; Lei, W.; Zhang, B.; Si, W. Fe–Decorated Nitrogen–Doped Carbon Nanospheres as an Electrochemical Sensing Platform for the Detection of Acetaminophen. Molecules 2023, 28, 3006. https://doi.org/10.3390/molecules28073006
Zhao X, Zhang L, Chu Z, Wang Q, Cao Y, Cao J, Li J, Lei W, Zhang B, Si W. Fe–Decorated Nitrogen–Doped Carbon Nanospheres as an Electrochemical Sensing Platform for the Detection of Acetaminophen. Molecules. 2023; 28(7):3006. https://doi.org/10.3390/molecules28073006
Chicago/Turabian StyleZhao, Xiangchuan, Liping Zhang, Zhaoyun Chu, Qing Wang, Yue Cao, Jun Cao, Jiao Li, Wu Lei, Boming Zhang, and Weimeng Si. 2023. "Fe–Decorated Nitrogen–Doped Carbon Nanospheres as an Electrochemical Sensing Platform for the Detection of Acetaminophen" Molecules 28, no. 7: 3006. https://doi.org/10.3390/molecules28073006
APA StyleZhao, X., Zhang, L., Chu, Z., Wang, Q., Cao, Y., Cao, J., Li, J., Lei, W., Zhang, B., & Si, W. (2023). Fe–Decorated Nitrogen–Doped Carbon Nanospheres as an Electrochemical Sensing Platform for the Detection of Acetaminophen. Molecules, 28(7), 3006. https://doi.org/10.3390/molecules28073006