Hot Water Extraction of Antioxidants from Tea Leaves—Optimization of Brewing Conditions for Preparing Antioxidant-Rich Tea Drinks
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Method Development
2.2. Temperature Effect on Extraction Efficiency
2.3. Effect of Extraction Time on Extraction Efficiency
2.4. Discussion
3. Experimental Section
3.1. Reagents and Materials
3.2. Hot Water Extraction
3.3. LC/MS Qualitative Analysis
3.4. HPLC Quantitative Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, F.; Sheng, J.; Xu, J.; An, X.; Hu, Q. Antioxidant activities of crude tea polyphenols, polysaccharides and proteins of selenium-enriched tea and regular green tea. Eur. Food Res. Technol. 2007, 225, 843–848. [Google Scholar] [CrossRef]
- Lee, V.S.Y.; Dou, J.P.; Chen, R.J.Y.; Lin, R.S.; Lee, M.R.; Tzen, J.T.C. Massive accumulation of gallic acid and unique occurrence of myricetin, quercetin, and kaempferol in preparing old oolong tea. J. Agric. Food Chem. 2008, 56, 7950–7956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, N.; Ma, Z.Z.; Tu, P.F. Comparison of the chemical constituents of aged pu-erh tea, ripened pu-erh tea, and other teas using HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2011, 59, 8754–8760. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, D.; Chaudhry, A.S.; Seal, C.J. Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants. J. Agric. Food Chem. 2013, 61, 4961–4967. [Google Scholar] [CrossRef] [PubMed]
- Araya-Farias, M.; Gaudreau, A.; Rozoy, E.; Bazinet, L. Rapid HPLC-MS method for the simultaneous determination of tea catechins and folates. J. Agric. Food Chem. 2014, 62, 4241–4250. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Lin, H.T.; Zhang, S.; Lin, Y.F.; Yang, J.F.; Ye, N.X. Simultaneous determination of caffeine and some selected polyphenols in Wuyi Rock tea by high-performance liquid chromatography. J. Agric. Food Chem. 2014, 62, 2772–2781. [Google Scholar] [CrossRef]
- Moldoveanu, S.C.; Oden, R. Antioxidant character and levels of polyphenols in several tea samples. ACS Omega 2021, 6, 9982–9988. [Google Scholar] [CrossRef]
- Vu, D.C.; Alvarez, S. Phenolic, Carotenoid and saccharide compositions of vietnamese camellia sinensis teas and herbal teas. Molecules 2021, 26, 6496. [Google Scholar] [CrossRef]
- Fang, Q.T.; Luo, W.W.; Zheng, Y.N.; Ye, Y.; Hu, M.J.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R.; Ye, J.H. Identification of key aroma compounds responsible for the floral ascents of green and black teas from different tea cultivars. Molecules 2022, 27, 2809. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Chen, H.Y.; Peng, H.H. Antioxidant and pro-oxidant effects of various tea extracts. J. Agric. Food Chem. 1997, 45, 30–34. [Google Scholar] [CrossRef]
- Bag, S.; Mondal, A.; Majumder, A.; Banik, A. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chem. 2022, 371, 131098. [Google Scholar] [PubMed]
- Song, N.E.; Kim, M.K.; Lee, K.G.; Jang, H.W. Analysis of volatile compounds in rooibos tea (Aspalathus linearis) using different extraction methods and their relationship with human sensory perception. Food Res. Int. 2021, 141, 109942. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Q.; Ji, W.B.; Granato, D.; Zou, C.; Yin, J.F.; Chen, J.X.; Wang, F.; Xu, Y.Q. Effects of dynamic extraction conditions on the chemical composition and sensory quality traits of green tea. LWT-Food Sci. Technol. 2022, 169, 113972. [Google Scholar] [CrossRef]
- Kaltbach, P.; Ballert, S.; Gillmeister, M.; Kabrodt, K.; Schellenberg, I. Mate (Ilex paraguariensis) tea preparations: Understanding the extraction of volatile and non-volatile compounds upon variations of the traditional consecutive infusions. Food Chem. 2022, 374, 131756. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Du, H.; Tan, C.; Chen, Z.; Chen, Z.; Yin, F.; Xu, Y.; Liu, X. Semi-continuous pressurized hot water extraction of black tea. J. Food Eng. 2018, 227, 30–41. [Google Scholar] [CrossRef]
- Hiep, N.T.; Duong, H.T.; Anh, D.T.; Hoai Nguyen, N.; Thai, D.Q.; Linh, D.T.T.; Anh, V.T.H.; Khoi, N.M. Subcritical water extraction of epigallocatechin gallate from Camellia sinensis and optimization study using response surface methodology. Processes 2020, 8, 1028. [Google Scholar] [CrossRef]
- Muller, M.; De Beer, D.; Truzzi, C.; Annibaldi, A.; Carloni, P.; Girolametti, F.; Damiani, E.; Joubert, E. Cold brewing of rooibos tea affects its sensory profile and physicochemical properties compared to regular hot, and boiled brewing. LWT-Food Sci. Technol. 2020, 132, 109919. [Google Scholar] [CrossRef]
- Cao, Q.Q.; Wang, F.; Wang, J.Q.; Chen, J.X.; Yin, J.F.; Li, L.; Meng, F.K.; Cheng, Y.; Xu, Y.Q. Effects of brewing water on the sensory attributes and physicochemical properties of tea infusions. Food Chem. 2021, 364, 130235. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Niu, G.; Liu, H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. 2003, 42, 129–133. [Google Scholar] [CrossRef]
- Huang, K.J.; Wu, J.J.; Chiu, Y.H.; Lai, C.Y.; Chang, C.J. Designed polar cosolvent-modified supercritical co2 removing caffeine from and retaining catechins in green tea powder using response surface methodology. J. Agric. Food Chem. 2007, 55, 9014–9020. [Google Scholar] [CrossRef]
- Liang, H.; Liang, Y.; Dong, J.; Lu, J.; Xu, H.; Wang, H. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment. Food Chem. 2007, 101, 1451–1456. [Google Scholar] [CrossRef]
- Lin, Y.S.; Tsai, Y.J.; Tsay, J.S.; Lin, J.K. Factors Affecting the Levels of Tea Polyphenols and Caffeine in Tea Leaves. J. Agric. Food Chem. 2003, 51, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Caffin, N.; Arcy, B.D.; Jiang, Y.; Shi, J.; Singanusong, R.; Liu, X.; Datta, N.; Kakuda, Y.; Xux, Y. Seasonal Variations of Phenolic Compounds in Australia-Grown Tea (Camellia sinensis). J. Agric. Food Chem. 2005, 53, 6477–6483. [Google Scholar] [CrossRef] [PubMed]
Analyte | Regression Equation | R² | LOD * mg |
---|---|---|---|
GA | y = 3131.1x + 9.3761 | 0.9999 | 0.002 |
GC | y = 259.05x + 1.6035 | 0.999 | 0.020 |
EGC | y = 171.48x + 0.6164 | 0.999 | 0.020 |
C | y = 682.55x + 0.4279 | 0.999 | 0.010 |
CAF | y = 2775.9x + 2.7423 | 0.999 | 0.002 |
EC | y = 742.64x + 0.7184 | 0.999 | 0.010 |
EGCG | y = 1104.7x + 0.8841 | 0.999 | 0.010 |
GCG | y = 1404.1x − 0.3721 | 0.999 | 0.010 |
ECG | y = 1827x − 0.4005 | 0.999 | 0.005 |
CG | y = 1799.4x − 8.9632 | 0.999 | 0.005 |
Type | Name | Place | Coordinates |
---|---|---|---|
Green tea (no fermentation) | Rizhao | Bojiakou, Shangdong Province, China | 35.29, 119.25 |
Green tea (no fermentation) | Longjing | Hangzhou, Zhejiang Province, China | 30.15, 120.20 |
Oolong tea (half fermentation) | Tieguanyin | Anxi, Fujian Province, China | 25.07, 118.18 |
Oolong tea (half fermentation) | Dahongpao | Mountain Wuyi, Fujian Province, China | 27.67, 117.97 |
Black tea (full fermentation) | Pu-erh | Menghai, Yunnan Province, China | 21.96, 100.45 |
Black tea (full fermentation) | Zhengshanxiao- zhong | Mountain Wuyi, Fujian Province, China | 27.42, 117.39 |
Scented tea | Jasmine | Yuanjiang, Yunnan Province, China | 23.61, 102.03 |
Time (min) | Mobile Phase A |
---|---|
0 | 90% |
20.0 | 85% |
30.0 | 60% |
30.1 | 90% |
40.0 | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Xue, F.; Yang, Y. Hot Water Extraction of Antioxidants from Tea Leaves—Optimization of Brewing Conditions for Preparing Antioxidant-Rich Tea Drinks. Molecules 2023, 28, 3030. https://doi.org/10.3390/molecules28073030
Cheng Y, Xue F, Yang Y. Hot Water Extraction of Antioxidants from Tea Leaves—Optimization of Brewing Conditions for Preparing Antioxidant-Rich Tea Drinks. Molecules. 2023; 28(7):3030. https://doi.org/10.3390/molecules28073030
Chicago/Turabian StyleCheng, Yan, Fumin Xue, and Yu Yang. 2023. "Hot Water Extraction of Antioxidants from Tea Leaves—Optimization of Brewing Conditions for Preparing Antioxidant-Rich Tea Drinks" Molecules 28, no. 7: 3030. https://doi.org/10.3390/molecules28073030
APA StyleCheng, Y., Xue, F., & Yang, Y. (2023). Hot Water Extraction of Antioxidants from Tea Leaves—Optimization of Brewing Conditions for Preparing Antioxidant-Rich Tea Drinks. Molecules, 28(7), 3030. https://doi.org/10.3390/molecules28073030