Yield and Composition of the Essential Oil of the Opopanax Genus in Turkey
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Isolation of Essential Oils and GC-MS Analysis
4.3. Cluster Analysis and PCA (Principal Component Analysis)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Güner, A.; Aslan, S.; Ekim, T.; Vural, M.; Babaç, M.T. (Eds.) Türkiye Bitkileri Listesi (Damarlı Bitkiler); Nezahat Gökyigit Botanik Bahçesi ve Flora Araştırma Dernegi Yayını: Istanbul, Turkey, 2012. [Google Scholar]
- Shishkin, B.K. Opopanax, Flora of the U.S.S.R. Volume 17 (Umbelliflorae); Botanical Institute of the Academy of Sciences of the USSR: Moscow, Russia, 1973. [Google Scholar]
- Tutin, T.G. Opopanax L. In Flora Europaea; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1968; Volume 2, p. 360. [Google Scholar]
- Chamberlain, D.F. Opopanax Koch. In Flora of Turkey and the East Aegean Island; Davis, P.H., Ed.; Edinburgh University Press: Edinburgh, UK, 1972; Volume 4, pp. 471–473. [Google Scholar]
- Menemen, Y. Opopanax. In Türkiye Bitkileri Listesi (Damarlı Bitkiler); Güner, A., Aslan, S., Ekim, T., Vural, M., Babaç, M.T., Eds.; Nezahat Gökyigit Botanik Bahçesi ve Flora Arastirma Dernegi Yayini: Istanbul, Turkey, 2012; pp. 70–71. [Google Scholar]
- Davis, P.H. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1972; p. 12. [Google Scholar]
- Bentham, G. Umbelliferae. In Genera Plantarum; Bentham, G., Hooker, J.D., Eds.; Taylor and Francis, Ltd.: London, UK, 1867; Volume 1, pp. 859–893. [Google Scholar]
- Özcan, T.; Çetin, Ö.; Çelik, M.; Albayrak, F. Defining phylogenetic relationship between the genera Opopanax and Crenosciadium using nuclear and chloroplast DNA sequence data. BAUN Fen. Bil. Enst. Dergisi 2021, 23, 716–731. [Google Scholar] [CrossRef]
- Cetin, O.; Çelik, M. Comparative morphological, anatomical, micromorphological, and palynological studies on the genera Opopanax and Crenosciadium (Apiaceae). Phytotaxa 2018, 372, 35–50. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Anwar, S.; Raut, R.; Almatroudi, A.; Babiker, A.Y.; Khan, A.A.; Alsahli, M.A.; Almatroodi, S.A. Therapeutic potential of myrrh, a natural resin, in health management through modulation of oxidative stress, inflammation, and advanced glycation end products formation using in vitro and in silico analysis. Appl. Sci. 2022, 12, 9175. [Google Scholar] [CrossRef]
- Amiri, M.S.; Joharchi, M.R. Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna J. Phytomed 2016, 6, 621–635. [Google Scholar] [PubMed]
- Gumusok, S.; Yilmaz Sarialtin, S.; Çoban, T.; Kiliç, C. A Preliminary Study On The Antioxidant And Anti- Inflammatory Activities of Opopanax hispidus. J. Ankara Univ. Fac. Pharm. 2021, 45, 577–585. [Google Scholar]
- Önder, A.; Nahar, L.; Nath, S.; Sarker, S.D. Phytochemistry, Traditional uses and pharmacological properties of the genus Opopanax W.D.J. Koch: A Mini-Review. Pharm. Sci. 2020, 26, 99–106. [Google Scholar] [CrossRef]
- Moradi, H.; Ghavam, M.; Tavili, A. Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss. in different ages of growth. Biotech. Rep. 2020, 25, 408. [Google Scholar] [CrossRef]
- Balogun, O.S.; Olukayode, R.; Solomon, A.; Adeleke, A.J. Hexahydrofarnesyl acetone-rich extractives from Hildegardia barteri. J. Herbs Spices Med. Plants 2017, 23, 393–400. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Jurado, A.; Timon, M.L.; Garcia, C. Odor-active compounds of Iberian hams with different aroma characteristics. J. Agric. Food Chem. 2002, 50, 6453–6458. [Google Scholar] [CrossRef]
- Karagül-Yüceer, Y.; Cadwallader, K.R.; Drake, M.A. Volatile flavor components of stored nonfat dry milk. J. Agric. Food Chem. 2002, 50, 305–312. [Google Scholar] [CrossRef]
- Ramos, M.F.S.; Siani, A.C.; Tappin, M.R.R.; Guimaraes, A.C.; Lahoz, J.E.; Ribeiro, J.E.L.S. Essential oils from oleoresins of Protium spp. of the Amazon region. Flavour Fragr. J. 2000, 15, 383–387. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, T.; Yang, B.; Liu, X.; Duan, G. Development of gas chromatography-mass spectrometry with microwave distillation and simultaneous solid-phase microextraction for rapid determination of volatile constituents in gingeri. J. Pharm. Biomed. Anal. 2007, 43, 24–31. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P.; Grosch, W. Compilation of odour thresholds, odour qualities and retention indices of key food odorants. Dt. Forschungsanst. Techn. Uni. 1998, 1, 63. [Google Scholar]
- Brander, C.F.; Kepner, R.E.; Webb, A.D. Identification of some volatile compounds of wine of Vitis vinifera cultivar pinot noir. Am. J. Enol. Vitic. 1980, 31, 69–75. [Google Scholar] [CrossRef]
- Kılıç, Ö. Essential oils composition of two endemic, Umbelliferae herbs growing wild in Turkey. J. Agric. Sci. Technol. 2014, 4, 435–442. [Google Scholar]
- Chastrette, M.; Heintz, M.; Druilhe, A.; Lefort, D. Analyse chromatographique d’esters aliphatiques saturés. Relations rétention-structure et prévision de la rétention. Bull. Soc. Chim. Fr. 1974, 9, 1852–1856. [Google Scholar]
- Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O. Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses. Int. Dairy J. 2005, 15, 741–758. [Google Scholar] [CrossRef]
- Alencar, J.W.; Alves, B.P.; Craveiro, A.A. Pyrolysis of tropical vegetable oils. J. Agric. Food Chem. 1983, 31, 1268–1270. [Google Scholar] [CrossRef]
- Ayoub, I.M.; Abdel-Aziz, M.M.; Elhady, S.S.; Bagalagel, A.A.; Malatani, R.T.; Elkady, W.M. Valori-zation of Pimenta racemosa essential oils and extracts: GC-MS and LC-MS Phytochemical profiling and evaluation of Helicobacter pylori inhibitory activity. Molecules 2022, 27, 7965. [Google Scholar] [CrossRef]
- Peng, C.T.; Yang, Z.C.; Ding, S.F. Prediction of retention idexes. II. Structure-retention index relationship on polar columns. J. Chromatogr. 1991, 586, 85–112. [Google Scholar] [CrossRef]
- Janzanntti, N.S.; Franco, M.R.B.; Lanças, F.M. Identificação de compostos voláteis de maçãs (Malus domestica) cultivar fuji, por cromatografia gasosa-espectrometria de massas. Cienc. Tecnol. Aliment. 2000, 20, 164–171. [Google Scholar] [CrossRef]
- Chretien, J.R.; Dubois, J.-E. Topological Analysis: A technique for the physico-chemical exploitation of retention data in gas-liquid chromatography. J. Chromatogr. 1978, 158, 43–56. [Google Scholar] [CrossRef]
- Avsar, Y.K.; Karagul-Yuceer, Y.; Drake, M.A.; Singh, T.K.; Yoon, Y.; Cadwallader, K.R. Characterization of nutty flavor in cheddar cheese. J. Dairy Sci. 2004, 87, 1999–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hively, R.A.; Hinton, R.E. Variation of the retention index with temperature on squalane substrates. J. Gas Chromatogr. 1968, 6, 203–217. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Buttery, R.G.; Flath, R.A. Volatile constituents of Asian pear (Pyrus serotina). J. Agric. Food Chem. 1992, 40, 1925–1929. [Google Scholar] [CrossRef]
- Frizzo, C.D.; Serafini, L.A.; Dellacassa, E.; Lorenzo, D.; Moyna, P. Essential oil of Baccharis uncinella DC. from Southern Brazil. Flavour Fragr. J. 2001, 16, 286–288. [Google Scholar] [CrossRef]
- Engewald, W.; Epsch, K.; Welsch, T.; Graefe, J. Molekülstruktur und Retentionsverhalten. VI. Retentionsverhalten von bicycle[n.m.0]alkanen bei der gas-adsorptions- und gas-verteilungs-chromatographie. J. Chromatogr. 1976, 119, 119–128. [Google Scholar] [CrossRef]
- Komárek, K.; Hornová, L.; Horna, A.; Churácek, J. Glass capillary gas chromatography of homologous series of esters. III. Separation of alkyl halogenopropionates and halogenobutyrates on OV-101. J. Chromatogr. 1983, 262, 316–320. [Google Scholar] [CrossRef]
- Melkani, A.B.; Dev, V.; Beauchamp, P.S.; Negi, A.; Mehta, S.P.S.; Melkani, K.B. Constituents of the essential oil of a new chemotype of Elsholtzia strobilifera Benth. Biochem. Syst. Ecol. 2005, 33, 419–425. [Google Scholar] [CrossRef]
- Spencer, M.D.; Pangborn, R.M.; Jennings, W.G. Gas chromatographic and sensory analysis of volatiles from cling peaches. J. Agric. Food Chem. 1978, 26, 725–732. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A.; Faleiro, M.L.; Miguel, M.G. Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. J. Agric. Food Chem. 2006, 54, 6314–6321. [Google Scholar] [CrossRef]
- Baharum, S.N.; Bunawan, H.; Ghani, M.A.; Mustapha, W.A.W. Analysis of the chemical composition of the essential oil of Polygonum minus Huds. using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Molecules 2010, 15, 7006–7015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevance, F.F.V.; Farmer, L.J. Identification of major volatile odor compounds in frankfurters. J. Agric. Food Chem. 1999, 47, 5151–5160. [Google Scholar] [CrossRef] [PubMed]
- Vujisic, L.; Vuckovic, I.; Tesevic, V.; Dokovic, D.; Ristic, M.S.; Janackovic, P.; Milosavljevic, S. Comparative examination of the essential oils of Anthemis ruthenica and A. arvensis wild-growing in Serbia. Flavour Fragr. J. 2006, 21, 458–461. [Google Scholar] [CrossRef]
- Kurashov, E.A.; Mitrukova, G.G.; Krylova, Y.V. Variations in the component composition of essential oil of Ceratophyllum demersum (Ceratophyllaceae) during vegetation (in press). Plant Resour. 2014, 1. [Google Scholar]
- Mastelic, J.; Jerkovic, I.; Mesic, M. Volatile constituents from flowers, leaves, bark and wood of Prunus mahaleb L. Flavour Fragr. J. 2006, 21, 306–313. [Google Scholar] [CrossRef]
- Demirpolat, A.; Bagci, E.; Dogan, G. Essential oil composition of Scandix iberica Bieb. and Scandix stellata Banks and Sol (Apiaceae) from different parts, a chemotaxonomic approach. Glob. J. Bot. Sci. 2011, 5, 55–62. [Google Scholar] [CrossRef]
- Escalona-Arranz, J.C.; Perez-Roses, R.; Jimenez, I.L.; Rodriguez-Amado, J.; Argota-Coello, H.; Canizares-Lay, J.; Morris-Quevedo, H.J.; Sierra-Gonzales, G. Chemical constituents of Tamarindus indica L. leaves. Rev. Cubana Quim. 2010, 22, 65–71. [Google Scholar]
- Stojanovic, G.; Palic, R.; Alagic, S.; Zekovic, Z. Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of semi-oriental tobacco, Otlja. Flavour Fragr. J. 2000, 15, 335–338. [Google Scholar] [CrossRef]
- Finkelstein, E.E.; Kurbatova, S.V.; Kolosova, E.A. Study of biological activity of structure analogies of adamantane. Proc. Samara State Univ. 2002, 26, 121–128. [Google Scholar]
- Bruce, T.J.; Cork, A.C.; Hall, D.R.; Dunkelblum, E. Laboratory and field evaluation of floral odours from African marigold, Tagetes erecta, and sweet pea, Lathyrus odoratus, as kairomones for the cotton bollworm Helicoverpa armigera. OBC Wprs Bull. 2002, 25, 315–322. [Google Scholar]
- Sillam-Dussès, D.; Sémon, E.; Moreau, C.; Valterová, I.; Sobotník, J.; Robert, A.; Bordereau, C. Neocembrene A, a major component of the trail-following pheromone in the genus Prorhinotermes (Insecta, Isoptera, Rhinotermitidae). Chemoecology 2005, 15, 1–6. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Noletto, J.A.; Vogler, B.; Setzer, W.N. Abaco Bush Medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas, J. Herbs. Spices Med. Plants 2006, 12, 43–65. [Google Scholar] [CrossRef]
- Demirpolat, A. Chemical Composition of Essential Oils of Seven Polygonum Species from Turkey: A Chemotaxonomic Approach. Molecules 2022, 27, 9053. [Google Scholar] [CrossRef]
- Pino, J.A.; Mesa, J.; Munoz, Y.; Marti, M.P.; Marbot, R. Volatile components from mango (Mangifera indica L.) cultivars. J. Agric. Food Chem. 2005, 53, 2213–2223. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.-L.; Hua, S.; Ye, J.-H.; Zheng, X.-Q.; Liang, Y.R. Flavonoids and volatiles in Chrysanthemum morifolium Ramat flower from Tongxiang County in China. Afr. J. Biotechnol. 2010, 9, 3817–3821. [Google Scholar]
- Dogan, G.; Bagci, E. Essential oil composition of Papaver rhoeas L. corn poppy Papaveraceae from Turkey. Hacet. J. Biol. Chem. 2014, 42, 545–549. [Google Scholar]
- Gauvin, A.; Lecomte, H.; Smadja, J. Comparative investigations of the essential oils of two scented geranium (Pelargonium spp.) cultivars grown on Reunion Island. Flavour Fragr. J. 2004, 19, 455–460. [Google Scholar] [CrossRef]
- Andriamaharavo, N.R. Retention Data; NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2014. [Google Scholar]
- Appendino, G.; Bianchi, F.A.; Bader, C.; Campagnuolo, E.; Fattorusso, O.; Taglialatela-Scafati, M.; Blanco-Molina, A.; Macho, B.L.; Fiebich, P.; Heinrich, M.; et al. Coumarins from Opopanax chironium. New dihydrofuranocoumarins and differential induction of apoptosis by imperatorin and heraclenin. J. Nat. Prod. 2004, 67, 532–536. [Google Scholar] [CrossRef]
- Rajabi, A.; Ebrahimi, S.; Neuburger, M.T.; Wagner, S.; Zimmermann, M.; Quitschau, G.; Amin, M. Phytochemical profiling of Opopanax persicus Boiss. Planta Med. 2011, 77, WS14. [Google Scholar] [CrossRef]
- Maggioa, A.; Brunoa, M.; Formisanob, C.; Riganob, D.; Senatoreb, F. Chemical Composition of the Essential Oils of Three Species of Apiaceae Growing Wild in Sicily: Bonannia graeca, Eryngium maritimum and Opopanax chironium. Nat. Prod. Commun. 2013, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Vieira, I.J.C.; Mathias, L.; Monteiro, V.; Braz-Filho, R.; Rodrigues-Filho, E. A New Coumarin from Brosimum gaudichaudii Trecul. Nat. Prod. Lett. 1999, 13, 47–52. [Google Scholar] [CrossRef]
- Muckensturm, B.; Boulanger, A.; Ouahabi, S.; Reduron, J.P. A new irregular diterpenoid from Opopanax chironium. Fitoterapia 2005, 6, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Evergetis, E.; Haroutounian, S.A. The Umbelliferae (Apiaceae) of Dioscorides annotated in codex neapolitanus graecus. J. Ethnopharmacol. 2015, 175, 549. [Google Scholar] [CrossRef] [PubMed]
- Matejic, J.S.; Ristic, M.S.; Randelovic, V.N.; Marin, P.D.; Dzamic, A.M. Chemical composition of the essential oil of Opopanax hispidus. Chem. Nat. Compd. 2018, 54, 1174–1176. [Google Scholar] [CrossRef]
- Duke, J. Dr. Duke’s Phytochemical and Ethnobotanical Databases; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2004.
- Hartwell, J.L. Plants used against cancer. A survey. Lloydia 1971, 34, 103–160. [Google Scholar]
- Byosynth. Available online: https://www.biosynth.com/p/AAA11039/110-39-4-butanoic-acid-octyl-ester/ (accessed on 28 March 2023).
- Eastwood, M. Principles of Human Nutrition; Blackwell Publishing Company: New York, NY, USA, 2003. [Google Scholar]
- Agoramoorthy, M.; Chandrasekaran, V.; Venkatesalu, M.J.H. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz. J. Microbiol. 2007, 38, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, J.L.; Eric, G.B.; Robert, B.Z. Treatment of rheumatoid arthritis with gamma linolenic acid. Ann. Intern. Med. 1993, 119, 9. [Google Scholar]
- Yu, Y.; Correll, P.H.; Heuvel, J.P.V. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: Evidence for a PPAR gamma dependent mechanism. Biochim. Biophys. Acta 2002, 1581, 89–99. [Google Scholar] [CrossRef]
- Bagci, E.; Yuce, E. Constituents of the Essential Oils of Two Hypericum capitatum Choisy Varieties (var. capitatum and var. luteum Robson) from Turkey. J. Essent. Oil Bear. Plants 2011, 14, 106–113. [Google Scholar] [CrossRef]
- Bagci, E.; Yuce, E. The essential oils of the aerial parts of two Hypericum (H. pseudolaeve Robson and H. thymbrifolium Boiss. & Noe) species from East Anatolian Region of Turkey. J. Essent. Oil Bear. Plants 2013, 13, 390–397. [Google Scholar]
- Kumar, A.; Lindley, M.R.; Mastana, S.S. A time efficient adaptation of GC-FID method for the analysis of PBMC lipid composition. J. Biochem. Technol. 2014, 5, 760–764. [Google Scholar]
- Rezaei, F.; Jamei, R.; Heidari, R. Evaluation of volatile profile, fatty acids composition and in vitro bioactivity of Tagetes minuta growing wild in Northern Iran. Adv. Pharm. Bull. 2018, 8, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
No. | Components | RI | RI(lit) | Identification Method | % Concentration | |||
---|---|---|---|---|---|---|---|---|
O. chironium | O. hispidus | O. siifolius | O. persicus | |||||
1. | Octanal | 1074 | 1023 [16] | RI, MS | 0.7 | - | - | - |
2. | Isovaleric acid | 1076 | 872 [17] | RI, MS | 0.1 | - | - | - |
3. | ο-Cymene | 1090 | 1026 [18] | RI, MS | 0.2 | - | 0.1 | - |
4. | β-Ocimene | 1099 | 1040 [19] | RI, MS | 0.8 | 0.2 | - | 0.5 |
5. | Cyclohexane | 1119 | 1027 [20] | RI, MS | 0.3 | - | - | - |
6. | 1-Octanol | 1127 | 1093 [21] | RI, MS | 2.0 | 0.5 | - | 1.2 |
7. | Butanoic acid | 1146 | 1140 [22] | RI, MS | 0.2 | 0.2 | - | 0.4 |
8. | n-Amyl-Isovalerate | 1153 | 1125 [23] | RI, MS | 0.5 | 0.2 | - | 0.3 |
9. | Propanoic acid | 1180 | 1511 [24] | RI, MS | 0.1 | - | - | 1.4 |
10. | Etenilcyclohexane | 1216 | 825 [25] | RI, MS | 0.1 | 3.0 | - | - |
11. | Decanal | 1220 | 1204 [26] | RI, MS | - | 0.2 | - | 0.1 |
12. | Cyclopropane | 1224 | 405 [27] | RI, MS | 5.5 | 24.0 | - | 17.6 |
13. | Hexyl-2-hetylbutanoat | 1240 | 1240 [28] | RI, MS | - | 0.5 | - | - |
14. | Hexyl n-Valerate | 1246 | 1247 [29] | RI, MS | 18.5 | 0.5 | - | 9.5 |
15. | Pentanoic acid | 1249 | 1720 [30] | RI, MS | 1.0 | - | - | - |
16. | Cis-cyclodecane | 1258 | 1227 [27] | RI, MS | 0.2 | - | - | - |
17. | Cyclobutane | 1270 | 455 [31] | RI, MS | 0.2 | - | - | - |
18. | Acetic acid, decyl ester | 1303 | 1394 [32] | RI, MS | 0.1 | - | - | - |
19. | n-Octyl İso Butyrate | 1332 | 1372 [32] | RI, MS | 0.5 | 0.3 | - | 0.6 |
20. | Eugenol | 1339 | 1359 [26] | RI, MS | 0.1 | - | - | - |
21. | Thujene | 1358 | 1033 [33] | RI, MS | 1.5 | 1.5 | - | 1.7 |
22. | Bicyclo [4.1.0] heptane | 1367 | 796 [34] | RI, MS | 1.3 | 2.3 | - | 2.0 |
23. | Butanoic acid-octyl ester | 1370 | 1372 [35] | RI, MS | 12.0 | 11.5 | - | 13.5 |
24. | α-Bourbonene | 1379 | 1385 [36] | RI, MS | 0.5 | - | - | - |
25. | 1-Decene | 1384 | 1061 [37] | RI, MS | 1.5 | 1.5 | - | 1.8 |
26. | Geranyl acetate | 1387 | 1392 [38] | RI, MS | - | 1.0 | - | 0.2 |
27. | β-Caryophyllene | 1391 | 1392 [22] | RI, MS | - | 0.8 | - | - |
28. | Geranyl formate | 1404 | 1400 [22] | RI, MS | - | - | 0.5 | - |
29. | trans-β-farnesene | 1414 | 1477 [39] | RI, MS | 0.3 | 0.2 | - | 0.3 |
30. | cis-α-Bbsabolene | 1417 | 1417 [22] | RI, MS | 0.2 | - | - | - |
31. | Naphthalene | 1429 | 1429 [22] | RI, MS | - | 0.3 | - | - |
32. | Germacrene D | 1434 | 1432 [22] | RI, MS | 0.7 | 0.5 | - | 0.8 |
33. | β-Gurjunene | 1442 | 1475 [19] | RI, MS | 0.2 | - | 0.5 | |
34. | γ-Elemene | 1447 | 1437 [22] | RI, MS | 16.0 | 14.0 | 0.9 | 20.5 |
35. | 1,3-Benzodioxole | 1458 | 1531 [27] | RI, MS | 0.5 | 10.5 | 0.9 | 5.7 |
36. | β-Sesquiphellandrene | 1460 | 1526 [19] | RI, MS | - | 1.1 | - | - |
37. | Myristicin | 1463 | 1522 [40] | RI, MS | 16.5 | - | - | - |
38. | Germacrene B | 1483 | 1482 [22] | RI, MS | 1.2 | 0.7 | - | 1.2 |
39. | Spatulenol | 1493 | 1495 [22] | RI, MS | - | 3.1 | - | - |
40. | Caryophyllene oxide | 1497 | 1497 [22] | RI, MS | 0.5 | 1.5 | 0.4 | 1.8 |
41. | Isospathulenol | 1525 | 1638 [41] | RI, MS | 0.1 | 0.5 | - | 0.3 |
42. | α-Cadinene | 1538 | 1511 [38] | RI, MS | 1.5 | 1.7 | - | 1.5 |
43. | Isoaromadendrene epoxide | 1548 | 1594 [41] | RI, MS | - | 0.3 | 1.0 | 0.1 |
44. | σ-Damascone | 1554 | 1456 [42] | RI, MS | 0.3 | - | - | - |
45. | Farnesol | 1625 | 1742 [43] | RI, MS | - | 3.3 | - | |
46. | 2 -Pentadecanone | 1629 | 1448 [44] | RI, MS | 0.1 | 2.5 | 1.5 | 0.5 |
47. | 1,2-Benzenedicarboxylic acid | 1637 | 1643 [45] | RI, MS | - | - | 0.5 | - |
48. | Pentacosane | 1652 | 1561 [44] | RI, MS | - | - | 0.9 | |
49. | n-Hexadecanoic acid/Palmitic acid | 1690 | 1970 [46] | RI, MS | 0.5 | 2.7 | 33.3 | 1.8 |
50. | Adamantane | 1712 | 1400 [47] | RI, MS | - | - | 1.2 | - |
51. | Benzeneacetaldehyde | 1741 | 1640 [48] | RI, MS | 0.1 | - | - | - |
52. | Cembrene A | 1747 | 1955 [49] | RI, MS | - | - | 3.8 | 0.6 |
53. | Methoxsalen | 1749 | 2020 [50] | RI, MS | 0.1 | |||
54. | 2-Hexadecen-1-ol | 1791 | 1420 [51] | RI, MS | - | 2.1 | 1.5 | |
55. | Linoleic acid | 1805 | 2078 [43] | RI, MS | 0.1 | 5.1 | 0.5 | |
56. | Oleic acid/(Z)-9-Octadecenoic acid | 1809 | 2141 [52] | RI, MS | - | - | 12.0 | - |
57. | Etillinoleolat | 1812 | - | RI, MS | - | - | 3.9 | - |
58. | 3-Cyclohexane-1-methanol | 1821 | 1071 [53] | RI, MS | - | - | 1.7 | - |
59. | Stearic acid/n-Octadeca noic acid | 1826 | 2180 [41] | RI, MS | - | - | 17.2 | 1.0 |
60. | Cyclooctanone | 1896 | - | RI, MS | - | - | 2.0 | - |
61. | Tricosane | 1900 | 1902 [54] | RI, MS | 0.1 | 0.2 | - | - |
62. | Cis-Sesquicyclo-geraniol | 1904 | 1865 [55] | RI, MS | - | - | 1.9 | - |
63. | Trimethylene | 1918 | - | RI, MS | - | - | 1.6 | - |
64. | Eicosanoic acid | 1929 | 2365 [56] | RI, MS | - | - | 0.8 | 0.1 |
TOTAL | 86.9 | 90.8 | 96.4 | 88.3 |
1 | O. chironium | Tekirdağ between Hayrabolu, 10 km from Tekirdağ, wet places along the river, 70 m., 13 June 2015, Paksoy * 2018 N 40.951741, E 27.468926 |
2 | O. hispidus | Muğla, Turgutreis Aspat region, Aspat castle and around, within the scrubs, 100–150 m, 2 July 2015, Paksoy 2021 N 37.000135, E 27.267143 |
3 | O. persicus | Van, Near the Hoşap, wet grassy places, 2000 m, 20 June 2016, Paksoy 2049 N 38.317180, E 43.802793 |
4 | O. siifolius | Antalya, Akçay, Around the Girdev lake, near the river, 2000 m, 3 August 2015, Paksoy 2024 N 36.664530, E 29.659819 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babacan, E.Y.; Demirpolat, A.; Çakılcıoğlu, U.; Bagcı, E. Yield and Composition of the Essential Oil of the Opopanax Genus in Turkey. Molecules 2023, 28, 3055. https://doi.org/10.3390/molecules28073055
Babacan EY, Demirpolat A, Çakılcıoğlu U, Bagcı E. Yield and Composition of the Essential Oil of the Opopanax Genus in Turkey. Molecules. 2023; 28(7):3055. https://doi.org/10.3390/molecules28073055
Chicago/Turabian StyleBabacan, Ebru Yüce, Azize Demirpolat, Uğur Çakılcıoğlu, and Eyüp Bagcı. 2023. "Yield and Composition of the Essential Oil of the Opopanax Genus in Turkey" Molecules 28, no. 7: 3055. https://doi.org/10.3390/molecules28073055
APA StyleBabacan, E. Y., Demirpolat, A., Çakılcıoğlu, U., & Bagcı, E. (2023). Yield and Composition of the Essential Oil of the Opopanax Genus in Turkey. Molecules, 28(7), 3055. https://doi.org/10.3390/molecules28073055