Study on Flame Retardancy Behavior of Epoxy Resin with Phosphaphenanthrene Triazine Compound and Organic Zinc Complexes Based on Phosphonitrile
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Characterization
2.2. Thermal Performance
2.3. Flammability
2.4. Combustion Behavior Analysis
2.5. Morphology Analysis of Residual Carbon
2.6. Analysis of Gas Phase Mechanism
2.7. Analysis of Condensed Phase Mechanism
2.8. Speculation of Flame-Retardant Mechanism
3. Experimental
3.1. Materials
3.2. Synthesis of Zn-PDH
3.3. Characterizations
3.3.1. Fourier Transform-Infrared Spectroscopy (FTIR)
3.3.2. Thermogravimetry–Fourier Transform Infrared (TG-FTIR) Test
3.3.3. Limiting Oxygen Index (LOI) Measurement
3.3.4. UL94 Vertical Combustion Test
3.3.5. Cone Calorimeter Test (CONE)
3.3.6. Scanning Electron Microscopy (SEM) Test
3.3.7. X-ray Photoelectron Spectrometer (XPS)
3.3.8. Laser Raman Spectroscopy (LRS)
3.4. Preparation of Epoxy Resin Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, W.; Liu, P.; Cheng, Y.; Liu, Y.; Wang, Q.; Duan, W. Flame retardancy mechanisms of melamine cyanurate in combination with aluminum diethylphosphinate in epoxy resin. J. Appl. Polym. Sci. 2019, 136, 47223. [Google Scholar] [CrossRef]
- Qiu, S.; Ma, C.; Wang, X.; Zhou, X.; Feng, X.; Yuen, R.K.; Hu, Y. Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic-inorganic hybrid flame retardant. J. Hazard. Mater. 2018, 344, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Tange, L.; Drohmann, D. Environmental issues related to end-of-life options of plastics containing brominated flame retardants. Fire Mater. 2004, 28, 403–410. [Google Scholar] [CrossRef]
- Feng, Y.; He, C.; Wen, Y.; Ye, Y.; Zhou, X.; Xie, X.; Mai, Y.-W. Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Compos. Part A Appl. Sci. Manuf. 2017, 103, 74–83. [Google Scholar] [CrossRef]
- Tang, S.; Qian, L.; Liu, X.; Dong, Y. Gas-phase flame-retardant effects of a bi-group compound based on phosphaphenanthrene and triazine-trione groups in epoxy resin. Polym. Degrad. Stab. 2016, 133, 350–357. [Google Scholar] [CrossRef]
- Mostovoy, A.S.; Nurtazina, A.S.; Kadykova, Y.A.; Bekeshev, A.Z. Highly Efficient Plasticizers-Antipirenes for Epoxy Polymers. Inorg. Mater. Appl. Res. 2019, 10, 1135–1139. [Google Scholar] [CrossRef]
- Xu, B.; Wu, X.; Ma, W.; Qian, L.; Xin, F.; Qiu, Y. Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. J. Anal. Appl. Pyrolysis 2018, 134, 231–242. [Google Scholar] [CrossRef]
- Xu, B.; Ma, W.; Shao, L.; Qian, L.; Qiu, Y. Enhancement of an organic–metallic hybrid charring agent on flame retardancy of ethylene-vinyl acetate copolymer. R. Soc. Open Sci. 2019, 6, 181413. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Lu, Y.; Zhou, K. A novel exploration of metal–organic frameworks in flame-retardant epoxy composites. J. Therm. Anal. Calorim. 2019, 138, 905–914. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. A novel Co(Ⅱ)-based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Compos. Sci. Technol. 2017, 152, 231–242. [Google Scholar] [CrossRef]
- Bao, X.; Wu, F.; Wang, J. Thermal Degradation Behavior of Epoxy Resin Containing Modified Carbon Nanotubes. Polymers 2021, 13, 3332. [Google Scholar] [CrossRef]
- Bekeshev, A.; Mostovoy, A.; Kadykova, Y.; Akhmetova, M.; Tastanova, L.; Lopukhova, M. Development and Analysis of the Physicochemical and Mechanical Properties of Diorite-Reinforced Epoxy Composites. Polymers 2021, 13, 2421. [Google Scholar] [CrossRef]
- Jian, R.-K.; Pang, F.-Q.; Lin, Y.-C.; Bai, W.-B. Facile construction of lamellar-like phosphorus-based triazole-zinc complex for high-performance epoxy resins. J. Colloid Interface Sci. 2022, 609, 513–522. [Google Scholar] [CrossRef]
- Liu, X.-D.; Zheng, X.-T.; Dong, Y.-Q.; He, L.-X.; Chen, F.; Bai, W.-B.; Lin, Y.-C.; Jian, R.-K. A novel nitrogen-rich phosphinic amide towards flame-retardant, smoke suppression and mechanically strengthened epoxy resins. Polym. Degrad. Stab. 2022, 196, 109840. [Google Scholar] [CrossRef]
- Liang, W.-J.; Zhao, B.; Zhao, P.-H.; Zhang, C.-Y.; Liu, Y.-Q. Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy. Polym. Degrad. Stab. 2017, 135, 140–151. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, D. Preparation, isothermal kinetics, and performance of a novel epoxy thermosetting system based on phosphazene-cyclomatrix network for halogen-free flame retardancy and high thermal stability. Thermochim. Acta 2015, 607, 60–73. [Google Scholar] [CrossRef]
- Wu, C.; Wu, W.; Qu, H.; Xu, J. Synthesis of a novel phosphazene derivative and its application in intumescent flame retardant–EVA copolymer composites. Mater. Lett. 2015, 160, 282–285. [Google Scholar] [CrossRef]
- Yang, G.; Wu, W.H.; Wang, Y.H.; Jiao, Y.H.; Lu, L.Y.; Qu, H.Q.; Qin, X.Y. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of Epoxy Resin. J. Hazard. Mater. 2019, 366, 78–87. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, H.; Wu, R.; Yang, G.; Wang, T.; Xie, J.; Qu, H. Effect of Ni 2+ chelated to the surface of PBFA on the charring flame retardant and smoke suppression properties of epoxy resin. Polym. Eng. Sci. 2020, 60, 2541–2549. [Google Scholar] [CrossRef]
- Fang, Y.; Miao, J.; Yang, X.; Zhu, Y.; Wang, G. Fabrication of polyphosphazene covalent triazine polymer with excellent flame retardancy and smoke suppression for epoxy resin. Chem. Eng. J. 2020, 385, 123830. [Google Scholar] [CrossRef]
- Qian, X.; Song, L.; Yu, B.; Wang, B.; Yuan, B.; Shi, Y.; Hu, Y.; Yuen, R.K.K. Novel organic–inorganic flame retardants containing exfoliated graphene: Preparation and their performance on the flame retardancy of epoxy resins. J. Mater. Chem. A 2013, 1, 6822–6830. [Google Scholar] [CrossRef]
- Jiang, S.D.; Bai, Z.M.; Tang, G.; Song, L.; Stec, A.A.; Hull, T.R.; Zhan, J.; Hu, Y. Fabrication of Ce-doped MnO2 decorated graphene sheets for fire safety applications of epoxy composites: Flame retardancy, smoke suppression and mechanism. J. Mater. Chem. A 2014, 2, 17341–17351. [Google Scholar] [CrossRef]
- Zeng, B.; Liu, Y.; Yang, L.; Zheng, W.; Chen, T.; Chen, G.; Xu, Y.; Yuan, C.; Dai, L. Flame retardant epoxy resin based on organic titanate and polyhedral oligomeric silsesquioxane-containing additives with synergistic effects. RSC Adv. 2017, 7, 26082–26088. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, M.; Zhuo, J.; Ma, C.; Jiao, C. Influence of Fe2O3 on smoke suppression and thermal degradation properties in intumescent flame-retardant silicone rubber. J. Therm. Anal. Calorim. 2016, 123, 439–448. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Peng, H.; Wang, F.; Liu, X.; Yang, Y.; Hao, J. Layer-by-Layer Assembly of Multifunctional Flame Retardant Based on Brucite, 3-Aminopropyltriethoxysilane, and Alginate and Its Applications in Ethylene-Vinyl Acetate Resin. ACS Appl. Mater. Interfaces 2016, 8, 9925–9935. [Google Scholar] [CrossRef]
- Zhou, K.; Gao, R.; Qian, X. Self-assembly of exfoliated molybdenum disulfide (MoS 2) nanosheets and layered double hydroxide (LDH): Towards reducing fire hazards of epoxy. J. Hazard. Mater. 2017, 338, 343–355. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, L.; Qiu, S.; Zhou, X.; Gui, Z.; Hu, Y. DOPO-Modified Two-Dimensional Co-Based Metal–Organic Framework: Preparation and Application for Enhancing Fire Safety of Poly(lactic acid). ACS Appl. Mater. Interfaces 2018, 10, 8274–8286. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Dufosse, F.; Wang, D.-Y. Ultrafine nickel nanocatalyst-engineering of an organic layered double hydroxide towards a super-efficient fire-safe epoxy resin via interfacial catalysis. J. Mater. Chem. A 2018, 6, 8488–8498. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. Preparation of metal-organic frame-works and their application as flame retardants for polystyrene. Ind. Eng. Chem. Res. 2017, 56, 2036–2045. [Google Scholar] [CrossRef]
- Li, S.; Li, T.; Wang, X.; Zhong, Y.; Zhang, L.; Wang, B.; Feng, X.; Sui, X.; Xu, H.; Chen, Z.; et al. Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate. Polym. Adv. Technol. 2020, 31, 1194–1207. [Google Scholar] [CrossRef]
- Zhou, S.; Tao, R.; Dai, P.; Luo, Z.; He, M. Two-step fabrication of lignin-based flame retardant for enhancing the thermal and fire retardancy properties of epoxy resin composites. Polym. Compos. 2020, 41, 2025–2035. [Google Scholar] [CrossRef]
- Montané, D.; Torne-Fernandez, V.; Fierro, V. Activated carbons from lignin: Kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. Chem. Eng. J. 2005, 106, 1–12. [Google Scholar] [CrossRef]
- Tang, S.; Wachtendorf, V.; Klack, P.; Qian, L.; Dong, Y.; Schartel, B. Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset. RSC Adv. 2017, 7, 720–728. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Liu, L.; Wang, Z. Mesoporous silica via self-assembly of nano zinc amino-tris-(methylenephosphonate) exhibiting reduced fire hazards and improved impact toughness in epoxy resin. J. Hazard. Mater. 2020, 392, 122343. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Huo, S.; Wang, M.; Cheng, L. Synthesis of a Phosphorus/Nitrogen-Containing Additive with Multifunctional Groups and Its Flame-Retardant Effect in Epoxy Resin. Ind. Eng. Chem. Res. 2015, 54, 7777–7786. [Google Scholar] [CrossRef]
- Wang, J.; Qian, L.; Huang, Z.; Fang, Y.; Qiu, Y. Synergistic flame-retardant behavior and mechanisms of aluminum polyhexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym. Degrad. Stab. 2016, 130, 173–181. [Google Scholar] [CrossRef]
- Shao, L.; Xu, B.; Ma, W.; Wang, J.; Liu, Y.; Qian, L. Flame retardant application of a hypophosphite/cyclotetrasiloxane bigroup compound on polycarbonate. J. Appl. Polym. Sci. 2020, 137, 48699. [Google Scholar] [CrossRef]
- Xu, B.; Ma, W.; Wu, X.; Qian, L.; Jiang, S. Flame retardancy and thermal behavior of intumescent flame-retardant EVA composites with an efficient triazine-based charring agent. Mater. Res. Express 2018, 5, 045309. [Google Scholar] [CrossRef]
- Wang, B.; Li, P.; Xu, Y.-J.; Jiang, Z.-M.; Dong, C.-H.; Liu, Y.; Zhu, P. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: Thermal degradation properties, flammability and flame-retardant mechanism. Compos. Part B Eng. 2020, 194, 108038. [Google Scholar] [CrossRef]
- Xu, B.; Wei, S.; Liu, Y.; Zhao, S.; Qian, L. Preparation of an organometallic complex based on phosphonitrile and its flame retardant application in epoxy resin. J. Mater. Res. Technol. 2022, 21, 4921–4939. [Google Scholar] [CrossRef]
Sample | Element Sample | Atomic Conc. | Weight Conc. |
---|---|---|---|
Zn-4APD | O | 41.83 | 27.74 |
C | 38.61 | 19.22 | |
Zn | 19.57 | 53.04 (58.02) a | |
Zn-PDH | C | 43.65 | 34.54 |
O | 25.57 | 26.96 | |
N | 23.07 | 21.29 | |
P | 6.19 | 12.62 | |
Cl | 0.98 | 2.29 | |
Zn | 0.53 | 2.30 (25.3) a |
Sample | Td,1% (°C) | Tpeak (°C) | Amount of Residual Carbon (wt.%) | ||
---|---|---|---|---|---|
500 °C | 600 °C | 700 °C | |||
EP | 380.2 | 400.7 | 23.4 | 19.9 | 19.3 |
4%TAD/EP | 347.7 | 400.6 | 32.1 | 28.3 | 25.2 |
3%TAD/1%Zn-PDH/EP | 311.7 | 392.2 | 35.8 | 32 | 29.3 |
2%TAD/2%Zn-PDH/EP | 300.4 | 387.9 | 38.7 | 35 | 31.4 |
1%TAD/3%Zn-PDH/EP | 290.4 | 387.3 | 35 | 31.3 | 30.1 |
4%Zn-PDH/EP | 266.5 | 369.7 | 41.9 | 38 | 34.8 |
Sample | LOI [%] | UL94 | |
---|---|---|---|
Drip | Level | ||
EP | 26.2 | Yes | No |
4%TAD/EP | 33.4 | No | V-0 |
3%TAD/1%Zn-PDH/EP | 33.2 | No | V-0 |
2%TAD/2%Zn-PDH/EP | 31.3 | No | V-1 |
1%TAD/3%Zn-PDH/EP | 29.0 | No | V-1 |
4%Zn-PDH/EP | 27.0 | No | No |
Sample | TTI [s] | PHRR [kW m−2] | THR [MJ m−2] | av-EHC [MJ kg] | av-COY [kg kg−1] | av-CO2Y [kg kg−1] | TSR [m2/m2] | Residue [wt.%] |
---|---|---|---|---|---|---|---|---|
EP | 58 | 1492 | 114.30 | 27.52 | 0.10 | 2.19 | 5781 | 7.28 |
4%TAD/EP | 52 | 912 | 101.60 | 25.38 | 0.13 | 1.88 | 5702 | 10.50 |
3%TAD/1%Zn-PDH/EP | 44 | 756 | 90.97 | 24.21 | 0.12 | 1.83 | 5485 | 17.03 |
2%TAD/2%Zn-PDH/EP | 41 | 630 | 87.44 | 23.76 | 0.11 | 1.81 | 5418 | 18.22 |
1%TAD/3%Zn-PDH/EP | 38 | 579 | 84.78 | 23.39 | 0.10 | 1.80 | 5045 | 19.07 |
4%Zn-PDH/EP | 39 | 436 | 80.26 | 22.88 | 0.10 | 1.77 | 4138 | 22.06 |
Samples | Flame Inhibition Effect (%) | Charring Effect (%) | Barrier and Protective Effect (%) |
---|---|---|---|
Neat EP | - | - | - |
4%TAD/EP | 7.78 | 3.47 | 31.23 |
1%Zn-PDH/3%TAD/EP | 12.03 | 10.52 | 36.34 |
2%Zn-PDH/2%TAD/EP | 13.66 | 11.80 | 44.80 |
3%Zn-PDH/1%TAD/EP | 15.00 | 12.72 | 47.69 |
4%Zn-PDH | 16.86 | 16.03 | 58.39 |
Sample | C [wt.%] | O [wt.%] | N [wt.%] | P [wt.%] | Zn [wt.%] |
---|---|---|---|---|---|
4%TAD/EP | 82.33 | 13.29 | 3.52 | 0.86 | - |
3%TAD/1%Zn-PDH/EP | 83.28 | 15.78 | 0.73 | 1.13 | 0.12 |
4%Zn-PDH/EP | 66.68 | 23.81 | 5.67 | 2.26 | 0.58 |
Sample | P Ration in Residues (%) | Char Yield (%) | Initial P Ration in Samples (%) | Reserved P Ratio in Total P (%) | Released P Ratio in Total P (%) |
---|---|---|---|---|---|
4%TAD/EP | 0.86 | 10.5 | 0.43 | 21.00 | 79.00 |
3%TAD/1%Zn-PDH/EP | 1.13 | 17.03 | 0.39 | 49.34 | 50.66 |
4%Zn-PDH/EP | 2.26 | 22.06 | 0.50 | 99.71 | 0.29 |
The Qualitative Characteristics | Value |
---|---|
epoxy resin E-51 | |
Epoxy functionalities | 2.5~6.0 |
Viscosity, Pa × s | 5 |
Density at 25 °C, g/cm3 | 1.22 |
Molecular weight | 600 |
DDM | |
Molecular weight | 198.264 |
Density at 25 °C, g/cm3 | 1.15 |
Boiling temperature, °C | 242 |
Zn-PDH | |
Molecular mass, g/mol | 1364.46 |
Density at 25 °C, g/cm3 | 0.975 |
Phosphorus content, % by weight | 6.8 |
Decomposition temperature, °C | 111.86 |
TAD | |
Molecular mass, g/mol | 861 |
Density at 25 °C, g/cm3 | 1.449 |
Tg, °C | 113 |
Decomposition temperature, °C | 291 |
Samples | EP (g) | DDM (g) | TAD (g) | Zn-PDH (g) |
---|---|---|---|---|
EP | 100 | 25.3 | -- | -- |
4%TAD/EP | 100 | 25.3 | 5.22 | -- |
3%TAD/1%Zn-PDH/EP | 100 | 25.3 | 3.92 | 1.31 |
2%TAD/2%Zn-PDH/EP | 100 | 25.3 | 2.61 | 2.61 |
1%TAD/3%Zn-PDH/EP | 100 | 25.3 | 1.31 | 3.92 |
4%Zn-PDH/EP | 100 | 25.3 | -- | 5.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Wu, M.; Liu, Y.; Wei, S. Study on Flame Retardancy Behavior of Epoxy Resin with Phosphaphenanthrene Triazine Compound and Organic Zinc Complexes Based on Phosphonitrile. Molecules 2023, 28, 3069. https://doi.org/10.3390/molecules28073069
Xu B, Wu M, Liu Y, Wei S. Study on Flame Retardancy Behavior of Epoxy Resin with Phosphaphenanthrene Triazine Compound and Organic Zinc Complexes Based on Phosphonitrile. Molecules. 2023; 28(7):3069. https://doi.org/10.3390/molecules28073069
Chicago/Turabian StyleXu, Bo, Menglin Wu, Yanting Liu, and Simiao Wei. 2023. "Study on Flame Retardancy Behavior of Epoxy Resin with Phosphaphenanthrene Triazine Compound and Organic Zinc Complexes Based on Phosphonitrile" Molecules 28, no. 7: 3069. https://doi.org/10.3390/molecules28073069
APA StyleXu, B., Wu, M., Liu, Y., & Wei, S. (2023). Study on Flame Retardancy Behavior of Epoxy Resin with Phosphaphenanthrene Triazine Compound and Organic Zinc Complexes Based on Phosphonitrile. Molecules, 28(7), 3069. https://doi.org/10.3390/molecules28073069