Peptide Sodium Channels Modulator Mu-Agatoxin-Aa1a Prevents Ischemia-Reperfusion Injury of Cells
Abstract
:1. Introduction
2. Results
2.1. Synthesis Results and Formation of the Secondary Structure of the Toxin
2.2. The Effect of the Toxin on Apoptosis, Necrosis, Cell Area, and Cell Index during Oxygen–Glucose Deprivation/Reoxygenation-Reperfusion
2.3. The Effect of the Toxin on the Concentration of Sodium, Calcium, and Potassium Ions and pH during Oxygen–Glucose Deprivation/Reoxygenation-Reperfusion
2.4. Effect of the Toxin on the Concentration of Reactive Oxygen Species (ROS), Nitric Oxide (NO), ATP, and Mitochondrial Membrane Potential during Oxygen–Glucose Deprivation/Reoxygenation-Reperfusion
3. Discussion
4. Materials and Methods
4.1. Peptide Synthesis and Quality Control
4.2. Cell Culture and Experiment Condition
4.3. Measurement of Changes in Intracellular Processes, Area, and pH
4.4. ATP Analysis
4.5. Cell Index Analysis
4.6. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiong, M.; Wang, Z.V.; Pedrozo, Z.; Cao, D.J.; Troncoso, R.; Ibacache, M.; Criollo, A.; Nemchenko, A.; Hill, J.A.; Lavandero, S. Cardiomyocyte death: Mechanisms and translational implications. Cell Death Dis. 2011, 2, e244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, R.; Zong, N.; Hu, Y.; Chen, Y.; Xu, Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci. Bull. 2022, 38, 1229–1247. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C. Ischaemia-reperfusion injury: A major protagonist in kidney transplantation. Nephrol. Dial. Transplant. 2014, 29, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Sanada, S.; Komuro, I.; Kitakaze, M. Pathophysiology of myocardial reperfusion injury: Preconditioning, postconditioning and translational aspects of protective measures. Am. J. Physiol. 2011, 301, 1723–1741. [Google Scholar] [CrossRef] [Green Version]
- Pierce, G.N.; Czubryt, M.P. The contribution of ionic imbalance to ischemia/reperfusion-induced injury. J. Mol. Cell Cardiol. 1995, 27, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.; Steenbergen, C. Ion transport and energetics during cell death and protection. Physiology 2008, 23, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, D.N.; Korthuis, R.J. Physiologic mechanisms of postischemic tissue injury. Annu. Rev. Physiol. 1995, 57, 311–332. [Google Scholar] [CrossRef]
- Takeo, S.; Tanonaka, K.; Hayashi, M.; Yamamoto, K.; Liu, J.X.; Kamiyama, T.; Yamaguchi, N.; Miura, A.; Natsukawa, T. A Possible involvement of sodium channel blockade of class-I-type antiarrhythmic agents in postischemic contractile recovery of isolated, perfused hearts. J. Pharmacol. Exp. Ther. 1995, 273, 1403–1409. [Google Scholar]
- Karmazyn, M. Amiloride enhances postischemic ventricular recovery: Possible role of Na+/H+ exchange. Am. J. Physiol. 1991, 255, 608–615. [Google Scholar] [CrossRef]
- Van Emous, J.G.; Nederhoff, M.G.J.; Ruigrok, T.J.C.; Van Echteld, C.J.A. The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: Consequences for post-ischemic recovery. J. Mol. Cell Cardiol. 1997, 29, 85–96. [Google Scholar] [CrossRef]
- De Souza, J.M.; Goncalves, B.D.C.; Gomez, M.V.; Vieira, L.B.; Ribeiro, F.M.; De Souza, J.M.; Goncalves, B.D.C.; Gomez, M.V.; Vieira, L.B.; Ribeiro, F.M. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Front. Pharmacol. 2018, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Yiang, G.-T.; Liao, W.-T.; Tsai, A.P.Y.; Cheng, Y.-L.; Cheng, P.-W.; Li, C.-Y.; Li, C.J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Saren, G.; Wong, A.; Lu, Y.-B.; Baciu, C.; Zhou, W.; Zamel, R.; Soltanieh, S.; Sugihara, J.; Liu, M. Ischemia-Reperfusion Injury in a Simulated Lung Transplant Setting Differentially Regulates Transcriptomic Profiles between Human Lung Endothelial and Epithelial Cells. Cells 2021, 10, 2713. [Google Scholar] [CrossRef]
- Lalik, P.H.; Krafte, D.S.; Volberg, W.A.; Ciccarelli, R.B. Characterization of endogenous sodium channel gene expressed in Chinese hamster ovary cells. Am. J. Physiol. Cell Physiol. 1993, 264, C803–C809. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Singh, N.; Jaggi, A.S.; Maslov, L. Clinical Applicability of Conditioning Techniques in Ischemia-Reperfusion Injury: A Review of the Literature. Curr. Cardiol. Rev. 2021, 17, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Jivraj, N.; Liew, F.; Marber, M. Ischaemic postconditioning: Cardiac protection after the event. Anaesthesia 2015, 70, 598–612. [Google Scholar] [CrossRef]
- Li, C.-Y.; Ma, W.; Liu, K.-P.; Yang, J.-W.; Wang, X.-B.; Wu, Z.; Zhang, T.; Wang, J.-W.; Liu, W.; Liu, J.; et al. Advances in intervention methods and brain protection mechanisms of in situ and remote ischemic postconditioning. Metab. Brain Dis. 2021, 36, 53–65. [Google Scholar] [CrossRef]
- Iurova, E.; Beloborodov, E.; Tazintseva, E.; Fomin, A.; Shutov, A.; Slesarev, S.; Saenko, Y.; Saenko, Y. Arthropod toxins inhibiting Ca2+ and Na+ channels prevent AC-1001 H3 peptide-induced apoptosis. J. Pept. Sci. 2020, 27, 3288. [Google Scholar] [CrossRef]
- Cong, T.S.; Zhang, M.H.; He, H.Y.; Lou, J.S. Effects of taurine-magnesium coordination compound on abnormal sodium channel induced by hypoxia-reoxygenation in rat ventricular myocytes. Chin. Pharmacol. Bull. 2014, 30, 1382–1387. [Google Scholar]
- Liu, X.Y.; Ding, C.; Zhang, X. Effect of ischemic-reperfusion on sodium channel current of cardiomyocytes in rats. Chin. J. Clin. Rehabil. 2005, 9, 28–29. [Google Scholar]
- Fröhlich, G.M. Myocardial reperfusion injury: Looking beyond primary PCI. Eur. Heart J. 2013, 34, 1714–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautier, G.P.; Roccon AO'Connor, S.; Ruetten, H. Effects of the novel amiodarone-like compound SAR114646A on cardiac ion channels and ventricular arrhythmias in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2011, 384, 231–244. [Google Scholar] [CrossRef]
- Pasantes-Morales, H. Channels and volume changes in the life and death of the cell. Mol. Pharmacol. 2016, 116, 104158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banasiak, K.J.; Burenkova, O.; Haddad, G.G. Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death. Neuroscience 2004, 126, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Bortner, C.D.; Cidlowski, J.A. Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J. Biol. Chem. 2003, 278, 39176–39184. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.D.; Pernow, J.; Sjoquist, P.O.; Ryden, L. Pharmacological possibilities for protection against myocardial reperfusion injury. Cardiovasc. Res. 2002, 55, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Temkin, L.P. High-dose monotherapy and combination therapy with calcium channel blockers for angina: A comprehensive review of the literature. Am. J. Med. 1989, 86, 23–27. [Google Scholar] [CrossRef]
- Kondratskyi, A.; Kondratska, K.; Skryma, R.; Prevarskaya, N. Ion channels in the regulation of apoptosis. Biochim. Biophys. Acta Biomembr. 2015, 1848, 2532–2546. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.M.; Herman, B.; Lemasters, J.J. Protection by acidotic pH against anoxia/reoxygenation injury to rat neonatal cardiac myocytes. Biochem. Biophys. Res. Commun. 1991, 179, 798–803. [Google Scholar] [CrossRef]
- Inserte, J.; Barba, I.; Hernando, V.; Abellán, A.; Ruiz-Meana, M.; Rodriguez-Sinovas, A.; Garcia-Dorado, D. Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage. Cardiovasc. Res. 2008, 77, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Lemasters, J.J.; Bond, J.M.; Chacon, E.; Harper, I.S.; Kaplan, S.H.; Ohata, H.; Trollinger, D.R.; Herman, B.; Cascio, W.E. The pH paradox in ischemia-reperfusion injury to cardiac myocytes. EXS 1996, 76, 99–114. [Google Scholar] [PubMed]
- Cohen, M.V.; Yang, X.M.; Downey, J.M. The pH hypothesis of postconditioning: Staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 2007, 115, 1895–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neely, J.R.; Grotyohann, L.W. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ. Res. 1984, 55, 816–824. [Google Scholar] [CrossRef] [Green Version]
- Cross, H.R.; Radda, G.K.; Clarke, K. The role of Na+/K+ ATPase activity during low flow ischemia in preventing myocardial injury: A 31P, 23Na and 87Rb NMR spectroscopic study. Magn. Reson. Med. 1995, 34, 673–685. [Google Scholar] [CrossRef]
- Schulz, R.; Kelm, M.; Heusch, G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc. Res. 2004, 61, 402–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.P.; Girod, W.G.; Palazzo, A.J.; Granger, D.N.; Grisham, M.B.; Jourd’Heuil, D.; Huang, P.; Lefer, D.J. Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am. J. Physiol. 1999, 276, 1567–1573. [Google Scholar] [CrossRef] [Green Version]
- Kanno, S.; Lee, P.C.; Zhang, Y.; Ho, C.; Griffith, B.P.; Shears, L.L.; Billiar, T.R. Attenuation of Myocardial Ischemia/Reperfusion Injury by Superinduction of Inducible Nitric Oxide Synthase. Circulation 2000, 101, 2742–2748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, R.M.; Maddock, H.L.; Yellon, D.M. The cardioprotective and mitochondrial depolarising properties of exogenous nitric oxide in mouse heart. Cardiovasc. Res. 2003, 57, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.J.; Leung, C.L.; Norton, H.K.; Cochran, J.R. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS ONE 2013, 8, e60498. [Google Scholar] [CrossRef] [Green Version]
- Wenger, R.; Kurtcuoglu, V.; Scholz, C.; Marti, H.; Hoogewijs, D. Frequently asked questions in hypoxia research. Hypoxia 2015, 3, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Bolaños, J.M.G.; Morán, M.; Da Silva, C.M.B.; Rodríguez, A.M.; Dávila, M.P.; Aparicio, I.M.; Tapia, J.A.; Ferrusola, C.O.; Peña, F.J. Autophagy and apoptosis have a role in the survival or death of stallion spermatozoa during conservation in refrigeration. PLoS ONE 2012, 7, e30688. [Google Scholar] [CrossRef] [Green Version]
- Saenko, Y.V.; Glushchenko, E.S.; Zolotovskii, I.O.; Sholokhov, E.; Kurkov, A. Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm. Lasers Med. Sci. 2016, 31, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Zeidler, D.; Zähringer, U.; Gerber, I.; Dubery, I.; Hartung, T.; Bors, W.; Hutzler, P.; Durner, J. Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. USA 2004, 101, 15811–15816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonteriz, R.I.; de la Fuente, S.; Moreno, A.; Lobatón, C.D.; Montero, M.; Alvarez, J. Monitoring mitochondrial [Ca2+] dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium 2010, 48, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tay, B.; Stewart, T.A.; Davis, F.; Deuis, J.; Vetter, I. Development of a high-throughput fluorescent no-wash sodium influx assay. PLoS ONE 2019, 14, e0213751. [Google Scholar] [CrossRef]
- Camilli, G.; Bohm, M.; Piffer, A.C.; Lavenir, R.; Williams, D.L.; Neven, B.; Grateau, G.; Georgin-Lavialle, S.; Quintin, J. β-Glucan–induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies. J. Clin. Investig. 2020, 130, 4561–4573. [Google Scholar] [CrossRef]
- Alvarez-Leefmans, F.J.; Herrera-Pérez, J.J.; Márquez, M.S.; Blanco, V.M. Simultaneous Measurement of Water Volume and pH in Single Cells Using BCECF and Fluorescence Imaging Microscopy. Biophys. J. 2006, 90, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.; Rasband, W.; Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, Y.; Luo, Y.; Jiang, W. A simple and rapid determination of ATP, ADP and AMP concentrations in pericarp tissue of litchi fruit by high performance liquid chromatography. Food Technol. Biotechnol. 2006, 44, 531–534. [Google Scholar]
- Ke, N.; Wang, X.; Xu, Y.A.A. The xCELLigence system for real-time and label-free monitoring of cell viability. Methods Mol. Biol. 2011, 740, 33–43. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iurova, E.; Beloborodov, E.; Rastorgueva, E.; Fomin, A.; Saenko, Y. Peptide Sodium Channels Modulator Mu-Agatoxin-Aa1a Prevents Ischemia-Reperfusion Injury of Cells. Molecules 2023, 28, 3174. https://doi.org/10.3390/molecules28073174
Iurova E, Beloborodov E, Rastorgueva E, Fomin A, Saenko Y. Peptide Sodium Channels Modulator Mu-Agatoxin-Aa1a Prevents Ischemia-Reperfusion Injury of Cells. Molecules. 2023; 28(7):3174. https://doi.org/10.3390/molecules28073174
Chicago/Turabian StyleIurova, Elena, Evgenii Beloborodov, Eugenia Rastorgueva, Aleksandr Fomin, and Yury Saenko. 2023. "Peptide Sodium Channels Modulator Mu-Agatoxin-Aa1a Prevents Ischemia-Reperfusion Injury of Cells" Molecules 28, no. 7: 3174. https://doi.org/10.3390/molecules28073174
APA StyleIurova, E., Beloborodov, E., Rastorgueva, E., Fomin, A., & Saenko, Y. (2023). Peptide Sodium Channels Modulator Mu-Agatoxin-Aa1a Prevents Ischemia-Reperfusion Injury of Cells. Molecules, 28(7), 3174. https://doi.org/10.3390/molecules28073174