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Abstract: Ag/TiO2/muscovite (ATM) composites were prepared by the sol–gel method and the
effects of Ag modification on the structure and photocatalytic performance were investigated. The
photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy
(SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X-ray
photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), photoluminescence
spectra (PL) and ultraviolet–visible diffuse reflectance spectra (DRS). The photocatalytic activity
of the obtained composites was evaluated by taking 100 mL (10 mg/L) of Rhodamine B (RhB)
aqueous solution as the target pollutant. The muscovite (Mus) loading releases the agglomeration
of TiO2 particles and the specific surface area increases from 17.6 m2/g (pure TiO2) to 39.5 m2/g
(TiO2/Mus). The first-order reaction rate constant increases from 0.0009 min−1 (pure TiO2) to
0.0074 min−1 (150%TiO2/Mus). Ag element exists in elemental silver. The specific surface area of
1-ATM further increases to 66.5 m2/g. Ag modification promotes the separation of photogenerated
electrons and holes and increases the visible light absorption. 1%Ag-TiO2/Mus (1-ATM) exhibits
the highest photocatalytic activity. After 100 min, the rhodamine B (RhB) degradation degrees of PT,
150%TiO2/Mus and 1-ATM are 10.4%, 48.6% and 90.6%, respectively. The first-order reaction rate
constant of 1-ATM reaches 0.0225 min−1, which is 25 times higher than that of pure TiO2.

Keywords: TiO2; muscovite; Ag modification; photocatalytic activity

1. Introduction

Rhodamine B (RhB) is a typical dye organic compound which is primarily used for
industrial dyeing. RhB possesses carcinogenicity and teratogenicity, causing certain harm
to human health and the sustainable development of ecosystems when it is discharged into
water bodies [1,2]. The methods of removing RhB include physical adsorption, chemical
precipitation, biological filtration, etc. [3–5]. Because photocatalysts are able to degrade
organic dyes into small inorganic molecules such as water and carbon dioxide directly
under the irradiation of a light source without producing secondary pollution, this green
technology has attracted wide attention [6–9]. Among numerous semiconductor photocat-
alyst materials, TiO2 has received the most extensive research due to its low cost, stable
chemical properties, non-toxicity and harmlessness [10–14]. However, nanoscale TiO2 tends
to readily aggregate, which results in a reduction in active reaction sites and adsorption
performance. Using a matrix to load TiO2 can effectively reduce the agglomeration between
particles, increasing the specific surface area and providing more reaction sites [15–18].
Muscovite (Mus) possesses the advantages of low price, acid and alkali resistance, heat
resistance and chemical stability, and is commonly employed to load TiO2 to release its
agglomeration [19–22]. Li [21] et al. prepared TiO2/Mus using a hydrothermal method and
found that the particles’ agglomeration released after loading on Mus, which is beneficial
to advancing photocatalytic performance.
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On the other hand, the band gap width of TiO2 is large (3.2 eV), meaning it is only
active in the ultraviolet light range with short wavelengths, limiting its applicability in
the visible light range. In addition, the rapid recombination of photogenerated charges
reduces photocatalytic activity [10,23]. Therefore, it is necessary to modify TiO2 to improve
its photocatalytic performance. Ion doping, semiconductor coupling and noble metal
decoration are common modification methods [24–26]. Feng et al. [14] prepared Fe/N
co-doped nano-TiO2 using the solvothermal method and the degradation degree of RhB
increased from 57.4% (pure TiO2) to 96.2% after irradiation for 60 min. The co-doping
of Fe and N elements reduced the band gap width, which broadened the visible light
response range, improving photocatalytic activity. Akhter et al. [25] synthesized ZnO/TiO2
composites using the sol–gel method and the degradation degree of MB reached 96%
after illumination for 3 h. The combination of ZnO and TiO2 forms II-type semiconductor
junctions which promote the separation of photogenerated electrons and holes, improving
quantum utilization. Because the work functions of noble metals are larger than that of
TiO2, when they make contact to form Schottky junctions, the photogenerated electrons
generated by TiO2 are transferred to noble metals. Due to the existence of Schottky junctions,
electrons in noble metals are prevented from flowing back into TiO2, which promotes the
separation of photogenerated charges [27–30]. Additionally, owing to the surface plasmon
resonance effect, noble metal modification can enhance the absorption in the visible light
region, advancing the photocatalytic performance [31–33]. Bamola et al. [26] prepared
Au-TiO2 using an inert gas evaporation method and it was found that Au and TiO2
formed Schottky junctions which favored the separation of photogenerated electrons and
holes, inhibiting the recombination of carriers. Meanwhile, the absorption of composite
materials in the visible light region was enhanced by Au decoration, which promoted the
photocatalytic performance.

In this study, to combine the advantages of muscovite loading, which alleviates the
agglomeration of TiO2 particles, and noble metal modification, which enhances the quan-
tum utilization and visible light absorption simultaneously, Ag-modified and Mus-loaded
TiO2 composite materials were prepared using a sol–gel method. The crystal structure,
surface morphology, specific surface area, elemental composition, valence state and optical
properties of the composite photocatalysts were analyzed with XRD, SEM, TEM, BET, XPS,
FTIR, PL and RDS. The photocatalytic activity was evaluated by measuring the degradation
degree of RhB and the mechanism of improving the photocatalytic performance with Mus
loading and Ag modification was discussed.

2. Results and Discussion
2.1. Phase Composition

Figure 1 shows the XRD patterns of pure TiO2 (PT), 150%TiO2/Mus (TM) and
Ag/TiO2/muscovite (ATM). The three strong peaks in the XRD diffraction pattern of
Mus appearing at 8.9◦, 26.8◦ and 45.5◦ correspond to the (002), (006) and (029) crystal
planes. The diffraction peaks of PT at 2θ = 25.3◦, 37.8◦ and 48.1◦ correspond to the (101),
(004) and (200) crystal planes of anatase, respectively, which means that TiO2 is single-phase
anatase [32,34]. The diffraction peaks of anatase and Mus appear in the pattern of TM
simultaneously, indicating that TiO2/Mus composites are formed. After Ag modification,
diffraction peaks at 2θ = 38.1◦, indexed to the (111) crystal plane of metallic Ag, can be
detected, indicating that Ag/TiO2/muscovite composites are obtained [35,36]. With the in-
crease in Ag content, the diffraction peak intensity of the (111) plane is enhanced. Figure S1
shows the XRD patterns of PT and TiO2/Mus. As the content of Mus increases from 15% to
200%, the intensity of the Mus diffraction peaks increases, while the intensity of the TiO2
diffraction peaks decreases and the half-height width expands gradually, implying that
Mus loading increases the amorphous composition and decreases the crystallinity of TiO2.
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Figure 1. XRD patterns of samples.

2.2. Morphology and BET Surface Area

Figure 2 shows the SEM images of samples. As can be seen in Figure 2a, Mus particles
present flaky shapes. It is observed in Figure 2b that PT prepared with the sol–gel method
shows a significant agglomerative phenomenon, and the particle sizes are massive. When
the Mus/TiO2 mass ratio is 150%, it can be observed in Figure 2c that TiO2 particles
are evenly distributed on the surface of Mus, which reduces the aggregation of TiO2.
Figure S2 shows the SEM images of 15%TiO2/Mus and 200%TiO2/Mus, from which it can
be seen that with increasing Mus content, the agglomeration of TiO2 particles reduces more
clearly. In Figure 2d, ATM shows comparable morphology to TM, which suggests that Ag
modification does not cause the re-aggregation of TiO2 particles.

Figure 3 shows the TEM and HRTEM images of 1-ATM. As can be seen in Figure 3a,
TiO2 particles are dispersed on the Mus matrix and the size of a single particle ranges from
10 to 20 nm. Figure 3b shows the HRTEM image of 1-ATM. The marked crystal plane
spacing of 0.351 nm is indexed to the anatase (101) crystal plane [21,37]. The lattice fringe of
0.228 nm can be ascribed to the crystal face of Ag (111) [38,39], indicating that Ag element
exists as metallic Ag, which is consistent with the XRD results.
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Figure 3. TEM (a) and HRTEM (b) images of 1-ATM.

Figure 4 shows the N2 adsorption–desorption isotherms of PT, TM and 1-ATM. The
specific surface area of PT is 17.6 m2/g. When it is loaded on Mus, the specific surface
area increases to 39.5 m2/g (TM), indicating that the aggregation phenomenon of TiO2
particles is reduced after Mus loading. Ag modification further increases the specific surface
area (66.5 m2/g) of 1-ATM. The increase in surface area provides more active sites for the
photocatalytic reaction, which is beneficial to photocatalytic performance [15,16,22].

2.3. Element Valence State

Figure 5 shows the XPS spectra of 1-ATM. The signal peaks of Ti, O and Ag elements
appear in the total spectrum (Figure 5a). Figure 5b shows the high-resolution spectrum of
Ti 2p. The two peaks at 458.0 and 463.5 eV are indexed to Ti 2p3/2 and Ti 2p1/2, indicating
that Ti element exists in the form of 4+ [32,40,41]. The high-resolution spectrum of O 1s
is shown in Figure 5c. The two peaks at 529.8 and 531.1 eV correspond to lattice oxygen
(O2−) and surface hydroxyl (OH−) [42,43].
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2.4. FTIR Analysis

Figure 6 shows the FTIR spectra of PT, Mus, TM and 1-ATM. Mus shows a relatively
obvious absorption band in the high-frequency region and the broad absorption band at
3608 cm−1 can be attributed to the Al-O-H stretching vibration [44]. The peak at 1632 cm−1

corresponds to the O-H bending vibration [32]. In addition, the wavelength of 1105 cm−1

corresponds to the asymmetric tensile vibration peak of Si-O-Si, indicating the existence
of a SiO2 skeleton structure in Mus [45,46]. The weak peaks at 922 cm−1 are caused by
the asymmetric tensile vibration of Si-O-Ti in Mus [45]. The absorption peak at 787 cm−1

corresponds to the vibration of the hydroxyl group of Mg-Al-OH in Mus, indicating that
the structure of Mus has not been damaged by heat treatment. In PT, an obvious absorption
peak is observed near wavelength 1401 cm−1, which is formed by the stretching mode of
metal Ti ions and the absorption of atmospheric CO2 by carbonyl (C=O) [10]. Significantly,
compared to Mus, the corresponding absorption peaks are also observed in TM and 1-ATM,
which can be ascribed to the interaction between TiO2, Mus and Ag. There is no peak
related to Ag that can be detected, which may be because Ag levels are too low for the
instrument to detect.
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2.5. Optical Property

The separation of photogenerated electrons and holes is the core step of photodegra-
dation. The higher the separation rate of photoinduced charge is, the more free radicals
are generated during the degradation process, which is beneficial to the photocatalytic
performance [36,42]. The photoluminescence (PL) peaks come from the released pho-
tons when the photogenerated electrons and holes recombine. Therefore, the lower PL
peak intensity indicates a lower recombination of the photogenerated charges [47–49].
Figure S3 shows PL spectra of PT and TiO2/Mus in the wavelength range of 350–550 nm.
It can be seen that the peak intensity of TiO2/Mus increases gradually when the loading
amount of Mus increases from 15% to 200%, indicating that Mus loading aggravates the
recombination of photogenerated charges. The XRD results show that the higher the
Mus loading, the lower the TiO2 diffraction peak intensity, resulting in a decrease in
TiO2 crystallinity and an increase in amorphous components and crystal defects which
may become the recombination centers for photogenerated charges, thus increasing the
PL peak intensity [22,50]. Figure 7 shows the PL spectra of PT, TM and ATM. After Ag
modification, the recombination of photogenerated electrons and holes in ATM decreases
compared to PT and TM. As the Fermi level of Ag is at the base of the TiO2 conduction
band, the photogenerated electrons on the TiO2 conduction band transfer to the surface
of Ag, which promotes the separation of photoinduced charges and improves quantum
efficiency [35,51]. Significantly, when the concentration of Ag is excessive (5%), the PL
peak intensity rises, which may be due to the formation of new recombination centers
after superfluous Ag modification [43,52].
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Figure 8 shows the UV–visible absorption spectra (a) and the band gap (b) of PT, TM
and 1-ATM. As shown in Figure 8a, compared with PT, the absorption edge of TM and
1-ATM red shifts, indicating that Mus loading and Ag modification favor the utilization of
visible light. The specific forbidden band width can be calculated as follows [52–54]:

αhυ = A(hυ − Eg)1/n (1)
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where h, υ, A and Eg are the Planck constant, the incident photon frequency, the propor-
tional constant and the band gap (Eg), respectively. The value of n is related to the type
of semiconductor, which is 2 for indirect semiconductors and is 1/2 for direct semicon-
ductors [53,54]. Therefore, the value of Eg can be determined by the (αhυ)1/2-hυ curves in
Figure 8b, which show that the band gaps of PT, TM and 1-ATM are 3.10, 3.06 and 2.89 eV,
respectively. Ag modification diminishes the band gap of TiO2, reduces the energy barrier
during the electron transition and promotes light absorption in the visible region.
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2.6. Photocatalytic Performance

Figure S4 presents the RhB degradation degrees of PT and TiO2/Mus, which show that
TiO2/Mus exhibits the highest degradation degree when the Mus/TiO2 mass ratio is 150%.
Figure 9a gives the RhB degradation degree curves of PT, TM and ATM. After 100 min,
the degradation degrees of PT, TM, 1-ATM, 3-ATM and 5-ATM are 10.4%, 48.6%, 90.6%,
64.6% and 45.6%. Evidently, when TiO2 is loaded on Mus, the photocatalytic activity is
significantly improved, which can be ascribed to the fact that the greater dispersion of TiO2
particles significantly enhances the specific surface area and provides more reactive sites.
Moreover, Ag modification further advances the photocatalytic performance of TiO2/Mus
composites. Combining PL and DRS spectra results, the enhancement of photocatalytic
activity can be explained such that Ag modification reduces the recombination of photo-
generated electrons and holes and enhances the absorption of visible light. The amount of
Ag addition is the key to photocatalytic activity. ATM exhibits the highest photocatalytic
activity when the Ag/Ti molar ratio is 1%. When the concentration of Ag is excessive,
new recombination centers for photogenerated electrons and holes are formed, which is
not conducive to the separation of photogenerated charges [43,52]. On the other hand,
significant Ag deposition will cover the surface of TiO2 particles and hinder the absorption
of the light source, reducing the photocatalytic degradation efficiency [39,55,56]. Figure 9b
shows the kinetics curves of samples. The first-order reaction rate constants of PT, TM,
1-ATM, 3-ATM and 5-ATM are 0.0009, 0.0074, 0.0225, 0.0088 and 0.0039 min−1, respectively.
1-ATM produces the fastest reaction rate, which is in line with the degradation results.

To study the reusability of 1-ATM, the RhB degradation cycle experiment was carried
out and the results are shown in Figure 10. After four cycles, the degradation degree of
1-ATM is 80.2%, which is slightly lower than 90.6%, indicating that 1-ATM has relatively
considerable reusability.
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Figure 10. The reuse experiment of 1-ATM photocatalyst for RhB degradation.

The XRD patterns of the fresh and used 1-ATM composite photocatalysts are shown
in Figure 11. Compared to the initial sample, the positions of the diffraction peaks do not
change and the peak intensities decrease marginally, which can be attributed to a small
amount of undegraded RhB molecules remaining on the surface of 1-ATM [35].

To further verify the stability of 1-ATM, the FTIR spectra of the fresh and used 1-ATM
are shown in Figure 12. Compared to the fresh spectrum, except for a slight decrease in
peak strength, the characteristic peaks of the used sample can still be observed and have not
shifted, indicating that the structure of the 1-ATM composite material is relatively stable.
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2.7. Photocatalytic Degradation Mechanism

To determine the active species in the photodegradation process of 1-ATM, active species
inhibition experiments were carried out on strong oxidizing groups such as h+, ·O2

− and ·OH,
and the results are as shown in Figure 13. Based on the RhB degradation system, 2 mL of p-
benzoquinone (BQ, ·O2

− trapping agent), isopropyl alcohol (IPA, ·OH trapping agent) or ammo-
nium oxalate (AO, h+ trapping agent) was added to determine the active substances [57–59]. The
degradation degrees of RhB are BQ (40.2%) < AO (62.9%) < IPA (67.9%) < no scavenger (90.6%),
which indicates that ·O2

− is the main active group, while ·OH and h+ are secondary groups.
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Using the characterization and photocatalytic degradation experiment results, the
mechanism of photodegradation of RhB with the 1-ATM composite photocatalyst is pro-
posed, as shown in Figure 14. Ag-TiO2 is firmly fixed on the surface of Mus using chemical
bond links, which releases the agglomeration of TiO2 particles and provides more active
reaction sites. When the photocatalysts are exposed to light irradiation in the ultraviolet
region, electrons in the TiO2 valence band are excited to the conduction band, forming
photogenerated electrons while leaving holes in the valence band. Photogenerated electrons
with reducibility undergo a reduction reaction with O2 molecules adsorbed on the particle’s
surface to generate ·O2

− radicals. Meanwhile, holes react with groups such as H2O and
OH− to generate ·OH radicals [3,25]. After Ag modification, as the work function of TiO2 is
smaller than that of metal silver, electrons in TiO2 flow into metal Ag, while accumulating
positive charges on TiO2. The accumulation of negative charges in metal Ag and positive
charges in TiO2 creates a built-in electric field directed from TiO2 to metal Ag and causes
the TiO2 energy band to bend upward, forming a Schottky barrier [27,30]. Electrons in
Ag particles are prevented from flowing back to TiO2, owing to the existence of Schottky
barriers. In the subsequent photocatalytic reaction, electrons accumulated on the metal Ag
surface undergo a reduction reaction and holes accumulated in TiO2 undergo an oxidation
reaction, leading to a new equilibrium state of the Fermi energy levels between metal Ag
and TiO2 [29,30].

In the visible region, TiO2 valance band electrons cannot be excited. However, when
metal Ag undergoes irradiation, a surface plasmon resonance effect occurs, causing free
electrons to rise from their initial thermal equilibrium state to a higher energy state, increas-
ing the energy of free electrons, which are then called hot electrons [30]. The yielded hot
electrons will transfer to the TiO2 conduction band if their energies are greater than the
conduction band potential of TiO2. This excitation mechanism does not need the photon
energy to be greater than the TiO2 band gap, but only needs to meet the requirement of
hυ ≥ Ef − Ec (Ec is the conduction band potential of TiO2 and Ef is the Fermi energy level
when TiO2 and Ag reach an equilibrium state) [30]. In general, the necessary photon energy
is smaller than the TiO2 band gap, making it more advantageous to use light sources for
photocatalytic processes in the long wavelength range. Due to the existence of Schottky
energy barriers, hot electrons that have been transferred to the TiO2 conduction band
cannot flow back to the metal Ag [27–30]. When hot electrons are injected into the TiO2
conduction band, the corresponding thermal holes remain on Ag particles, causing an
oxidation reaction.
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3. Materials and Methods
3.1. Sample Preparation

Butyl titanate (C16H36O4Ti, AR, ≥98.0%), anhydrous ethanol (CH3CH2OH, AR, ≥99.7%),
glacial acetic acid (C2H4O2, AR, ≥99.5%), silver nitrate (AgNO3, AR, ≥99.8%) and Rho-
damine B (RhB) (C28H31N2O3Cl, AR, ≥99.0%) were purchased form Chengdu Kelon
Chemical Reagent Factory (PR China).

Muscovite (Mus) acid treatment: First, 11.98 g Mus was placed in a beaker which
was filled with 20 mL deionized water and 40 mL glacial acetic acid. The suspension was
continuously stirred for 60 min and then washed repeatedly with deionized water and
anhydrous ethanol. Finally, the sample was obtained for use after drying.

Pure TiO2: In total, 74 mL anhydrous ethanol and 34 mL tetrabutyl titanate were
added into a beaker and stirred evenly to obtain solution A. Then, 8 mL deionized water,
7 mL glacial acetic acid and 37 mL anhydrous ethanol were mixed evenly to obtain solution
B. A separating funnel was used to slowly drop solution B into solution A and stirring
was maintained until sol was formed. After aging, the sol converted to gel, which was
heat-treated at 450 ◦C for 1h in a muffle furnace to obtain TiO2. Pure TiO2 was labeled
as PT.

TiO2/Mus: The acid-treated muscovite was added into the TiO2 sol under the con-
dition of magnetic stirring and the other preparation steps were the same as above. The
TiO2/Mus composite (Mus/TiO2 mass ratio = 150%) was labeled as TM.

Ag-TiO2/Mus: AgNO3 was added to solution B and the other preparation steps were
the same to produce Ag-TiO2/Mus. The molar ratios of Ag/Ti were 1%, 3% and 5%. The
Ag-TiO2/Mus samples were labeled as 1-ATM, 3-ATM and 5-ATM.

3.2. Sample Characterization

The crystal structure and composition of samples were analyzed using a DX-2700
X-ray diffractometer. Cu Kα radiation was used as an X-ray source, with a scanning
range of 5–60◦ and a scanning speed of 0.06◦/s (XRD, Dandong Haoyuan Instrument
Co. Ltd., Dandong, China). The microscopic morphology of samples was studied with a
Hitachi SU8220 scanning electron microscope (SEM) and a JEM-F200 transmission electron
microscope (TEM and HRTEM) (FEI Company, Hillsboro, OR, USA). A V-sorb 2800S
analyzer was used to measure the specific surface area (BET, Guoyi Precision Measurement
Technology Co. Ltd., Beijing, China). The elements’ valence states were analyzed with
XSAM800-type X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Kratos
Ltd., Manchester, UK). The photoluminescence spectra were measured with an F-4600
fluorescence spectrum analyzer with a Xe lamp at an excitation wavelength of 300 nm
(PL, Shimadzu Group Company, Kyoto, Japan). The light absorption was analyzed with a
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UV-3600 UV–visible spectrophotometer (DRS, Shimadzu Group Company, Kyoto, Japan).
An Agilent Cary630 Fourier transform infrared spectrometer was used to analyze the
bonding condition (FTIR, Shanghai Weiyi Biotechnology Co. Ltd., Shanghai, China).

3.3. Photocatalysis Experiment

The photocatalytic activity of samples was evaluated by measuring the decompo-
sition of RhB as a model pollutant. A combination of 100 mL (10 mg/L) RhB and 0.1 g
sample was mixed in a beaker. The mixture was ultrasonically dispersed for 10 min and
then stirred for 30 min under dark conditions to achieve the adsorption and desorption
equilibrium. A xenon lamp was used as the light source and the samples were collected
every 20 min. After centrifuging, the absorbance of the obtained solution was tested at the
wavelength of 553 nm. The degradation degree of RhB was calculated using the formula
(A0 − At)/A0 × 100%, where A0 and At are the initial absorbance and t time absorbance.

4. Conclusions

TiO2/Mus composites were prepared using the sol–gel method and modified by
Ag decoration. The agglomeration of TiO2 particles is reduced by Mus loading and the
specific surface area is further increased after the addition of Ag, both of which provide
more active sites for photocatalytic degradation reactions. Ag-TiO2 is firmly fixed on
the surface of the Mus matrix by chemical bond links between TiO2 and Mus. ATM has
much lower PL peak intensity than PT and Mus because Ag modification reduces the
recombination of photogenerated charges. Ag modification also enhances the absorption
in the visible light region. The degradation degree of RhB was employed to evaluate
the photocatalytic performance of samples. The photocatalytic activity of 1-ATM is the
highest and the degradation degree of RhB is 90.6% after illumination for 100 min, which
is higher than that of pure TiO2 (10.4%). The first-order reaction rate constant of 1-ATM
reaches 0.0225 min−1, which is 25 times higher than that of pure TiO2 (0.0009 min−1). The
active species experiment using 1-ATM shows that ·O2

− radicals play a major role in the
photodegradation process.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28073187/s1: Figure S1. XRD patterns of PT and
TiO2/Mus; Figure S2. SEM images of 15%TiO2/Mus (a) and 200%TiO2/Mus (b); Figure S3. Photolu-
minescence spectra of PT and TiO2/Mus and Figure S4. Degradation degrees of PT and TiO2/Mus.
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