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Abstract: Near-infrared spectrophotometry and partial least squares regression (PLSR) were evalu-
ated to create a pleasantly simple yet effective approach for measuring HNO3 concentration with
varying temperature levels. A training set, which covered HNO3 concentrations (0.1–8 M) and
temperature (10–40 ◦C), was selected using a D-optimal design to minimize the number of samples
required in the calibration set for PLSR analysis. The top D-optimal-selected PLSR models had root
mean squared error of prediction values of 1.4% for HNO3 and 4.0% for temperature. The PLSR mod-
els built from spectra collected on static samples were validated against flow tests including HNO3

concentration and temperature gradients to test abnormal conditions (e.g., bubbles) and the model
performance between sample points in the factor space. Based on cross-validation and prediction
modeling statistics, the designed near-infrared absorption approach can provide remote, quantitative
analysis of HNO3 concentration and temperature for production-oriented applications in facilities
where laser safety challenges would inhibit the implementation of other optical techniques (e.g.,
Raman spectroscopy) and in which space, time, and/or resources are constrained. The experimental
design approach effectively minimized the number of samples in the training set and maintained
or improved PLSR model performance, which makes the described chemometric approach more
amenable to nuclear field applications.

Keywords: multivariate analysis; regression; water band; D-optimal design; prediction performance

1. Introduction

Near-infrared (NIR) spectrophotometry has been used for the rapid, nondestructive
analysis of numerous species in many food and pharmaceutical industrial applications [1,2].
Implementing optical techniques (e.g., NIR) for in situ measurements to support production
operations generally improves processing speed, efficiency, and reproducibility. Online
monitoring provides the benefit of real-time feedback to optimize system performance
and help guide process decisions during chemical operations [3]. There are few examples
of such technology fully implemented in the nuclear field at the industrial scale because
of the complexity associated with radiological constraints [4–7]. The nuclear fuel cycle
and radioscope production processes would greatly benefit from the implementation of
online monitoring to minimize waste, enhance worker safety, and track material inventory
in real time [8].

Fully integrated spectroscopic monitoring examples in the nuclear field are sparse
in part owing to the harsh and restrictive environments often needed to deploy such
technologies (e.g., hot cells) [6,7,9]. Two important variables, including (1) temperature and
(2) resources (i.e., number of samples), are often overlooked in many laboratory-scale proof
of principle studies [10–12]. These variables must be accounted for when such technologies
are implemented in harsh and restrictive environments such as radiochemical hot cells
or caves. Although other popular examples of optical spectroscopy (e.g., Raman) can be
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used for the quantification of HNO3 concentration and temperature, these techniques often
require additional safety protocols, such as laser shields [13,14]. NIR spectrophotometry,
which uses an incoherent light bulb for analysis, is readily deployable in remote settings, is
self-referencing, and does not require additional safety measures in an environment that is
already inundated with numerous regulations.

NIR water absorption bands (750–2500 nm) have been studied for the purposes of
fundamental and applied research [15–19]. Water structure is highly sensitive to changes in
temperature and solute interactions. For example, strong acids (e.g., HNO3) dissociate into
protons (H+) and corresponding anions (i.e., NO3

−), which perturb the local H-bonding
network, giving rise to spectral variations in NIR water bands [20–25]. Thus, aqueous
species that do not absorb NIR radiation themselves but interact with water molecules can
be quantified. Additionally, water structure is so sensitive to temperature fluctuations that
this variable alone renders the quantification of solute species challenging.

Covarying NIR spectral features cannot be quantified using univariate approaches
such as Beer’s law [25]. Multivariate analysis, or chemometrics, can correlate covarying NIR
spectral signatures to analyte concentration. One popular example, partial least squares
regression (PLSR), is a statistical approach used to relate the independent (X matrix) and
dependent (Y matrix) variables with linear combinations of latent variables (LVs) in multi-
component systems. PLSR is a supervised regression technique that depends on a training
set that includes all spectrally active species covering the breadth of anticipated conditions.
The training set comprises calibration and validation samples. The calibration samples are
used to build the regression model, and the validation set contains samples not included
in the model-building phase to assess prediction performance. These samples are often
selected using a subjective one-factor-at-a-time approach, which normally results in numer-
ous samples not amenable to many hot cell applications [9,26]. Recent work has established
D-optimal designs as a statistical framework for selecting representative training set sam-
ple concentrations while minimizing the number of samples without weakening PLSR
model prediction performance or increasing bias [25,27–29]. This approach may benefit
optical measurements taking place in harsh, restrictive, and expensive environments (e.g.,
a hot cell). To the best of the authors’ knowledge, optimal designs have not been used to
simultaneously choose concentration and temperature levels within a given factor space
until now.

This research evaluates D-optimal sample design, NIR spectrophotometry, and PLSR
for the quantification of HNO3 concentrations (0.1–8 M) and temperatures (10–40 ◦C). These
conditions are highly applicable to validating sample compositions and monitoring process
streams for the Ac-225 Program at Oak Ridge National Laboratory, as well as applications
in the nuclear field and other industries. Three points of scientific advancement are
covered in this work: (1) multivariate analysis enables quantitative HNO3 concentration
and temperature predictions based solely on NIR spectra, (2) a D-optimal design with
a cubic order model was used to minimize temperature and concentration levels in the
training set, and (3) PLSR prediction performance was verified with flow tests and the
Hotelling’s T2 statistic identified outlier samples from unanticipated spectral artifacts. The
D-optimal design can effectively minimize resource (i.e., time and material) consumption
and generate a PLSR model suitable for the intended use. The new modeling approach can
quantitatively measure acid concentration and temperature in a remote setting without
any prior knowledge or without destroying the sample. This work overcomes drawbacks
associated with the application of chemometric methods to help pave the way for optical
spectroscopy applications in the nuclear field.
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2. Results and Discussion
2.1. Absorption Spectra

Intense water absorption bands occur near 1450 and 1940 nm in the NIR region of the
electromagnetic spectrum. The water band centered near 1450 nm is due to the combination
of symmetric and antisymmetric O–H stretching modes (i.e., first overtone). The dynamic
behavior of this band has been studied in detail. Additional NIR regions (e.g., 1100–1300 nm
and 1800–2100 nm) have also been used to study water structure and develop regression
models for quantitative analysis [9,15,16]. The intensity for the first overtone band requires
a spectrophotometer with a high dynamic range or a smaller optical path length cell for
quantification (e.g., 1 mm). Blanking in the air is advantageous because this reference is
independent of the sample temperature. However, great caution should be taken to avoid
bubbles in the cuvette or drying out the sample to the point of precipitation. This approach
will be compared to referencing the spectrophotometer to solutions at various temperatures
in future work.

NIR spectra (900–1670 nm) with HNO3 concentrations (0.1–8 M) and temperatures
(10–40 ◦C) are shown in Figure 1. The absorption bands near 970 and 1190 nm had weak
signal intensity with the 1 mm cuvette. These bands could be used for quantification with
a longer optical pathlength cuvette [23]. The band centered near 1440 nm, assigned to
the combination of symmetric and antisymmetric O–H stretching modes (first overtone),
dominated the spectrum [14,15]. With increasing HNO3 concentration, the net absorbance
near 1400 nm decreased, and the absorbance above 1540 nm increased. An apparent
isosbestic point was identified (Figure 1a) near 1540 nm until the concentration was greater
than 6 M HNO3. This is due to the concentration-dependent equilibrium between bonded
and nonbonded O–H valences [24]. The H3O+ and NO3

− species present in the system
owing to the dissociation of HNO3 are order-producing and order-destroying, respectively.
Another isosbestic point caused by temperature was identified near 1440 nm, which is
consistent with previous reports. This point is related to the weakening of intermolecular
H-bonds, which decrease absorption greater than 1440 nm with increasing temperature
and the strengthening of covalent O–H bonds, which increase absorption below 1440 nm.
This results in an overall blue shift to shorter wavelengths (i.e., higher energy). This
interpretation was derived from a two-state mixture model in which one component
converts to another as a function of temperature [15].

Each ion in an aqueous solution has a unique fingerprint on the NIR water band(s).
Distinct differences in spectral variations exist even between cations of the same charge
(e.g., Na+ and K+) [16]. Limits of detection for relevant species such as Na+, which could
be encountered in production operations, are near 42 mM (~1000 mg mL−1) [24]. Although
many species may be present in these solutions, a large number may be negligible. Future
studies may need to include additional components in the regression model (e.g., Na+,
Fe3+), which further motivates the reason why the designed approach for minimizing the
number of training set samples is crucial.

2.2. D-Optimal Design

D-optimal design was chosen to select continuous analyte concentrations and tem-
perature levels (Table 1) for the multivariate regression model training set. The acid and
temperature levels were expected to cover the anticipated conditions. A higher-order
model (i.e., cubic) was used to approximate the true response surface of this training set,
which included temperature. With a larger number of factors, higher-order models may
also be necessary. Although quadratic models are commonly used to estimate analyte
concentrations, this study hypothesized that a higher-order model would be necessary to
account for temperature fluctuations.
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Arrows note the direction of spectral change as the concentration or temperature was increased. The 

spectrometer was blanked in air, and the optical path length was 1 mm. 

Each ion in an aqueous solution has a unique fingerprint on the NIR water band(s). 

Distinct differences in spectral variations exist even between cations of the same charge 

(e.g., Na+ and K+) [16]. Limits of detection for relevant species such as Na+, which could be 

encountered in production operations, are near 42 mM (~1000 mg mL−1) [24]. Although 

many species may be present in these solutions, a large number may be negligible. Future 

studies may need  to  include additional components  in  the regression model  (e.g., Na+, 

Fe3+), which further motivates the reason why the designed approach for minimizing the 

number of training set samples is crucial. 

2.2. D‐Optimal Design 

D-optimal design was chosen to select continuous analyte concentrations and tem-

perature levels (Table 1) for the multivariate regression model training set. The acid and 

temperature  levels were  expected  to  cover  the  anticipated  conditions. A  higher-order 

model (i.e., cubic) was used to approximate the true response surface of this training set, 

which included temperature. With a larger number of factors, higher-order models may 

also be necessary. Although quadratic models are commonly used to estimate analyte con-

centrations, this study hypothesized that a higher-order model would be necessary to ac-

count for temperature fluctuations. 

The designed approach in this study was useful for minimizing the number of sam-

ples in the training set and selecting samples within a statistical framework void of user 

bias. This approach may also be advantageous over calibration transfer functions when 

the conditions between laboratory and in-field measurements are significantly different 

Figure 1. NIR absorbance spectrum of (a) 0.1–8 M HNO3 at 24 ◦C and (b) 6 M HNO3 from 10–40 ◦C.
Arrows note the direction of spectral change as the concentration or temperature was increased. The
spectrometer was blanked in air, and the optical path length was 1 mm.

Table 1. D-optimal selected HNO3 and temperature levels with space and build types.

Run Acid (M) Temp. (◦C) Space Type Build Type

1 1.77 32.5 Interior Model
2 * 8.0 40.0 Vertex Model
3 * 6.025 14.5 Interior Lack of Fit
4 * 0.10 10.0 Vertex Model
5 * 0.10 20.5 Edge Model
6 5.83 23.5 Interior Lack of Fit

7 * 2.075 40.0 Edge Lack of Fit
8 * 8.0 28.0 Edge Lack of Fit
9 * 4.05 10.0 Center Edge Model

10 * 8.0 20.5 Edge Model
11 0.15 28.0 Interior Lack of Fit

12 * 6.025 40.0 Edge Lack of Fit
13 * 2.075 14.2 Interior Lack of Fit
14 * 8.0 10.0 Vertex Model
15 * 4.05 29.5 Interior Lack of Fit
16 2.23 23.5 Interior Lack of Fit

17 * 4.05 18.4 Interior Lack of Fit
18 * 0.10 40.0 Vertex Model
19 6.34 32.35 Interior Model

20 * 4.05 40.0 Center Edge Model
Required model points are bolded. The asterisk (*) indicates 15 samples included in the calibration set.
Temp.: temperature.
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The designed approach in this study was useful for minimizing the number of samples
in the training set and selecting samples within a statistical framework void of user bias.
This approach may also be advantageous over calibration transfer functions when the
conditions between laboratory and in-field measurements are significantly different [30]. In
total, 15 samples were included in the calibration set to test how few samples could be used
to build the PLSR model. The additional five lack-of-fit points were used in the validation
set to test model performance with additional temperature levels. This number was
chosen based on evaluating the fraction of design space (0.98), which indicates satisfactory
coverage of the factor space [14,31]. Spectra were also collected at five temperature levels
for each concentration at nearly even intervals (e.g., 10 ◦C, 18 ◦C, 24 ◦C, 32 ◦C, and 40 ◦C),
and samples 3 (6.025 M HNO3) and 13 (2.075 M HNO3) were measured at 2 ◦C intervals.
Temperature levels could be included in future D-optimal designs as discrete intervals,
which is an option in the software, if more points are required.

2.3. Partial Least Squares Regression

PLSR was used to find correlations between analyte concentrations and temperatures
by modeling the spectral features shown in Figure 1. Preprocessing and feature selection
can greatly improve the regression analysis. This study applied a preprocessing strategy
to optimize the regression analysis. The uncertainty in PLSR models that results in a
systematic or random error in model parameters is based primarily on variance and bias.
Variance contributes the most to uncertainty in a model that is too complex (i.e., comprised
of too many samples). Alternatively, bias tends to dominate the uncertainty in a model if
too few samples are included. The number of samples in the calibration has a substantial
effect on model performance. The D-optimal calibration set contained 15 samples (Table 1),
the extended calibration set (ECal) contained 33 samples, and the validation set contained
50 samples. PLSR models were built using the D-optimal set and ECal and were used to
predict the concentrations and temperatures of samples in the validation set (i.e., samples
not included in the training set).

Standard PLS2 models were used to calibrate the system for HNO3 concentration and
temperature. These models were preprocessed with only a simple baseline offset and an SG
smoothing step to remove instrument noise accumulated over time. The spectral regions
were trimmed after recalculating the model with only the prominent regression coefficients
identified by modeling the entire spectrum. PLS2 model regression coefficients can be
found in the Supplementary Materials (Figure S1). This region (1240–1700 nm) consisted
of the entire water band centered near 1440 nm. Regression coefficients summarized
the relationship between the predictors (wavelengths) and the response (concentration).
Variables with large regression coefficients—positive or negative—played an important
role in the model by affecting the response variables in the prediction.

To optimize the regression, PLS1 models were generated for acid concentration and
temperature independently using the D-optimal set and ECal with additional preprocessing
strategies and a genetic algorithm for feature selection [29]. The preprocessing step for
the acid determination consisted of an SG smoothing algorithm with a seventh-order
polynomial and 61 smoothing points (i.e., 30 left/right). The temperature PLS1 models
were built with spectra that were processed by SNV to remove scattering and an SG second
derivative with a third-order polynomial and 41 smoothing points (i.e., 20 left/right). The
features selected by the GA and the explained variance and RMSE for each generation are
shown in Figures S2 and S3.

A summary of calibration, cross-validation, and prediction statistics is shown in Table 2.
The preprocessing and feature selection PLS1 D-optimal (D-opt. in the table) models had
slightly lower RMSEP and RMSEP% values for each variable compared to the ECal models
and PLS2 models. However, the improvements may not outweigh the additional complexity
for end users running two models simultaneously. Minimal improvements in RMSEP%
confirm that there are likely no “goldilocks” preprocessing/feature selection options, which
suggests that the spectra are relatively simple and can be modeled near the true optimum
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without much trial and error [29]. The D-optimal PLS2 and PLS1 models for HNO3 lowered
the most; the RMSEP% decreased by 33% from 2.1 to 1.4%. In general, the RMSEP and
RMSEP% values for the models built using the D-optimal PLS1 and PLS2 models were
lower than the ECal, which contained many more samples. The D-optimal model bias
values were generally similar to or closer to zero than the ECal models. This result suggests
that the designed approach, which contained only 15 samples, can capture the structured
variation in the data set without increasing bias.

Table 2. Model calibration and validation statistics.

Model LVs RMSEC RMSECV RMSEP RMSEP% Bias

HNO3 D-opt. PLS2 4 0.053 0.086 0.083 2.10% −0.033
Temp. D-opt. PLS2 5 0.36 1.12 0.73 4.87% 0.0013

HNO3 ECal PLS2 4 0.054 0.065 0.082 2.08% −0.035
Temp. ECal PLS2 5 0.42 0.69 0.87 5.80% 0.40

HNO3 D-opt. GA 4 0.050 0.14 0.055 1.39% −0.016
Inverse GA 4 0.044 0.076 0.080 2.03% −0.032

HNO3 ECal GA 4 0.044 0.057 0.068 1.72% −0.018
Inverse GA 4 0.044 0.057 0.072 1.82% −0.024

Temp. D-opt. GA 4 0.44 0.81 0.62 4.13% 0.12
Inverse GA 4 0.44 0.92 0.85 5.67% −0.12

Temp. Ecal GA 4 0.41 0.56 0.70 4.67% 0.10
Inverse GA 4 0.44 0.69 0.66 4.40% 0.050

Final models were scaled (i.e., mean centered). Scatter and scaling refer to SNV and mean centering. Bolded text
highlights the best PLS2 and PLS1 models.

The RMSEC, RMSECV, and RMSEP statistics for the ECal models were more bal-
anced than the D-optimal models. This balance suggests that the D-optimal approach
successfully minimized the samples in the training set because during full cross-validation,
leaving samples out significantly decreased the prediction capability. Therefore, fewer than
15 calibration samples are unlikely to adequately model this factor space. The D-optimal
RMSEC and RMSEP values were consistent, which suggests that the model can describe
new data well. Cross-validation statistics for the D-optimal set may not provide an accurate
indication of model performance [24].

The PLS1 models built using the D-optimal calibration samples had the lowest RM-
SEP% for HNO3 concentration (1.4%) and temperature (4.0%). A parity plot for the cali-
bration, cross-validation, and prediction performance is shown in Figure 2. The predicted
values fall near the 1:1 line, which suggests good model performance. For each model
presented in Table 2, more than 99% of the Y-variance was explained and both R2 and Q2

values were greater than 0.99 (Table S1).

2.4. Real-Time Tests

The PLS2 model was used to predict the HNO3 concentration and temperature of flow
test samples. The first test simulated varying temperature profiles when acid concentration
was held constant to ensure that HNO3 predictions were not dependent on temperature
fluctuations (Figure 3). Spectra were collected at 1 s intervals, but the average of three (i.e.,
3 s intervals) is shown. In this test, 5 M HNO3 was pumped through the syringe at a rate
of approximately 1 mL min−1 while spectra were collected at 1 s intervals and ambient
temperature (~22.5 ◦C). Then, the temperature-controlled cuvette holder was set to 40 ◦C.
This holder heated the sample to nearly 34 ◦C for approximately 2 min. The temperature
did not stabilize because the room-temperature HNO3 solution was continuously being
pumped through the system. Then, the temperature-controlled cuvette holder was set to
10 ◦C. The sample in the cuvette holder cooled to nearly 13 ◦C but did not reach a steady
state after approximately 5 min. Finally, the sample was brought back to room temperature
(~22.5 ◦C). The percent relative standard deviation of HNO3 predictions was 0.5%, which
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indicates exemplary model performance despite fluctuating temperatures. The average
reported deviation of approximately 0.081 M was consistent with the RMSEP of 0.082 M
reported in Table 2. RMSEP generally provides an estimate of the deviation in the predicted
sample concentrations. This flow test suggests that the temperature deviations anticipated
during process operations will not disrupt HNO3 predictions. The small and consistent
deviation in the predicted HNO3 concentration and temperature values also indicated that
the model could handle incremental temperature gradients between points elected by the
D-optimal design in the calibration set.
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The second flow experiment tested the model’s ability to predict HNO3 concentrations
between the points in the factor space included in the PLSR model and how well the model
could handle outliers created by bubbles in the line. Air was intentionally introduced in the
line to create samples representative of off-normal conditions and test model boundaries.
Spectra were collected at 2 s intervals during this experiment. The test began with flowing
8 M HNO3 through the flow cuvette for approximately 2 min. Partway during this exercise,
the tubing was lifted out of the feed solution for approximately 15 s to allow air to enter
the line. Then, the tubing was placed back in the 8 M HNO3. DI water was added to the
8 M HNO3 solution with a second pump operating at 2.5 mL min−1 while it was mixed
on a stir plate, and the first pump introduced the mixture into the flow cuvette at a rate of
approximately 0.8 mL min−1. This addition of DI water created an HNO3 concentration
gradient from 8 M to approximately 0.4 M after 15 min of operation. The tubing was also
intentionally removed from the mixture for 15 s twice as the low acid concentration was
approached. Then, the sample was switched back to 8 M HNO3.
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flow experiments.

The average deviation in predicted values was 0.09 M with a percent relative standard
deviation of 14%. The measured temperature profile shows encouraging results with an av-
erage temperature of 22.2 ◦C, a standard deviation of 1.2 ◦C, and a percent relative standard
deviation of 13%. These values exclude outliers. Several predicted HNO3 concentration
and temperature outliers are noted in Figure 4. These sample measurements coincided with
the times researchers expected to see bubbles in the line. These predictions fall outside the
expected profile concentrations and temperatures but for a justifiable reason. The average
deviation associated with the five samples identified in Figure 4a,b were 0.63 M and 8.1 ◦C.
Outliers will be expounded upon in the next section. These results indicate highly precise
predictions and show that there are no singularities in the spectral response as a function
of acid concentration. Reported deviation and residual variance for each point suggest that
the PLSR analysis accurately modeled each point within the factor space.

2.5. Outlier Detection

A Hotelling’s T2 statistic with a critical limit based on an F-test (p value of 5%) was
used to identify outliers or situations where the acquisition parameters were operating
within or outside of normal conditions. To trust a prediction, it must not be too far from
the calibration samples. This statistic compares the variance in each sample to the total
variance captured by the LV. Hotelling’s T2 distance measures how far the projection of the
new samples is from the center of the multivariate space.
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flow experiments. The vertical dotted line indicates when mixing with DI water was initiated, and
the vertical dashed line indicates the switch back to 8 M HNO3. Several outliers owing to bubbles
are noted.

Measured Hotelling’s T2 values are shown in Figure 5a. These data points correspond
to the samples shown in Figure 4. As expected, most of the measurements fall within the
95% confidence band. This suggests that the PLSR can accurately describe these spectra,
which correspond to many acid concentrations between design points of the calibration
set. Samples that fall above the 5% critical limit (green line) can be considered outliers.
Several outlier spectra are shown in Figure 5b. These samples correspond to spectra of
samples with bubbles that were introduced intentionally. Although these resemble the
normal spectra, the overall intensity is much lower than the expected spectral signatures.
The spectra with bubbles were essentially compressed after the baseline offset correction
was applied. Outliers in Figure 5a correlate to samples in Figure 4 that were measured with
much larger than average uncertainties.

This figure shows that the model can indicate when samples are outside of normal
operating conditions. Events such as bubbles in the line are anticipated in real process
samples [6]. Thus, the equipment must be set up so that bubble formation is minimized,
and the researcher can identify abnormal conditions. Hotelling’s T2 statistic can be used to
flag unanticipated conditions (e.g., bubbles) in unknown samples. This criterion should
be evaluated in combination with predicted concentrations and sample deviations when
guiding process decisions. This approach could also be compared or combined with other
optical techniques [32].
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3. Methods
3.1. Sample Preparation

All chemicals were commercially obtained (American Chemical Society–grade) and
used as received unless otherwise stated. Concentrated HNO3 (70%) and NaNO3 were
purchased from VWR Life Science. All solutions were prepared using deionized (DI) water
with a resistivity of 18.2 MΩ cm at 25 ◦C. Training set samples contained HNO3 (0.1–8 M)
to cover the concentration range expected in anion exchange column runs. Samples were
prepared gravimetrically by pipetting the appropriate volumes of DI water and HNO3 into
volumetric glassware.

3.2. Absorption Measurements

NIR spectra were collected using an Ocean Insight NIRQuest spectrophotometer with
a 100 ms integration time and five-scan average. Triplicate spectra were recorded every
1.65 nm from 897–1711 nm and processed using OceanView software (Ocean Insight, Or-
lando, FL, USA). The spectrophotometer was referenced to air between each measurement
or at the beginning of a series of measurements. Multimode optical fibers with a 400 µm
core diameter were used to direct the incoherent light source (360–2600 nm) made by Thor-
labs (SLS201L) to the sample and resulting signal to the spectrophotometer. A flow cuvette
with a 1 mm optical path length was purchased from Starna Cells Inc. (583.65-Q-1/Z15).
A modified Quantum Northwest qpod 2e temperature-controlled sample compartment
holder purchased from Avantes was necessary to accommodate the cuvette’s Z-height of
15 mm. Two quantum cascade laser–UV collimating lenses were placed on opposite sides
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of the sample compartment. NIR measurements were performed at varying temperatures
(10–40 ◦C). The cuvette holder has a reported accuracy of ±0.05 ◦C. Sample solutions were
thermally equilibrated in the temperature-controlled environment for approximately 2 min
before recording each spectrum. To test the effect of lamp and detector fluctuations on
spectral signatures, reference spectra were collected at the beginning of sample acquisitions
and between each sample measurement.

A Fluid Metering, Inc. pump with 1/16 in. tubing was used to flow solutions through
the cuvette, then paused to collect static reference spectra for model development. For the
concentration gradient, two Fluid Metering, Inc. pumps with 1/16 in. tubing bore kits
were operated at different flow rates (1 mL min−1 and 2.5 mL min−1). A beaker with 3 mL
8 M HNO3 was pumped into the cuvette at 0.8 mL min−1 while the other pump added DI
water to the beaker at a rate of 2.5 mL min−1. The solution was mixed with a stir bar and
stir plate during the measurements. The time was recorded, and volumes of DI water and
sample were measured using volumetric glassware.

3.3. Experimental Design

The Design of Experiments tool kit in the Unscrambler software package by Camo
Analytics (version 11.0.5.0) was used to build a D-optimal design and statistically derive
the training set. The D-optimality criterion is designed to estimate the effects of the factors
by maximizing the determinant of the information matrix X’X [33]. The design comprised
two numeric factors: HNO3 (0.1–8 M) and temperature (10–40 ◦C) and a cubic base order
for the design. This resulted in 10 required model points, which were augmented with
10 lack-of-fit (LOF) points. The required model points are the minimum number of samples
necessary to estimate the coefficients in the model. A quadratic model is commonly
used for selecting analyte concentration levels. A higher-order cubic model was used to
estimate concentration and temperature levels. Only six model points are required for
a quadratic model to estimate the factor space of two numeric analytes [24]. Optimal
response surface designs provide numerous benefits compared with other options (e.g.,
factorial designs) [31,34]. These options include different high and low values for mixture
components, mixture, and process variables in the same design, two independent mixtures
in the same design, constraints, and factor limits, various model orders to minimize the
number of samples, and combinations of each of these.

3.4. Partial Least Squares Regression

PLSR analysis was performed using the Unscrambler X (version 10.4) software package
from CAMO Software AS. PLSR models were built from spectra collected on stationary sam-
ples. The root mean square error (RMSE) of the calibration (RMSEC) and cross-validation
(RMSECV) were used to evaluate calibration statistics. The RMSECV residual variance was
calculated using a full cross-validation, where each sample was randomly left out of the
model. RMSECV had the same units as the Y variables, and it provided an estimate of the
residuals (i.e., uncertainty) in the predictions. The primary validation statistics were RMSE
of the prediction (RMSEP) and percent RMSEP. RMSECV and RMSEP values that are
similar indicate a balanced PLSR model. LVs, or factors, were chosen by the last significant
improvement in RMSEC or RMSECV. Adding too many LVs can overfit the model and
introduce unwanted noise artifacts.

Proper validation is important to test the dependence of the model on unknown
samples and evaluate the predictive power of the regression models. RMSEs for the
calibration, validation, and prediction were calculated using Equation (1):

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
, (1)

where ŷi is the predicted concentration, yi is the measured concentration, and n is the
number of samples. The percent RMSEP (RMSEP%) compares the predicted values with
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the range. RMSEP% was calculated by dividing the RMSEP by the median model values
using Equation (2):

RMSEP% =
RMSEP

ymed
× 100%, (2)

where ymed represents the median of each analyte concentration range. RMSEP% values ≤ 5%
indicate satisfactory model performance.

The deviation (i.e., uncertainty) in y-values (i.e., concentrations) predicted by PLSR for
each sample was estimated as a function of the global model error, sample leverage, and
residual x-variance [35]. Hotelling’s T2 statistic was used to test the model performance on
unexpected conditions with a default p value of 5%. This statistic is a powerful indicator of
normal or abnormal conditions.

3.5. Preprocessing and Feature Selection

A recently developed preprocessing and feature selection strategy was used to opti-
mize model performance [29]. PLSR models were optimized by minimizing the RMSE. All
spectra were processed with a simple baseline offset correction, which subtracts the lowest
point in the spectrum from each variable. Then, several preprocessing transformations
were applied to the data set, including scatter (standard normal variate (SNV)), smooth-
ing/derivatives (Savitsky–Golay (SG)), and scaling (mean centering) corrections. Zero,
first, or second derivatives were tested with different polynomial orders and left/right
smoothing points.

A genetic algorithm (GA) was employed in this work for feature selection [36]. The
script was developed in Python and described elsewhere [29]. A GA iteratively forms and
tests filters that either block a feature or let it into a model for regression. Based on how
well a filter performs, it is either retained, used to make more filters, or discarded before the
next generation. Over the course of the generations, the GA should reach an optimal filter.
The filters developed for this study used a 6 nm resolution, and the best filter out of five GA
runs (150 generations each) was selected as the final result. The inverse of each finalized
GA filter was also tested; if the inverse filter resulted in improved or equivalent prediction
performance, then the GA simply reduced the dimensionality of the data, permitting better
PLSR performance. The optimized transformations and features were used to build PLSR
models with the Unscrambler.

4. Conclusions

NIR spectrophotometry, design of experiments, and PLSR can be used to model acid
concentration and temperature fluctuations with efficiency, high accuracy, and precision.
The range of HNO3 concentrations (0.1–8 M) and temperature (10–40 ◦C) are highly ap-
plicable to aqueous processing operations in the nuclear field. This work minimized the
number of samples required in the training set to save time and resources, which is an
essential aspect to consider when implementing such technology in restrictive radiological
environments. PLSR predictions of spectra collected during real-time flow demonstra-
tions indicated that the D-optimal design effectively sampled the factor space and that
the models built from static spectra and be applied to dynamic samples. Future work
will implement this approach for remotely monitoring HNO3 concentration in feed adjust-
ments, anion exchange column effluent, and product bottles and measure the temperature
of process solutions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28073224/s1, Figure S1: Regression coefficients for HNO3
(a) concentration factor-4 and (b) temperature factor-5. The wavelengths with the most importance
are outlined; Figure S2: GA results for the HNO3 model. The top two plots show the change in
explained variance and RMSE, respectively, of the best filter in each generation of the GA. The
bottom plot shows the spectral regions selected by GA for acid after preprocessing (smoothing);
Figure S3: GA results for the temperature model. The top two plots show the change in explained

https://www.mdpi.com/article/10.3390/molecules28073224/s1
https://www.mdpi.com/article/10.3390/molecules28073224/s1
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variance and RMSE, respectively, of the best filter in each generation of the GA. The bottom plot
shows the spectral regions selected by GA for temperature after preprocessing (scatter correction and
smoothing/derivative).
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