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Abstract: Multiple fluxional processes of 6-monomethylcyclohexenylmanganese tricarbonyl [(6-
MeC6H8)Mn(CO)3, complex 1] and 5-monomethylcyclohexenylmanganese tricarbonyl [(5-MeC6H8)
Mn(CO)3, complex 2] have been explored using density functional theory (DFT) computations. The
contributions of four agostomers—1, 2, 3, and 4—to the (MeC6H8)Mn(CO)3 exchange processes
were revealed. The computational results demonstrated that the 1, 2-agostic isomerization only
occurred via the η4-diene hydride transition state (TS-1-2, 14.0 kcal/mol), which is consistent with
the experimentally proposed high-energy exchange process (16.0 kcal/mol). Excellent agreement
is observed (R2 = 0.9862) when comparing the computed and experimentally observed variable
temperature 1H NMR chemical shifts. With these results, important insights into the role of agostic
interaction in the homogeneous catalysis process could be made, especially with regard to transition
metal catalyzed C-H activation.
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1. Introduction

Unlike exo-methyl products from the protonation of the double hydride addition to the
(η6-methylbenzene)manganese tricarbonyl cation [(η6-MeC6H5)Mn(CO)3

+] [1], the reaction
between (η4-1, 3-cyclohexadiene)manganese tricarbonyl anion [(η4-C6H8)Mn(CO)3

–] and
excess CH3I yielded two different endo-methyl products: 6-monomethylcyclohexenylmang-
anese tricarbonyl [(6-MeC6H8)Mn(CO)3, complex 1, half-chair conformation, Scheme 1];
and the 5-monomethyl analogue [(5-MeC6H8)Mn(CO)3, complex 2, half-chair conforma-
tion, Scheme 1] [2–4]. Experimental and computational studies of the unsubstituted parent
analogue cyclohexenyl manganese tricarbonyl [(C6H9)Mn(CO)3] [2,5] suggested that 6-
monomethyl (complex 1) and 5-monomethyl isomers (complex 2) could also undergo
several fluxional processes. However, the complexities in the obtained variable temper-
ature 1H NMR spectra limited the discrimination of all possible exchange processes of
(MeC6H8)Mn(CO)3, and only two processes could be estimated from the experimentally
obtained 1H NMR spectra: (1) a low-energy process estimated as 8.3 kcal/mol, proceeding
through the fast endo C-H exchange; and (2) a high-energy exchange process estimated
as 16.0 kcal/mol, proceeding through the diene hydride species [1]. These values are
quite similar to the parent system cyclohexenyl manganese tricarbonyl (C6H9)Mn(CO)3
(8.3 kcal/mol and 15.4 kcal/mol) [2]. Variable temperature 1H NMR spectra suggested the
conversion between the major isomer (complex 1, 78%) and minor isomer (complex 2, 22%)
through the η4-diene hydride transition state (TS-1-2, Scheme 1) [4]. This asymmetrical
transition state caused by a substituted methyl group, in contrast to the Cs symmetrical
η4-diene hydride transition state of the unsubstituted parent analogue [(C6H9)Mn(CO)3],
together with other possible transition states, made it inconvenient to assign resonances in
the variable temperature 1H NMR spectra.
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Scheme 1. Structures of 6-monomethyl, 5-monomethyl isomers of (MeC6H8)Mn(CO)3 and the pro-
posed transition state. 

Several 1H NMR resonances of complex 1 and 2, such as 6Hexo of complex 1 and 2 and 
3H of complex 2, could not be properly assigned experimentally due to the spectral com-
plexities [4]. The experimental 1H NMR resonances indicated that the 5Hexo (0.4 ppm) of 
complex 2 was quite different from the 5Hexo (2.2 ppm) and 6Hexo (1.2 ppm) of 5, 6-dime-
thyl analogue [5, 6-dimethyl cyclohexenyl manganese tricarbonyl, (5, 6-
Me2C6H7)Mn(CO)3]. The proton chemical shift of the 6-methyl group (0.1 ppm) of complex 
1 was also inconsistent with that of the 5-methyl group (0.6 ppm) of complex 2, 5-methyl 
(0.8 ppm), and 6-methyl (0.7 ppm) of the 5, 6-dimethyl analogue [1,4]. These inconsisten-
cies raised the question of how the accurate 1H NMR spectra of these complexes with 
multiple exchange processes could be found. Previous results demonstrated the im-
portant role of the chair agostomer with weak agostic interaction (complex 3, Scheme 2) 
in the fluxionality of the unsubstituted analogue [(C6H9)Mn(CO)3] [5]. Two possible chair 
agostomers (complexes 3 and 4, Scheme 2) could also exist during the conversion between 
6-monomethyl (complex 1) and 5-monomethyl systems (complex 2). However, some dif-
ficulty was encountered in experiments to clarify the nature of the M-H-C bond (agostic 
or anagostic interaction) of the second chair conformation (complex 4), which is caused 
by the effect of the substituted methyl group. 

 
Scheme 2. Possible agostomers (3, 4) of (MeC6H8)Mn(CO)3 and the related analogue (3). 

The purposes of this study are to understand the fluxionalities of the monomethyl cy-
clohexenyl manganese tricarbonyl [(MeC6H8)Mn(CO)3, complex 1 and 2], to accurately char-
acterize the Mn-H-C agostic interaction for the isomers, to correctly investigate these multi-
ple exchange processes of (MeC6H8)Mn(CO)3, and to computationally simulate the accurate 
1H NMR spectra of these exchange processes. The results could potentially establish insights 
into the role of Mn-H-C agostic interaction in the homogeneous catalysis [6–8]. 

2. Results and Discussion 
2.1. Structure and Bonding 

The PBEPBE/BS1-Auto optimized gas-phase structures of 6-monomethyl isomer (com-
plex 1, Figure 1) and 5-monomethyl isomer (complex 2, Figure 1) showed they were half-
chair conforms. The computationally optimized 6-monomethyl isomer (complex 1, Figure 

Scheme 1. Structures of 6-monomethyl, 5-monomethyl isomers of (MeC6H8)Mn(CO)3 and the
proposed transition state.

Several 1H NMR resonances of complex 1 and 2, such as 6Hexo of complex 1 and 2 and
3H of complex 2, could not be properly assigned experimentally due to the spectral com-
plexities [4]. The experimental 1H NMR resonances indicated that the 5Hexo (0.4 ppm) of
complex 2 was quite different from the 5Hexo (2.2 ppm) and 6Hexo (1.2 ppm) of 5, 6-dimethyl
analogue [5, 6-dimethyl cyclohexenyl manganese tricarbonyl, (5, 6-Me2C6H7)Mn(CO)3].
The proton chemical shift of the 6-methyl group (0.1 ppm) of complex 1 was also incon-
sistent with that of the 5-methyl group (0.6 ppm) of complex 2, 5-methyl (0.8 ppm), and
6-methyl (0.7 ppm) of the 5, 6-dimethyl analogue [1,4]. These inconsistencies raised the
question of how the accurate 1H NMR spectra of these complexes with multiple exchange
processes could be found. Previous results demonstrated the important role of the chair
agostomer with weak agostic interaction (complex 3, Scheme 2) in the fluxionality of the
unsubstituted analogue [(C6H9)Mn(CO)3] [5]. Two possible chair agostomers (complexes 3
and 4, Scheme 2) could also exist during the conversion between 6-monomethyl (complex
1) and 5-monomethyl systems (complex 2). However, some difficulty was encountered in
experiments to clarify the nature of the M-H-C bond (agostic or anagostic interaction) of
the second chair conformation (complex 4), which is caused by the effect of the substituted
methyl group.
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Scheme 2. Possible agostomers (3, 4) of (MeC6H8)Mn(CO)3 and the related analogue (3).

The purposes of this study are to understand the fluxionalities of the monomethyl
cyclohexenyl manganese tricarbonyl [(MeC6H8)Mn(CO)3, complex 1 and 2], to accurately
characterize the Mn-H-C agostic interaction for the isomers, to correctly investigate these
multiple exchange processes of (MeC6H8)Mn(CO)3, and to computationally simulate the ac-
curate 1H NMR spectra of these exchange processes. The results could potentially establish
insights into the role of Mn-H-C agostic interaction in the homogeneous catalysis [6–8].

2. Results and Discussion
2.1. Structure and Bonding

The PBEPBE/BS1-Auto optimized gas-phase structures of 6-monomethyl isomer
(complex 1, Figure 1) and 5-monomethyl isomer (complex 2, Figure 1) showed they were
half-chair conforms. The computationally optimized 6-monomethyl isomer (complex 1,
Figure 1) matched well with the reported X-ray crystal structure (CSD entry: BEZYEK) [2],
and the RMSD (root mean square deviation) for atoms without H was 0.037 Å (Table S1).
A negligible effect of dispersion correction on the optimized gas-phase structure was
observed, and the RMSD (root mean square deviation) for PBEPBE-D3(BJ)/BS1-Auto was
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0.034 Å (Table S1). The agostic bonding characters [9,10], such as the M-H bond length, the
C-H bond length, the proton chemical shifts, and the spin coupling constants (JCH) of the
optimized structures of complexes 1, 2, and two other complexes 3, 4 are listed in Table 1.
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Figure 1. DFT optimized structures of intermediate and transition state (bottom, left to right). Color
code: yellow, Mn; red, O; gray, C; white, H. Selected atom distances are given in Å and bond angles
are in ◦.

Table 1. Comparisons of agostic parameters of complex 1, 2, 3, and 4. The experimentally derived
Mn-H and Mn-H-C parameters of complex 1 (CSD entry: BEZYEK) [2] are given in parentheses.

Structures
Mn-H

(Å)
Mn-H-C

(◦)
C-H (Å) H (ppm) JCH (Hz)

endo exo endo exo endo exo

1 1.849
(1.860)

97.6
(99.9) 1.180 1.104 −9.8 1.7 68.4 123.3

2 1.844 97.9 1.179 1.103 −9.9 1.8 68.8 124.6
3 2.051 104.6 1.136 1.107 −5.2 0.4 83.1 117.6
4 1.958 130.0 1.131 1.105 −8.7 1.5 82.3 113.5

The prolonged C-H bond length (Hendo vs. Hexo), and the upfield proton chemical
shifts (Hendo vs. Hexo) were all observed for complexes 1, 2, 3, and 4 (Table 1), which
clearly demonstrated the existence of the Mn-C-H agostic interaction [9,11]. The Mn-C-H
bond angle in complex 1 is 97.6◦, which is notable for being slightly smaller than that
of complex 2 (97.9◦). The Mn-H bond distance in complex 1 is 1.849 Å, which is also
slightly longer than that of complex 2 (1.844 Å). The observed Mn-C-H bond angles and
Mn-H bond distances in complexes 1 and 2 demonstrated that the strengths of the Mn-C-H
agostic interaction in complexes 1 and 2 are equivalent. This is also supported by the AIM
(atoms-in-molecules) analysis of the optimized complexes 1 and 2 (Figure 2). The electron
density of the Mn-H bond critical points (ρBCP) in complexes 1 and 2 are 0.0477 and 0.0471,
respectively. Negligible differences of the electron density of C-H(endo) bond critical points
(ρBCP) in complexes 1 (0.2142, Figure 2) and 2 (0.2144, Figure 2) were also observed. The
Mn-C-H bond angle in complexes 3 and 4 are 104.6◦ and 130.0◦, respectively, which are
significantly bigger that those in complexes 1 (97.6◦, Table 1) and 2 (97.9◦, Table 1). The
C-H(endo) bond distance in complexes 3 and 4 are 1.136 Å and 1.131 Å, respectively, which
are considerably shorter that those in complexes 1 (1.180 Å, Table 1) and 2 (1.179 Å, Table 1).
The relatively stronger C-H(endo) bonds in complexes 3 and 4 are also verified by the higher
electron density of C-H(endo) bond critical points, and ρ(BCP, C-H) for C-H(endo) bond in
complexes 3 and 4 are 0.2404 and 0.2389, respectively. A weak Mn-C-H agostic interaction
is characterized by a strong C-H(endo) bond and a weak Mn-C-H bond [6], and complex
3 has a much weaker Mn-C-H agostic interaction than complex 4. The Laplacian of the
electron density (∇2ρ) is utilized in classifying the covalent interaction (locally concentrated
with∇2ρ < 0) and the non-covalent interaction (locally depleted with∇2ρ > 0) [12,13]. With
regard to the C-H BCPs, the ∇2ρ is evidently negative, which strongly demonstrates the
covalent nature of the C-H bonds (Figure 2). The ionic Mn-H interaction is demonstrated by
the positive ∇2ρ the Mn-H BCPs. The absolute values of ∇2ρ correspond to the strengths
of the covalent and non-covalent interaction, and the order of C-H is 3 > 4 > 2 ~ 1. The
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observed values of the Laplacian of the electron density (∇2ρ) of the Mn-H and C-H BCPs
are consistent with the relative strengths of Mn-C-H agostic interaction in complexes 1, 2, 3,
and 4. Based on the above discussions, complexes 1 and 2 could be assigned as the classical
agostomers with a stronger Mn-C-H agostic interaction, but only a weak Mn-C-H agostic
interaction could be presented in complexes 3 and 4. Therefore, the order of the relative
strengths of the Mn-C-H agostic interaction in complexes 1, 2, 3 and 4 is 1 ~ 2 > 4 > 3.
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Figure 2. The AIM (atoms-in-molecules) analysis of the optimized agostomers 1, 2, 3, and 4. The
orange balls represent the BCP (bond critical point), the yellow balls represent the RCP (ring critical
point), the green balls represent the CCP (cage critical point), and the bond paths are shown in orange.
Atom color codes: C, gray; H, white; O, red; N, blue; P, orange; Mo, cyan; Mn, ochre; Rh, purple. The
electron densities of bond critical points [ρ(BCP)] and the Laplacian of the electron density (∇2ρ) are
given in a.u.

The computed proton shifts showed that Hs in the Mn-H-C agostic unit of agostomers
1 (−9.8 ppm) and 2 (−9.9 ppm) were more shielded to those in the agostomers 3 (−5.5 ppm)
and 4 (−8.7 ppm) (Table 1). Upon the introduction of extra magnetic fields, the agostomers
1 and 2 with the η4-(MeC6H8) fragment could form the pseudo ring current, generating
outside-the-ring deshielded protons (non-agostic protons) and inside-the-ring shielded
protons (agostic protons) (Figure S3). A similar effect could also be proposed for agostomers
3 and 4; however, the presence of the η3-(MeC6H8) fragment in agostomers 3 and 4 instead
of the η4-(MeC6H8) fragment in the agostomers 1 and 2 made the inside-the-ring protons
(agostic protons) less shielded. It is also notable that the Mn-H distances in agostomers
1 and 2 are 1.849 Å and 1.844 Å (Table 1), respectively, which suggests that the agostic H
in the Mn-H-C agostic unit could be treated as a classical hydride. The shielding from
the d orbitals of Mn to the agostic hydride is critical and nonnegligible, and the shielded
agostic hydride at very upfield conditions is expected. However, the Mn-H distances in
agostomers 3 and 4 are 2.051 Å and 1.958 Å, respectively, which is significantly longer that
those in agostomers 1 and 2. The relatively weak Mn-H interactions in agostomers 3 and
4 suggest that it should be an agostic proton in the Mn-H-C agostic unit instead of the
hydride. Therefore, the more shielded agostic H in the Mn-H-C agostic unit in agostomers
1 and 2 was observed.

2.2. Exchange Processes

Previous studies suggested that complexes 1 and 2 also were fluxional molecules [1].
However, possible multiple exchange processes made it difficult to distinguish each res-
onance in the variable temperature 1H NMR spectra. Only two exchange processes of
the monomethyl cyclohexenyl manganese tricarbonyl (MeC6H8)Mn(CO)3) could be found
in the experimentally obtained 1H NMR spectra: (1) a low-energy process estimated as
8.3 kcal/mol proceeding through the fast endo C-H exchange and (2) a high-energy ex-
change process estimated as 16.0 kcal/mol proceeding through the diene hydride species [1].
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These values are quite similar to the parent system cyclohexenyl manganese tricarbonyl
(C6H9)Mn(CO)3 (8.3 kcal/mol and 15.4 kcal/mol) [2]. In order to comprehensively in-
terpret the 1H NMR spectra, explorations of the mechanisms in the exchange processes
of complexes 1 and 2 were carried out. The following possible exchange processes were
examined: agostomers conformational isomerization, conversion between agostomers and
hydride species, and hydride species conversions.

2.2.1. Isomerization of η3 Agostomers

The first exchange processes explored were the self-isomerization of 6-monomethyl
agostomer (complex 1) and the rotation transition states (TS-1-1-a, methyl rotation, and
TS-1-1-b, CO’s rotation, Figure 3). As expected, the magnitude of the rotational barrier
for the methyl group (TS-1-1-a, 3.2 kcal/mol, all following energies were relative to com-
plex 1) was much less than that of the CO’s rotation (TS-1-1-b, 13.0 kcal/mol). Similar
rotation transition states (methyl rotation, TS-2-2-a, 5.2 kcal/mol, and TS-2-2-b, CO’s ro-
tation, 13.2 kcal/mol) for 5-monomethyl agostomer (complex 2) were also observed. The
conversion between complex 1 and complex 2 was accomplished by an η4-diene hydride
transition state (TS-1-2, 14.0 kcal/mol), which is consistent with the experimentally pro-
posed high-energy exchange process (16.0 kcal/mol) [1]. Another self-isomerization of
6-monomethyl agostomer (complex 1) involved a Cs symmetrical η3-allyl transition state
(TS-1-1-c, 6.0 kcal/mol). This low activation energy η3-allyl transition state caused the
fast exchange of the two endo H’s adjacent to the terminal positions of the allylic unit.
The experimentally estimated Gibbs barrier for this fast endo C-H exchange process was
8.3 kcal/mol [1]. Since the endo methyl exists in the 5-monomethyl agostomers (complex
2), the endo H’s exchange via the similar η3-allyl half-chair transition state was unachiev-
able. However, the neighboring endo H’s exchange (1Hendo and 6Hendo) of complex 2 was
achieved by the C1 symmetrical η3-allyl transition state (TS-2-3, 12.9 kcal/mol), and it gen-
erated another η3 complex 3. Another endo H exchange between 5Hendo and 7-methylendo,
TS-1-4 was also found, which produced another η3 complex 4. The bonding characters of
the η3 complexes 3 and 4 are summarized in Table 1. Based on the criteria for the agostic
bond [9,10,14], complexes 3 and 4 could also be assigned as other agostomers with weaker
agostic interaction compared to complexes 1 and 2. The computed relative Gibbs free
energies for the methyl and CO’s rotation of complex 3 (TS-3-3-a, methyl rotation, and
TS-3-3-b, CO’s rotation) and complex 4 (TS-4-4-a, methyl rotation, and TS-4-4-b, CO’s rota-
tion) are shown in Figure 3. Notably, the Gibbs barriers for the CO’s rotation in complexes
3 (TS-3-3-b, 18.8 kcal/mol) and 4 (TS-4-4-b, 22.8 kcal/mol) are significantly higher than
those in complexes 1 (TS-1-1-b, 13.0 kcal/mol) and 2 (TS-2-2-b, 13.2 kcal/mol), which are
caused by the steric hindrance in agostomers 3 and 4 with the “closed (MeC6H8)Mn frag-
ment” compared to the “open (MeC6H8)Mn fragment” in agostomers 1 and 2. Similarly, the
limited rotation of methyl group in the agostomer 3 (TS-3-3-a, 8.8 kcal/mol) and agostomer
4 (TS-4-4-a, 12.8 kcal/mol) compared to those in agostomers 1 (TS-1-1-a, 3.2 kcal/mol) and
2 (TS-2-2-a, 5.2 kcal/mol) is also observed (Figure 3). The unfavorable endo-H migration
from the methyl group in complex 4 to the Mn center (TS-4-6, 33.6 kcal/mol) forms the
methylene hydride complex 6 (30.0 kcal/mol). The endo-H migration from the Mn-H-C
unit in complex 3 to the Mn center (TS-3-5, 39.3 kcal/mol) forms another η4 agostomer 5
(26.0 kcal/mol). Since the C-H bond breaking is required for the H migration (TS-4-6, and
TS-3-5), the relatively high Gibbs barriers are anticipated and observed. The participation
of agostomer 5 and hydride complex 6 in the experimentally observed exchange process is
excluded due to the high Gibbs barriers (39.3 kcal/mol for TS-3-5 and 33.6 kcal/mol for
TS-4-6, Figure 3).

For comparisons, additional single point energy calculations with lager basis sets (BS2
and BS3) were performed (Figure S1). The computational results showed that the mean
signed deviation (MSD) and the mean absolute deviation (MAD) between PBEPBE/BS2-
Auto//PBEPBE/BS1-Auto computations and PBEPBE/BS1-Auto computations are 0.3
and 0.5 (MSD = 0.3, MAD = 0.5), respectively. The MSD and MAD between PBEPBE/BS3-
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Auto//PBEPBE/BS1-Auto computations and PBEPBE-D3(BJ)/BS1-Auto computations are
0.2 and 0.5 (MSD = 0.2, MAD = 0.5), respectively. The excellent linear fitting of the computed
Gibbs energies (Figure S2) was also obtained. The relatively small MSD and MAD values
demonstrated the reliability of the DFT method utilized in this study (PBEPBE/BS1-Auto).
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2.2.2. Hydride Species Conversions

Another proposed pathway for the conversion between complex 1 and complex 2
was accomplished via three different η4-diene hydride minima (complexes 7, 8, and 9,
Figure 4). It was noted that computed energies of these three η4-diene hydride minima
(14.9 kcal/mol for 7, 13.1 kcal/mol for 8, and 14.4 kcal/mol for 9) were close to that
of TS-1-2 (14.0 kcal/mol) due to the structural similarity. However, the relatively high
Gibbs barriers for TS-7-8 (26.9 kcal/mol) and TS-8-9 (26.5 kcal/mol) prevent the practical
conversion between complex 1 and complex 2 (Figure 4).
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2.3. Interpretations of the Fluxionality

Based on the computational results, several important facts about the fluxionalities of
the monomethyl cyclohexenylmanganese tricarbonyl [(MeC6H8)Mn(CO)3, complex 1 and
2] were discovered. First, the methyl rotational energy barriers in complexes 1, 2, 3, and
4 showed different patterns. Compared to complexes 1 (3.2 kcal/mol, energy relative to
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complex 1), 2 (3.6 kcal/mol, relative to complex 2), and 3 (2.8 kcal/mol, relative to complex
3), complex 4 had much higher methyl rotational activation energy (5.3 kcal/mol, relative
to complex 4). This fact supported the conclusion on the weak M-H-C agostic interaction
in complex 4. Unlike the free methyl group in complexes 1, 2, and 3, the weak Mn-H-C
agostic interaction in complex 4 made two sets of inequivalent H toms (1 endo H and 2
exo H’s). The next fluxional process was the rotation of Mn(CO)3 fragment. The higher
reaction free energies of the weak Mn-H-C agostomer 4 compared to agostomer 1, 2, and 3
made it exclude from this CO’s ligand equivalence process. Although the 5-monomethyl
agostomer (complex 2) could not adopt the similar η3-allyl transition state (TS-3) of 6-
monomethyl agostomer to perform the fast exchange of the two endo Hs adjacent to the
terminal positions of the allylic unit, the neighboring endo H exchange (1Hendo and 6Hendo)
of complex 2 was achieved by a higher energy C1 symmetrical η3-allyl transition state
(TS-2-3, 12.9 kcal/mol). Another endo H exchange in complex 1 was the exchange between
5Hendo and methylendo, TS-1-4. The conversion between complex 1 and complex 2 could be
accomplished by a single H transfer process (TS-1-2, 14.0 kcal/mol) or by a series of three η4-
diene hydride minima. However, the relative high activation energy of the second pathway
suggested the high temperature conversion between complex 1 and complex 2 could only
occur through η4-diene hydride transition state, TS-1-2. Notably, the conversion between
complexes 1, 2 and the η4-diene hydride minima, complexes 7 and 9 (Scheme 3) could
complicate the 1H NMR spectrum of (MeC6H8)Mn(CO)3 in high temperature conditions.
In other words, the fluxionalities of the monomethyl cyclohexenyl manganese tricarbonyl
[(MeC6H8)Mn(CO)3] contained multiple exchange processes: (1) methyl rotation (TS-1-1-a,
TS-2-2-a, TS-3-3-a, and TS-4-4-a); (2) CO’s ligand equivalence (TS-1-1-b and TS-2-2-b);
(3) fast exchange of the endo Hs adjacent to the terminal positions of the allylic unit in
complex 1 (TS-3); (4) low exchange of the neighboring endo H’s in complex 2 (TS-2-3);
(5) low endo H exchange between 5Hendo and methylendo in complex 1 (TS-1-4); (6) 1,
2-agostic isomerization (TS-1-2); and (7) possible high temperature H atom migration of
the agostic Mn-H-C unit (TS-1-7 and TS-2-9).
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Based on the discussion above, the gas phase variable temperature 1H NMR spectra
of (6-MeC6H8)Mn(CO)3 and (5-MeC6H8)Mn(CO)3 were simulated (Figure 5). An excellent
linear relationship (R2 = 0.9862) between the computed proton chemical shifts and the ex-
perimental 1H NMR chemical shifts (Figure 6) was reached. The simulated low temperature
exchange (methyl rotation TS-1-1-a) and medium temperature exchange (fast exchange of
the endo H’s adjacent to the terminal positions of the allylic unit, TS-1-1-c) showed that
the resonance of the methyl group was 0.77 ppm, which was close to the experimental
reported methyl group (0.6 ppm) of complex 2, 5-methyl (0.8 ppm) and 6-methyl (0.7 ppm)
of the 5, 6-dimethyl analogue. In medium temperature, the Cs symmetrical TS-3 made
2H and 3H equivalent, 1Hendo and 4Hendo equivalent, and 1Hexo and 4Hexo equivalent,
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which gave six peaks in the 1H NMR spectrum. In the next high temperature regime,
slow endo H exchange between the H5endo and methylendo (TS-1-4) process averaged the
1Hendo, 5Hendo and methylendo. Unlike the two resonances in the super-high temperature
1H NMR of the unsubstituted analogue [(C6H9)Mn(CO)3] [5], the asymmetric 1, 2-agostic
isomerization (TS-1-2) process finally gave three peaks for the highest temperature in the
1H NMR spectrum.
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3. Computational Methods

Molecular structures were optimized in the gas phase using the Perdew, Burke, and
Ernzerhof exchange functional and gradient-corrected correlation functional (PBEPBE) [15]
with basis set 1 and the density fitting approximation [16,17] (BS1, the modified-LANL2DZ
with the f polarization [(modified-LANL2DZ(f)] [18–20] and related effective core potential
(ECP, LANL2DZ) for Mn atom, LANL2DZ(d, p) [21,22] with the related LANL2DZ ECP
for Si atom of the reference TMS, and the 6-31G (d′) [23–25] for all other atoms (C, O, and
H)). All computations (PBEPBE/BS1-Auto) were carried out with Gaussian 09 software
(Revision C01) [26]. Pruned fine integration grids with 75 radial shells and 302 angular
points per shell were used for all computations. Free energy corrections were computed at
1 atm and 298.15 K. Optimization using Grimme’s D3 [27] dispersion with Becke–Johnson
damping (D3(BJ)) [28] was also compared (PBEPBE-D3(BJ)/BS1-Auto). For comparisons,
the single-point energy calculations using Def2-TZVPP basis sets (BS3, Def2-TZVPP for Mn,
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C, O, and H) for serval salient transition states were also performed (see Supplementary
Materials, Figures S1 and S2). All located minima were verified by vibrational frequency
computations with no imaginary frequency, and all located transition states were obtained
with only one imaginary frequency. The intrinsic reaction coordinate computations from the
located transition states were performed, and both directions of the reaction path following
the transition state were computed [29]. The electron density of the bond critical point
[ρ(BCP)] based on Bader’s theory of atoms-in-molecules (AIM) [12,30,31] was calculated
with the Multiwfn package (version 3.8) [32,33], and were visualized with the VMD package
(version 1.9.3) [34,35]. Notably, the reliability of quantum mechanics (QM) computation
instead of molecular dynamics (MD) simulation in the study of the fluxional processes of
organometallics has been established [5,36].

The gauge-independent atomic orbital (GIAO) [37–39] method with the PBEPBE
functional and basis set 2 (BS2, LANL08(f ) [20,40] basis set and the related LANL2DZ
ECP for Mn, LANL08(d) [22,40] and related LANL2DZ ECP for Si, and the 6-311G++(3df,
3pd) [41,42] basis sets for C, O, and H) was used to compute the magnetic shielding tensors
of the gas-phase optimized structures.

4. Conclusions

Compared to the unsubstituted analogue [(C6H9)Mn(CO)3], multiple exchange pro-
cesses in the fluxionalities of the monomethyl cyclohexenyl manganese tricarbonyl
[(MeC6H8)Mn(CO)3] were revealed. First, two different conversion pathways between
agostomer 1 (6-monomethyl) and agostomer 2 (6-monomethyl) were located: (1) via the
η4-diene hydride transition state; and (2) via three η4-diene hydride minima. The com-
putational results demonstrated that the 1, 2-agostic isomerization only occurred via the
η4-diene hydride transition state (TS-1-2, 14.0 kcal/mol). The previously proposed two
exchange processes, including a low-energy fast endo C-H exchange and a high-energy
exchange process proceeding through the diene hydride species, were verified. The com-
puted Gibbs barriers are 6.0 kcal/mol and 14.0 kcal/mol, respectively, for these exchange
processes, which are consistent with the experimentally estimated barriers (8.3 kcal/mol
and 16.0 kcal/mol). Other exchange processes, such as methyl group rotation, CO ligand
equivalence, fast exchange of the endo H’s in agostomer 1, low exchange of the neighboring
endo H in agostomer 2, low endo H exchange between 5H(endo) and methyl(endo) in complex
1, and the possible high temperature H atom migration of the agostic Mn-H-C unit were
also studied. Moreover, the bonding characters and the AIM (atoms-in-molecules) analyses
of complexes 3 and 4 demonstrated 3 and 4 also were agostomers with weak Mn-H-C
agostic interaction compared to agostomers 1 and 2. Finally, the gas-phase variable temper-
ature 1H NMR spectra of (MeC6H8)Mn(CO)3 based on the exchange processes provided
were simulated, and the detailed resonances were revealed. These results could potentially
establish fundamental insights into the role of agostic interaction in the homogeneous
catalysis, especially with regard to transition metal catalyzed C-H activation.
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