
Citation: Mohamed, M.G.; Chang,

S.-Y.; Ejaz, M.; Samy, M.M.; Mousa,

A.O.; Kuo, S.-W. Design and

Synthesis of Bisulfone-Linked

Two-Dimensional Conjugated

Microporous Polymers for CO2

Adsorption and Energy Storage.

Molecules 2023, 28, 3234.

https://doi.org/10.3390/

molecules28073234

Academic Editor: Lihua Gan

Received: 12 March 2023

Revised: 29 March 2023

Accepted: 1 April 2023

Published: 4 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Design and Synthesis of Bisulfone-Linked Two-Dimensional
Conjugated Microporous Polymers for CO2 Adsorption and
Energy Storage
Mohamed Gamal Mohamed 1,2,* , Siang-Yi Chang 1, Moshin Ejaz 1 , Maha Mohamed Samy 1,2,
Aya Osama Mousa 1 and Shiao-Wei Kuo 1,3,*

1 Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology
Research, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
shiang120321@gmail.com (S.-Y.C.)

2 Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
3 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
* Correspondence: mgamal.eldin34@gmail.com (M.G.M.); kuosw@faculty.nsysu.edu.tw (S.-W.K.)

Abstract: We have successfully synthesized two types of two-dimensional conjugated microporous
polymers (CMPs), Py-BSU and TBN-BSU CMPs, by using the Sonogashira cross-coupling reaction of
BSU-Br2 (2,8-Dibromothianthrene-5,5′,10,10′-Tetraoxide) with Py-T (1,3,6,8-Tetraethynylpyrene) and
TBN-T (2,7,10,15-Tetraethynyldibenzo[g,p]chrysene), respectively. We characterized the chemical
structure, morphology, physical properties, and potential applications of these materials using various
analytical instruments. Both Py-BSU and TBN-BSU CMPs showed high thermal stability with thermal
decomposition temperatures (Td10) up to 371 ◦C and char yields close to 48 wt%, as determined
by thermogravimetric analysis (TGA). TBN-BSU CMPs exhibited a higher specific surface area and
porosity of 391 m2 g−1 and 0.30 cm3 g−1, respectively, due to their large micropore and mesopore
structure. These CMPs with extended π-conjugated frameworks and high surface areas are promising
organic electroactive materials that can be used as electrode materials for supercapacitors (SCs) and
gas adsorption. Our experimental results demonstrated that the TBN-BSU CMP electrode had better
electrochemical characteristics with a longer discharge time course and a specific capacitance of
70 F g−1. Additionally, the electrode exhibited an excellent capacitance retention rate of 99.9% in the
2000-cycle stability test. The CO2 uptake capacity of TBN-BSU CMP and Py-BSU CMP were 1.60
and 1.45 mmol g−1, respectively, at 298 K and 1 bar. These results indicate that the BSU-based CMPs
synthesized in this study have potential applications in electrical testing and CO2 capture.

Keywords: dibenzo[g,p]chrysene; conjugated microporous polymers; Sonogashira–Hagihara cou-
pling reaction; CO2 capture; supercapacitors

1. Introduction

While digital life brings comfort, it also presents difficulties that people must consider.
This energy source and storage support the advent of electronic products, and the energy
relies primarily on the supply of the natural environment [1–7]. Renewable energy sources
include solar and wind power, ocean energy, hydropower, and biomass; limited energy
sources come from industrial fossil fuels such as coal, natural gas, and oil [8–15]. The
pursuit of green environmental protection without affecting the life experience of most
consumers, or how to ensure the supply and demand of energy while improving economic
effects, is a heavy part of technology today. An increasingly well-known energy storage
device to deal with this situation is the supercapacitor (SC), which has been studied since
the 19th century [16–25]. SCs were developed for the same purpose as secondary batteries
and conventional capacitors. They are all used for the convenience of energy storage, but
supercapacitors have fewer limitations and wider prospects than the other two [26–30].
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For example, its excellent reaction kinetics, higher power density, and gradually improved
energy density make it more suitable for charging and discharging [26–30]. In addition,
the improved cycle life and wider operating range of SCs allow them to operate stably
and continuously [31–35]. Currently, it has achieved practical penetration in many fields,
including mobile wearable devices, smart electronic appliances, electric transportation
vehicles, medical treatment, and the defense industry [36–40]. SCs can be preliminarily
divided into electric double-layer capacitors (EDLCs), pseudocapacitors (PCs), and hybrid
supercapacitors (HSCs) based on their charge storage mechanism [36–40]. The energy
storage principle of EDLCs focuses on electrostatic adsorption between the electrodes
and electrolytes. EDLCs are highly efficient and reversible owing to their charge-physical
adsorption behavior. Nevertheless, decisive factors concerning the reactivity of electrochem-
ical capacitors are the properties of the electrolyte and electrodes [41–50]. The electrode
materials used in EDLCs are primarily metal oxides, carbon-based materials, or conduct-
ing polymers [51–59]. We have investigated many modifications based on the molecular
design or synergistic effects of conducting polymers to enhance their competitiveness in
the market.

Among these, covalently linked and highly cross-linked conjugated microporous
polymers (CMPs) are suitable for this concept [60–64]. The structural diversity of π systems
and chemically reactive groups coupled with chemical stability and electrical conductivity
are attractive advantages of CMPs. Specifically, a framework rich in micropores contributes
to excellent surface conditions [60–64]. On this premise, the introduction of thianthrene-
5,5′,10,10′-tetraoxide as a matrix in CMP enhances charge injection/transport performance
and inter-bond interactions [65,66]. This group is beneficial for making the sample highly
rigid [65,66]. In contrast, the participation of aromatic systems in Py-T and TBN-T units
improves the conjugation properties of the materials. The pyrene contained in the former
structure was connected by four benzene rings, which facilitated π-π stacking. The dis-
tribution of electrons exhibited by this state has led to great progress in the conduction
performance of organic electrochemical substances. Under these circumstances, the con-
tinuous conjugated structure of the pyrene molecule can also reduce steric hindrance and
change the flexibility of the chain [67–71]. For the same reason, TBN-T was chosen as one
of the backbones in another CMP synthesis reaction. The TBN structure of the monomer
center is upgraded to be connected by six benzene rings, which can improve the electrical
properties of the material without sacrificing the rigidity of the material [72–74]. This has a
positive effect on SCs.

In summary, we believe that BSU CMPs, with practical connotations, are highly feasible
to become a potential stock for emerging developments. We believe that this is the first
investigation into CMP materials with a bisulfone (BSU) moiety for applications involving
gas uptake and energy storage. Herein, a facile and efficient Sonogashira cross-coupling
reaction was used to construct and prepare two 2D-CMP-containing bisulfone moieties
in high yields (Py-BSU and TBN-BSU CMPs) by the reaction of brominated thianthrene-
5,5′,10,10′-tetraoxide with different ethynylpyrene (Py-T) and ethynyldibenzo[g,p]chrysene
(TBN-T) molecules in DMF/Et3N as solvents and Pd catalysts (Scheme 1). Solid-state
NMR (ssNMR) and FTIR investigations supported the formation of Py-BSU and TBN-BSU
CMPs, and PXRD, BET, SEM, EDS-SEM mapping, TEM, and TGA also investigated their
morphology and porosity. Due to their good properties, such as high thermal stability,
extended π-conjugated frameworks, and good BET surface areas, these materials are
applied in CO2 capture and supercapacitors applications. The electrochemical experiments
show that the Py-BSU CMP and TBN-BSU CMP electrodes in the three-electrode system
exhibited specific capacitances of 38 and 70 F g−1, respectively, and an excellent capacitance
retention rate of up to 99% in the 2000-cycle stability test. Furthermore, the TBN-BSU CMP
sample exhibited high CO2 uptake (1.60 mmol g−1) due to the high surface area, pore
volume, and tunable pore size of TBN-BSU CMP. According to these results, the BSU-based
CMP prepared in this study has novel and accessible application potential in gas adsorption
and electrical testing.
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2. Results and Discussion
2.1. Synthesis and Characterization of Synthesized Monomers, Py-BSU and TBN-BSU CMPs

The BSU-Br2 monomer was prepared in two steps. The THT molecule was brominated
in a neat Br2 solution in AcOH to afford THT-Br2 as a white solid (Scheme S1). THT-Br2 was
then reacted with H2O2 solution in AcOH solution at 90 ◦C to produce BSU-Br2 as a white
solid (Scheme S2). The FTIR pattern of BSU-Br2 (Figure S4) showed peaks at 3064 cm−1 for
the aromatic rings and 1171 cm−1 for the SO2 group, indicating the successful formation of
BSU-Br2 from THT-Br2. Furthermore, the 1H and 13C NMR data confirmed the chemical
structure of BSU-Br2 (Figures S5 and S6). The FTIR and NMR results for other synthesized
monomers in this study, such as THT-Br2, Py-Br4, Py-TMS, Py-T, TPE, TPE-Br4, TBN-Br4,
and TBN-TMS, have been provided and discussed in detail in the experimental section
(Figures S1–S3 and S7–S25). The signals at 3279, 3065, 2186, and 1618 cm−1 are attributed
to the absorption characteristics for ≡C–H, aromatic C–H, C≡C, and C=C stretching in
the Py-T structure (Figure S11). The 1H NMR pattern (Figure S12) of Py-T peaked at
8.68, 8.38, and 3.67 ppm, corresponding to the phenyl and alkynyl groups, respectively.
In addition, the aromatic carbon resonances appeared in the range 133.80–127.80, 84.50,
and 82.00 ppm in the 13C NMR spectrum (Figure S13) of Py-T due to the presence of
aromatic and alkynyl units. As shown in Schemes S5–S7, there were three steps during the
preparation of the TBN-T monomer. In dry nitromethane and DCM, TPE-Br4 was reacted
with anhydrous FeCl3 to produce a yellow powder of TBN-Br4. To prepare TBN-TMSA, a
TBN-Br4 precursor was combined with (trimethylsilyl)acetylene (TMSA) in the presence
of CuI with diethylamine as the solvent. The treatment of TBN-TMSA with K2CO3 in
methanol and DCM to produce a yellow solid allowed for the effective synthesis of TBN-T.
The peaks in the FTIR spectrum of TBN-T (Figure S26) at 3291, 3057, 2106, and 1604 cm−1

were attributed to C≡C-H, aromatic C-H, C≡C, and C=C stretching, respectively. The
proton signal was observed in the 1H NMR spectra of TBN-T (Figure S27) at 3.30 ppm
for C≡C-H. In addition, the presence of aromatic rings and C≡C units in the TBN-T
compound caused carbon peaks at 135.70–101.60, 84.21, and 78.87 ppm, as seen in the
13C-NMR spectrum (Figure S28).

As shown in Scheme 1, Py-BSU CMP (Scheme 1a) and TBN-BSU CMP (Scheme 1b)
were prepared by reacting BSU-Br2 with Py-T and TBN-T in a mixture of DMF/Et3N for
3 days to afford dark red powder for Py-BSU CMP and yellow solid for TBN-BSU CMP.
The solubility test in different organic solvents (NMP, DMSO, DMF, MeOH, EtOH, DCM,
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and THF) revealed the insolubility of these materials compared to their corresponding
monomers (BSU-Br2, Py-T, and TBN-T) and confirmed that both BSU-CMP frameworks had
a high cross-linking density. The chemical characteristics of Py-BSU and TBN-BSU CMPs
were identified by Fourier transform infrared spectroscopy and solid-state 13C nuclear
magnetic resonance spectroscopy (ssNMR). A schematic of the corresponding structure is
shown in Figure 1a. The absorption bands in Py-BSU CMP and TBN-BSU CMP around 3070
and 1580 cm−1 in the FTIR profiles (Figure 1b) measured at room temperature revealed the
stretching of C-H and C=C in aromatic units, and the stretching absorption band of the C≡C
bond appeared at 2200 cm−1. The appearance of absorption bands centered at 1167 cm−1

for Py-BSU CMP and 1177 cm−1 for TBN-BSU CMP corresponds to the SO2 unit in their
framework (Figure 1b). The broad peaks at 95–115 ppm in the ssNMR spectra (Figure 1c)
represent the signals of aromatic carbon atoms in the Py-BSU CMP and TBN-BSU CMP
structures. Internal -C≡C- units in both Py-BSU CMP and TBN-BSU CMP were centered
at 74.80 and 64.04 ppm, respectively [75–77]. The above results confirmed that Py-BSU
CMP and TBN-BSU CMP were successfully constructed through a coupling reaction. In
addition, the thermogravimetric analysis (TGA) in Figure 1d and Table 1 demonstrates the
good thermal stability of the BSU-CMP materials under a nitrogen atmosphere, which is
due to the high degree of cross-linking of the BSU-CMP materials after the Sonogashira
cross-coupling reaction. The 5% weight loss (Td5) of Py-BSU CMP and TBN-BSU CMP
occurred at 320 and 338 ◦C, 10% weight loss (Td10) of Py-BSU CMP and TBN-BSU CMP
occurred at 383 and 386 ◦C, respectively, and the char yields at 800 ◦C were 48 and 56 wt%,
respectively.
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Table 1. Thermal stabilities and porosity properties of Py-BSU CMP and TBN-BSU CMP.

Sample Td5
(◦C)

Td10
(◦C)

Char Yield
(wt.%)

SBET
(m2 g−1)

Pore Volume
(cm3 g−1)

Pore Size
(nm)

Py-BSU CMP 320 383 48 42 0.07 2.57

TBN-BSU CMP 338 386 56 391 0.30 1.80

The porosity behavior of Py-BSU CMP and TBN-BSU CMP was determined using the
Brunauer-Emmett-Teller (BET) theory, and the specific surface area and pore characteristics
were confirmed through nitrogen adsorption/desorption analysis at 77 K. Both Py-BSU
CMP and TBN-BSU CMP were vacuum degassed at 150 ◦C for 8 h to eliminate the huge
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effect caused by water and other gases in the gas adsorption experiment. According to the
IUPAC classification, the Py-BSU CMP in Figure 2a exhibits a type V isotherm with H2
hysteresis loops that reflect typical ink bottle holes with uneven pore size distributions or
close-packed interstitial pores of spherical particles. While TBN-BSU CMP in Figure 2b
exhibits a type I isotherm with an H1 hysteresis loop, the surge in the region of low
relative pressure (<0.02) confirms that this material has a large number of micropores. The
specific surface areas of Py-BSU CMP and TBN-BSU CMP were 42 and 391 m2 g−1. Their
corresponding total pore volumes are 0.07 and 0.30 cm3 g−1, respectively. In addition, we
estimated the pore size distribution (PSD) of Py-BSU CMP and TBN-BSU CMP from the
N2 adsorption isotherm using the nonlocal density functional theory (NLDFT). The results
show that the average pore diameters of Py-BSU CMP (Figure 2c) and TBN-BSU CMP
(Figure 2d) were approximately 2.57 and 1.80 nm.
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Figure 2. (a,b) N2 adsorption/desorption isotherms and (c,d) pore size distribution profiles of (a,c)
Py-BSU CMP and (b,d) TBN-BSU CMP.

The spatial ordering of Py-BSU CMP and TBN-BSU CMP was determined by X-ray
diffraction analysis in the angular (2θ) range of 5–50◦. Crystalline peaks were not observed
in the XRD results, and the broad peaks in Figure S29 show the amorphous features of
Py-BSU CMP and TBN-BSU CMP. The powder morphologies by SEM images of Py-BSU
CMP and TBN-BSU CMP are shown in Figure 3a,b, respectively. The former nanosheets
agglomerated slightly; the latter cluster phenomenon occurs because of the extremely
small size of spherical nanoparticles. Furthermore, the presence of carbon (C), oxygen (O),
and sulfur (S) atoms in both Py-BSU CMP and TBN-BSU CMP were confirmed through
EDS-SEM mapping (Figure 3c–i). The weight contents of C, O, and S in Py-BSU CMP were
78.80, 16.82, and 4.38%, respectively (Figure S30a). In TBN-BSU CMP, the weight contents
were 70.9, 26.64, and 2.46% for C, O, and S atoms, respectively (Figure S30b). The TEM
images (Figure S31) of both Py-BSU CMP and TBN-BSU CMP show that the structure was
amorphous and that nanometer-scale holes were distributed uniformly.
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The CO2 capacities of TBN-BSU CMP and Py-BSU CMP were 1.6 and 1.45 mmol g−1,
respectively, as displayed in Figure 4. The excellent performance of TBN-BSU CMP for CO2
uptake is due to its high pore volume, BET surface area, and tunable pore size.
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2.2. Electrochemical Measurements of Py-BSU CMP and TBN-BSU CMP

We used 1 M KOH aqueous solution as the electrolyte in a three-electrode system
and compared the electrochemical performance of Py-BSU CMP and TBN-BSU CMP by
cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD). The working electrode,
counter electrode, and reference electrode of the three-electrode system are composed of
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glassy carbon, platinum, and Hg/HgO, respectively. The CV curves of Py-BSU CMP and
TBN-BSU CMP at scan rates from 5 to 200 mV s−1 are shown in Figure 5a,b, and the overall
leaf-like shape suggests a response originating from the electric double-layer capacitance
(EDLC). Among them, as the scan rate increased from 5 to 200 mV s−1, the maintained
shape of the CV curves indicates the excellent rate capability of the material. Figure 5c,d
report the GCD curves detected at current densities ranging from 0.5 to 20 A g−1. Slightly
curved triangles are characteristic of EDLC.
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Figure 5. CV (a,b) and GCD (c,d) curves of TBN-BSU CMP (a,c) and Py-BSU CMP (b,d).

As shown in Figure 6a, at a current density of 0.5 A g−1, the specific capacitance
values of Py-BSU CMP and TBN-BSU CMP calculated by GCD curves were 38 and 70 F g−1.
In contrast, TBN-BSU CMP exhibited superior electrochemical behavior due to the more
extended conjugated structure of the TBN unit and high surface area. The improvement
of the π system increased the charge transfer efficiency in contact with the electrolyte
and further promoted the performance of the supercapacitor through this process. From
another point of view, the capacitance value shrunk when the current density increased
from 0.5 to 20 A g−1. This can be attributed to the diffusion problem caused by electrolyte
ions not fully permeating into the electrode material due to insufficient time in the high
current environment. Figure 6b,c demonstrate the measured stability over 2000 cycles at a
current density of 10 A g−1. The capacitance retention rates of Py-BSU CMP and TBN-BSU
CMP were 99.8% and 99.9%, respectively. The extremely small capacitance decay indicates
that the material has excellent electrochemical reversibility. Figure 6d shows that the
specific capacitance value of TBN-BSU CMP precursor (70 F g−1) is higher than CoPc-CMP
(13.8 F g−1) [78], H-THAQ (15 F g−1) [79], TBN-TPE-CMP (18.45 F g−1) [32], TBN-Py-CMP
(31 F g−1) [32], POSS-F-POIP (36.2 F g−1) [31], Py-BSU CMP (38 F g−1), pyrolysis nutshell
(45 F g−1) [80], COFs (48 F g−1) [81], HPCs (48 F g−1) [82], TBN-BSU CMP (70 F g−1), and
other candidate materials.
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precursors compared with other POPs in energy storage (d).

In Figures 7 and S32, the EIS results indicated that Py-BSU CMP and TBN-BSU CMP
have slightly different Nyquist curves, suggesting they have different resistances. In detail,
TBN and Py-BSU CMP showed a specific resistance of 9 and 23 ohm, respectively. The
charge transfer rate studies were tested through EIS within the frequency range of 100
mHz to 100 kHz at the open circuit potential and 5 mV as an amplitude. It should be
noticed that a smaller semi-circuit was observed for TBN-BSU CMP with lower resistance
than Py-BSU CMP, indicating a lower resistance and lower charge transfer resistance. The
results were fitted to a simulation circuit composed of four elements of the series resistance
(Rs), the charge-transfer resistance (Rct), the electrical double-layer capacitance (Cdl), and
the Warburg diffusion impedance (Wd), as displayed in the inset of the figure of Randles
Cell. It is important to notice that low-resistance materials can improve energy storage
because they have fast charge transport capabilities. Therefore, TBN-BSU CMP is a better
choice for energy storage applications. Due to its high surface area, structural integrity, and
compatibility with bis-sulfone units, TBN-BSU CMP exhibited this behavior [83–88].
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Figure 7. Electrochemical impedance spectroscopy (EIS) of Py-BSU CMP and TBN-BSU CMP elec-
trode materials, recorded at 0.5 Hz.

3. Materials and Methods
3.1. Materials

Anhydrous magnesium sulfate (MgSO4, 99.5%), pyrene (Py), benzophenone (99%),
PdCl2(PPh3)2, bromine solution (Br2), copper(I) iodide (CuI, 99%), dichloromethane (DCM),
glacial acetic acid (AcOH), hydrogen peroxide (H2O2), potassium carbonate (K2CO3, 99.9%),
Pd(PPh3)4, thianthrene (THT, 99%), titanium tetrachloride (TiCl4, 99.9%), trimethylsily-
lacetylene (TMSA, 98%), triphenylphosine (PPh3, 99%), zinc powder (Zn, 98%) were pur-
chased from Sigma-Aldrich (Gillingham, UK) and Acros Organics (Geel, Belgium).

3.2. Synthesis of 2,8-Dibromothianthrene (THT-Br2)

Br2 solution (6 mL, 0.116 mol) was added dropwise to thianthrene (3.24 g, 0.015 mol)
dissolved in AcOH (60 mL). The reactant was heated to 90 ◦C and agitated for one day. Dis-
tilled water (30 mL) was then added to the mixture once it had cooled to room temperature.
The resultant precipitate was filtered out and properly washed with a 5% NaHCO3 solu-
tion and water. The further purification by recrystallization from MeOH/DCM afforded
THT-Br2 a white solid (Scheme S1). FTIR (Figure S1): 3066 cm−1. 1H NMR (Figure S2): 7.71,
7.62, 7.31 ppm. 13C NMR (Figure S3): 138.00–122.44 ppm.

3.3. Synthesis of 2,8-Dibromothianthrene-5,5′,10,10′-Tetraoxide (BSU-Br2)

H2O2 (70 mL, 2.984 mol) was added dropwise to THT-Br2 (2.55 g, 0.007 mol), dissolved
in glacial acetic acid (55 mL). The reactant was heated to 90 ◦C and stirred for 1 day.
After cooling to room temperature, the resulting precipitate was filtered off and washed
thoroughly with 5% NaHCO3 solution and H2O. Finally, the BSU-Br2 product was purified
by recrystallization from MeOH/DCM mixture affording BSU-Br2 a white solid (Scheme S2).
FTIR (Figure S4): 3068 and 1171(SO2 group) cm−1. 1H NMR (Figure S5): 8.38–7.52 ppm
(aromatic protons). 13C NMR (Figure S6): 137.54–124.62 ppm.

3.4. Synthesis of 1,3,6,8-Tetrabromopyrene (Py-Br4)

Br2 (3.5 mL, 0.068 mol) was injected dropwise into a Py monomer (3.00 g, 0.015 mol)
dissolved in nitrobenzene (30 mL). The reaction mixture was then heated to 120 ◦C and



Molecules 2023, 28, 3234 10 of 15

stirred for 24 h. After filtration through EtOH, the green solid was collected and dried at
60 ◦C (Scheme S3). FTIR (Figure S7): 3053 and 682 (C-Br group) cm−1.

3.5. Synthesis of 1,3,6,8-Tetrakis(trimethylsilanylethynyl)pyrene (Py-TMS)

Py-Br4 (1.00 g, 1.924 mmol), Pd(PPh3)4 (0.13 g, 0.112 mmol), PPh3 (0.11 g, 0.419 mmol),
and CuI (0.06 g, 0.315 mmol) were dissolved in Et3N (28 mL) and anhydrous toluene
(28 mL). TMSA (1.52 g, 15.48 mmol) was added dropwise to the reactant after heating
to 50 ◦C. The mixture was then heated to 80 ◦C for two days. The solvent was removed
via a rotary evaporator, and the orange solid dried under vacuum at 60 ◦C (Scheme S3).
FTIR (KBr, Figure S8): 2908 (aliphatic C-H stretching), 2100 (C≡C stretching). 1H NMR
(Figure S9): 8.57-8.30 (aromatic), 0.413 (36H). 13C NMR (Figure S10): 135.70–101.60.

3.6. Synthesis of 1,3,6,8-Tetraethynylpyrene (Py-T)

K2CO3 (5.70 g, 41.2 mmol) and Py-TMS (2.00 g, 3.395 mmol) were dissolved in anhy-
drous MeOH (50 mL). The mixture was stirred for two days at room temperature. Filtering
and drying the solid at 60 ◦C were done to afford a brown solid (Scheme S3). FTIR (Figure
S11): 3279 (≡C–H), 2186 (C≡C). 1H NMR (Figure S12): 8.68–8.38 (aromatic), 3.67 (s, 4H).
13C NMR (Figure S13): 133.80–82.00 ppm.

3.7. Synthesis of Tetraphenylethylene (TPE), 1,1,2,2-Tetrakis(4-bromophenyl)ethene (TPE-Br4) and
2,7,10,15-Tetrabromodibenzo[g,p]chrysene (TBN-Br4)

The synthesis detail for TPE, TPE-Br4, and TBN-Br4 are provided in the supporting
information file, and their FTIR and NMR data confirmed their chemical structure (Schemes
S4 and S5, Figures S14–S22).

3.8. Synthesis of 2,7,10,15-Tetrakis(trimethylsilyl)ethynyl)dibenzo[g,p]chrysene (TBN-TMS)

In 125 mL of diethylamine, 1.5 g of TBN-Br4 (2.33 mmol) was dissolved. Then
the solution was treated with a combination of CuI (0.11 g), PdCl2(PPh3)2 (0.08 g), and
ethynyltrimethylsilane (1.83 g, 18.63 mmol). After 24 h of stirring at 80 ◦C, the solvent
was removed under reduced pressure, and the product was then purified using flash
chromatography on a silica gel column with DCM as an eluent to produce a yellow solid
(Scheme S6, 1.3 g, 86%). FTIR (Figure S23): 3291 (C≡C-H), 3031 (aromatic C-H), 2957
(aliphatic C-H), 2156 (C≡C), 1632 (C=C). 1H NMR (Figure S24): δ 8.77, 8.47, 7.69, 0.34 (s,
36H, CH3). 13C NMR (Figure S25): 131.24, 128.74, 121.90, 105.38, 96.34, 30.59, 3.50.

3.9. Synthesis of 2,7,10,15-Tetraethynyldibenzo[g,p]chrysene (TBN-T)

The TBN-TMS (1 g, 1.40 mmol) was dissolved in 60 mL of MeOH and 40 mL of DCM
before being mixed for 24 h with 1.2 g of K2CO3 (8.65 mmol). Following this, the solvent
was removed using a vacuum. The resulting solid was dissolved with 50 mL of DCM and
then extracted with H2O to afford TBN-T (0.8 g, 80%) as an orange solid after the solvent
was removed under vacuum (Scheme S7). FTIR (KBr, cm−1, Figure S26): 3291 (C≡C-H),
3057 (aromatic C-H), 2106 (C≡C), 1604 (C=C). 1H NMR (Figure S27): 8.81 (s, 4H), 8.53 (s,
4H), 7.73 (s, 4H), 3.30 (s, 4H). 3C NMR (Figure S28): 135.70, 132.40, 127.80, 119.20, 103.50,
101.60, 84.21, 78.87.

3.10. Synthesis of Py-BSU CMP

BSU-Br2 (0.293 g, 0.669 mmol), Py-T (0.1 g, 0.333 mmol), Pd(PPh3)4 (0.038 g, 0.033 mmol),
PPh3 (0.0087 g, 0.033 mmol), and CuI (0.0063 g, 0.033 mmol) were added to Et3N (7 mL)
and DMF (7 mL) and heated to 90 ◦C for 3 days. The filtered powder was washed stepwise
with THF, MeOH, and acetone. The solid was dried under vacuum at 110 ◦C overnight to
obtain a dark red powder (Scheme 1a).
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3.11. Synthesis of TBN-BSU CMP

BSU-Br2 (0.206 g, 0.470 mmol), TBN-T (0.1 g, 0.236 mmol), Pd(PPh3)4 (0.027 g, 0.023 mmol),
PPh3 (0.006 g, 0.023 mmol), and CuI (0.006 g, 0.032 mmol) was added in Et3N (5 mL) and
DMF (5 mL) and heated to 90 ◦C for 3 days. The filtered powder was washed well step by
step with THF, MeOH, and acetone. Dried the solid under vacuum at 110 ◦C overnight
and then gained a yellow powder (Scheme 1b).

4. Conclusions

In this study, we successfully synthesized two conjugated microporous polymers,
Py-BSU CMP and TBN-BSU CMP, using Sonogashira-Hagihara cross-coupling of BSU-Br2
with Py-T and TBN-T, respectively. We characterized the chemical structures, physical
properties, porosity, and morphology of these CMPs using various analytical techniques,
including FTIR, solid-state 13C NMR spectroscopy, BET, SEM, and TEM. Both Py-BSU CMP
and TBN-BSU CMP showed excellent thermal stability with Td10 up to 383 ◦C and char
yield up to 48 wt% at 800 ◦C as measured by TGA. We also investigated the electrochemical
performance of these CMPs and found that TBN-BSU CMP exhibited better performance
due to its more extended π-conjugated system, higher specific surface area (391 m2 g−1),
and total pore volume (0.30 cm3 g−1). Under the three-electrode measurement system,
TBN-BSU CMP showed significantly better electrochemical performance with a capacitance
of 70 F g−1 at a current density of 0.5 A g−1 compared to Py-BSU CMP. TBN-BSU CMP
also demonstrated excellent stability with less capacitance decay (99.9%) in long-life-cycle
energy storage devices. Finally, we believe that these BSU-linked CMPs, Py-BSU and
TBN-BSU CMPs, hold great potential for other applications such as H2 production and gas
conversion. Overall, our findings suggest that these CMPs could be attractive candidates
for various energy storage and conversion applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28073234/s1, Scheme S1: Synthesis of THT-Br2; Scheme
S2: Synthesis of BSU-Br2; Scheme S3: Synthesis of Py-T; Scheme S4: Synthesis of TPE and TPE-Br4;
Scheme S5: Synthesis of TBN-Br4; Scheme S6: Synthesis of TBN-TMS; Scheme S7: Synthesis of TBN-T;
Figure S1: FTIR profile of THT-Br2; Figure S2: 1H-NMR spectrum of THT-Br2 in CDCl3; Figure S3:
13C-NMR spectrum of THT-Br2 in CDCl3; Figure S4: FTIR profile of BSU-Br2; Figure S5: 1H-NMR
spectrum of BSU-Br2; Figure S6: 13C-NMR spectrum of BSU-Br2; Figure S7: FT-IR spectrum of Py-Br4;
Figure S8: FT-IR spectrum of Py-TMS; Figure S9: 1H NMR spectrum of Py-TMS; Figure S10: 13C
NMR spectrum of Py-TMS; Figure S11: FT-IR spectrum of Py-T; Figure S12: 1H NMR spectrum
of Py-T; Figure S13: 13C NMR spectrum of Py-T; Figure S14: FT-IR spectrum of TPE; Figure S15:
1H NMR spectrum of TPE; Figure S16: 13C NMR spectrum of TPE; Figure S17: FT-IR spectrum of
TPE-Br4; Figure S18: 1H NMR spectrum of TPE-Br4; Figure S19: 13C NMR spectrum of TPE-Br4;
Figure S20: FTIR spectrum of TBN-Br4; Figure S21: 1H-NMR spectrum of TBN-Br4. Figure S22.
13C-NMR spectrum of TBN-Br4. Figure S23. FTIR spectrum of TBN-TMS; Figure S24: 1H NMR
spectrum of TBN-TMS; Figure S25: 13C NMR spectrum of TBN-TMS; Figure S26: FTIR spectrum of
TBN-T; Figure S27: 1H NMR spectrum of TBN-T; Figure S28: 13C NMR spectrum of TBN-T; Figure
S29: XRD profiles of Py-BSU CMP and TBN-BSU CMP; Figure S30: Weight elements contents profiles
of (a) Py-BSU CMP and (b) TBN-BSU CMP; Figure S31: TEM images of Py-BSU CMP and TBN-BSU
CMP; Figure S32: Fitted circuits of the Nyquist plots of Py-BSU CMP and TBN-BSU CMP.
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