Tuning Photophysical Properties via Positional Isomerization of the Pyridine Ring in Donor–Acceptor-Structured Aggregation-Induced Emission Luminogens Based on Phenylmethylene Pyridineacetonitrile Derivatives
Abstract
:1. Introduction
2. Results and Discussions
2.1. Synthesis and Characterization
2.2. Spectral Analysis
2.3. Aggregation-Induced Emission (AIE)
2.4. Electronic Properties
2.5. Mechanofluorochromism
2.6. OLED Device Performances
3. Materials and Methods
3.1. Materials and Characterization
3.2. Synthesis
3.3. Electrochemical Measurement
3.4. Fabrication and Characterization of Electroluminescent Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Meng, S.-G.; Zhu, X.-Z.; Zhou, D.-Y.; Liao, L.-S. Recent Progresses in Solution-Processed Tandem Organic and Quantum Dots Light-Emitting Diodes. Molecules 2023, 28, 134. [Google Scholar] [CrossRef] [PubMed]
- Fei, N.; Wei, Q.; Cao, L.; Bai, Y.; Ji, H.L.; Peng, R.X.; Huang, L.; Hao, S.Y.; Ge, Z.Y. A symmetric nonpolar blue AIEgen as nondoped fluorescent OLED emitter with low efficiency roll-off. Org. Electron. 2020, 78, 105574. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, P.; Hu, D.; Ma, Y. Recent progress in hot exciton materials for organic light-emitting diodes. Chem. Soc. Rev. 2021, 50, 1030. [Google Scholar] [CrossRef] [PubMed]
- Diana, R.; Caruso, U.; Gentile, F.S.; Di Costanzo, L.; Panunzi, B. A Novel L-Shaped Fluorescent Probe for AIE Sensing of Zinc (II) Ion by a DR/NIR Response. Molecules 2021, 26, 7347. [Google Scholar] [CrossRef]
- Liu, R.R.; Jing, J.B.; Zhang, S.; Wang, K.; Tian, W.J.; Yang, P. Aggregation-induced emission of a 2D protein supramolecular nanofilm with emergent functions. Mater. Chem. Front. 2020, 4, 1256. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Huang, S.; Shan, G.; Qin, C.; Liu, S. Polymerization-Enhanced Photophysical Performances of AIEgens for Chemo/Bio-Sensing and Therapy. Molecules 2023, 28, 78. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 29, 4332. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, B.; Das, D. Aggregation-Induced Emission or Hydrolysis by Water? the Case of Schiff Bases in Aqueous Organic Solvents. J. Phys. Chem. C 2018, 122, 3655. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Du, L.; Ma, C.; Leung, N.L.C.; Niu, Y.; Qin, A.J.; Peng, S.Q.; Sung, H.H.Y.; Williams, I.D.; et al. Drawing a clear mechanistic picture for the aggregation-induced emission process. Mater. Chem. Front. 2019, 3, 1143. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, X.; Zhang, H.; Ou, H.; Lam, J.W.Y.; Liu, Y.; Shi, L.; Ding, D.; Tang, B.Z. Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. J. Am. Chem. Soc. 2019, 141, 5359. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Tan, Y.; Gui, Y.; Yan, D.; Wang, D.; Tang, B.Z. Near-Infrared-Emissive AIE Bioconjugates: Recent Advances and Perspectives. Molecules 2022, 27, 3914. [Google Scholar] [CrossRef]
- Jiang, N.; Shen, T.; Sun, J.Z.; Tang, B.Z. Aggregation-induced emission: Right there shining. Sci. China Mater. 2019, 62, 1227. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ni, X.; Jia, S.R.; Liang, Y.; Wu, X.L.; Kong, D.L.; Ding, D. Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. Adv. Mater. 2019, 31, 1904914. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Li, Q.; Gao, Y. A novel dark resonance energy transfer-based fluorescent probe with large Stokes shift for the detection of pH and its imaging application. Dye. Pigment. 2020, 181, 108614. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, S.; Liu, Y.; Mei, J.; Chen, S.; Lu, P.; Qin, A.; Ma, Y.; Sun, J.Z.; Tang, B.Z. Tetraphenylethenyl-modified perylene bisimide: Aggregation-induced red emission, electrochemical properties and ordered microstructures. J. Mater. Chem. 2012, 22, 7387. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ma, S.; Fang, H.; Xu, B.; Sun, H.; Chan, I.; Tian, W. Insights into the Origin of Aggregation Enhanced Emission of 9, 10-Distyrylanthracene Derivatives. Mater. Chem. Front. 2017, 1, 1422. [Google Scholar] [CrossRef]
- Meti, P.; Yang, J.W.; Gong, Y.D. Aggregation induced emission properties of cruciform-type conjugated pyrazine molecules with four pendent donor groups. Dye. Pigment. 2021, 192, 109419. [Google Scholar] [CrossRef]
- Guo, Z.; Yan, C.; Zhu, W.H. High-Performance Quinoline-Malononitrile Core as a Building Block for the Diversity-Oriented Synthesis of AIEgens. Angew. Chem. Int. Ed. 2020, 59, 9812. [Google Scholar] [CrossRef] [PubMed]
- Tonga, M. Regulation of aggregation-induced emission color of α-cyanostilbene luminogens through donor engineering of amino derivatives. Tetrahedron Lett. 2021, 69, 152972. [Google Scholar] [CrossRef]
- Liu, C.C.; Yang, J.C.; Lam, J.W.; Feng, H.T.; Tang, B.Z. Chiral assembly of organic luminogens with aggregation-induced emission. Chem. Sci. 2022, 13, 611. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Q.; Zhu, W.H. Sterically Hindered Diarylethenes with a Benzobis(thiadiazole) Bridge: Enantiospecific Transformation and Reversible Photosuperstructures. Acc. Chem. Res. 2022, 55, 3136. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Q.; Lei, Z.Q.; Ma, H.C. Twisted aggregation-induced emission luminogens (AIEgens) contribute to mechanochromism materials: A review. J. Mater. Chem. C 2022, 10, 14834. [Google Scholar] [CrossRef]
- Fan, D.Y.; Wang, D.; Han, T.; Tang, B.Z. Fused Heterocyclic Polymers with Aggregation-Induced Emission: Synthesis and Applications. ACS Appl. Polym. Mater. 2022, 4, 3120. [Google Scholar] [CrossRef]
- Yang, Z.; Ge, X.Y.; Li, W.L.; Mao, Z.; Chen, X.J.; Xu, C.; Gu, F.L.; Zhang, Y.; Zhao, J.; Chi, Z.G. From para to ortho: Incarnating conventional TADF molecules into AIE-TADF molecules for highly-efficient non-doped OLEDs. Chem. Eng. J. 2022, 442, 136219. [Google Scholar] [CrossRef]
- Sun, H.; Tang, X.X.; Zhang, R.; Sun, W.H.; Miao, B.X.; Zhao, Y.; Ni, Z.H. Tetraphenylethene-substituted benzothiadiazoles: AIE and TICT properties, tunable intramolecular conjugation and application in detecting trace water in organic solvents. Dye. Pigment. 2020, 174, 108051. [Google Scholar] [CrossRef]
- Jia, J.H.; Wu, L.Y. Reversible fluorescent switching properties of pyrene-substituted acylhydrazone derivatives toward mechanical force and acid vapor with aggregation-induced emission. J. Photochem. Photobiol A 2020, 399, 112640. [Google Scholar] [CrossRef]
- Jia, J.; Wen, J. Multi-stimuli responsive fluorescence switching of D-A tetraphenylethylene functionalized cyanopyridine isomers. Tetrahedron Lett. 2020, 61, 151577. [Google Scholar] [CrossRef]
- Pratihar, S.; Bhattacharyya, A.; Prasad, E. Achieving ACQ-AIE modulation using isostructural organic fluorophores. J. Photochem. Photobiol. A 2020, 396, 112458. [Google Scholar] [CrossRef]
- Dong, P.-P.; Liu, Y.-Y.; Peng, Q.-C.; Li, H.-Y.; Li, K.; Zang, S.-Q.; Tang, B.Z. Luminescent MOFs constructed by using butterfly-like AIE ligands. Dalton Trans. 2023, 52, 1913. [Google Scholar] [CrossRef] [PubMed]
- Ahangar, A.A.; Bhat, I.A.; Dar, A.A.A. AIE in the Halogenated Anils and their Utilization as Fluorescent Probes for Explosive Nitro-aromatics. New J. Chem. 2023, 47, 4775. [Google Scholar] [CrossRef]
- Wang, D.X.; Tang, L.H.; Wang, J.J.; Zheng, Z.; Cai, H.M.; Li, L.C.; Gan, X.P.; Zhou, H.P. Three polarity-sensitive fluorescence probe possessing AIE activity and its application on lipid droplets imaging. Dye. Pigment. 2023, 211, 111082. [Google Scholar] [CrossRef]
- Miao, X.R.; Cai, Z.K.; Zou, H.Q.; Li, J.X.; Zhang, S.Y.; Ying, L.; Deng, W.L. Achieving halogen bonding enhanced ultra-highly efficient AIE and reversible mechanochromism properties of TPE-based luminogens: Position of bromine substituents. J. Mater. Chem. C 2022, 10, 8390. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.-W. Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications. Biosensors 2022, 12, 550. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, X.; Li, R.; Wang, Z.; Liu, W.; Chen, L.; Chen, N.; Dai, T.; Sun, S.; Li, Z.; et al. Achieving Molecular Fluorescent Conversion from Aggregation-Caused Quenching to Aggregation-Induced Emission by Positional Isomerization. Molecules 2022, 27, 193. [Google Scholar] [CrossRef]
- Yan, L.Q.; Li, R.J.; Shen, W.; Qi, Z.J. Multiple–color AIE coumarin–based Schiff bases and potential application in yellow OLEDs. J. Lumin. 2018, 194, 151. [Google Scholar] [CrossRef]
- Ekbote, A.; Han, S.H.; Jadhav, T.; Mobin, S.M.; Lee, J.Y.; Misra, R. Stimuli responsive AIE active positional isomers of phenanthroimidazole as non-doped emitters in OLEDs. J. Mater. Chem. C 2018, 6, 2077. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, R.Y.; Zhao, G.M.; Ma, D.Y.; Chen, H.W.; Zhang, Z.M.; Tian, W.W.; Sun, Y.M. Isomer engineering to adjusting full width at half maximum and emission wavelength for efficient solution-processed red OLEDs. Opt. Mater. 2023, 136, 113505. [Google Scholar] [CrossRef]
- Kim, B.-G.; Chung, K.; Kim, J. Molecular Design Principle of All-organic Dyes for Dye-Sensitized Solar Cells. Chem. A Eur. J. 2013, 19, 5220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasaravanan, R.; Duraimurugan, K.; Sivamani, J.; Thiagarajan, V.; Siva, A. Synthesis and photophysical properties of triphenylamine-based multiply conjugated star-like molecules. New J. Chem. 2015, 39, 7472. [Google Scholar] [CrossRef]
- Sun, H.; Liu, D.; Wang, T.; Lu, T.; Li, W.; Ren, S.; Hu, W.; Wang, L.; Zhou, X. Enhanced internal quantum efficiency in dye-sensitized solar cells: Effect of long-lived charge-separated state of sensitizers. ACS Appl. Mater. Interfaces 2017, 9, 9880. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Sun, H.; Colley, N.D.; Bridgmohan, C.N.; Liu, D.; Li, W.; Hu, W.; Zhou, X.; Wang, T.; Wang, L. Tuning the donors to control the lifetimes of charge-separated states in triazine-based donor-acceptor systems. Dye. Pigment. 2017, 136, 404. [Google Scholar] [CrossRef]
- Jana, P.; Paramasivam, M.; Khandelwal, S.; Dutta, A.; Kanvah, S. Perturbing the AIEE activity of pyridine functionalized a-cyanostilbenes with donor substitutions: An experimental and DFT study. New J. Chem. 2020, 44, 218. [Google Scholar] [CrossRef]
- Chen, M.; Chen, R.; Shi, Y.; Wang, J.; Cheng, Y.; Li, Y.; Gao, X.; Yan, Y.; Sun, J.Z.; Qin, A.J.; et al. Malonitrile-Functionalized Tetraphenylpyrazine: Aggregation-Induced Emission, Ratiometric Detection of Hydrogen Sulfide, and Mechanochromism. Adv. Funct. Mater. 2018, 28, 1704689. [Google Scholar] [CrossRef]
- Qian, J.; Tang, B.Z. AIE Luminogens for Bioimaging and Theranostics: From Organelles to Animals. Chem 2017, 3, 56. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xiao, R.; Cao, X.; Chen, Z.; Lv, X.; Zhang, Y.; Gong, S.; Zou, Y.; Yang, C. Phenoxazine-Dibenzothiophene Sulfoximine Emitters Featuring Both Thermally Activated Delayed Fluorescence and Aggregation Induced Emission. Molecules 2021, 26, 5243. [Google Scholar] [CrossRef]
- Yin, W.; Li, Y.; Li, N.; Yang, W.; An, H.; Gao, J.; Bi, Y.; Zhao, N. Hybridization of Triphenylamine and Salicylaldehyde: A Facile Strategy to Construct Aggregation-Induced Emission Luminogens with Excited-State Intramolecular Proton Transfer for Specific Lipid Droplets and Gram-Positive Bacteria Imaging. Adv. Opt. Mater. 2020, 8, 1902027. [Google Scholar] [CrossRef]
- Wang, Y.J.; Shi, Y.; Wang, Z.; Zhu, Z.; Zhao, X.; Nie, H.; Qian, J.; Qin, A.J.; Sun, J.Z.; Tang, B.Z. A Red to Near-IR Fluorogen: Aggregation-Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cell-Imaging. Chem. A Eur. J. 2016, 22, 9784. [Google Scholar] [CrossRef]
- Tebyetekerwa, M.; Cheng, Y.; Zhang, J.; Li, W.; Li, H.; Neupane, G.P.; Wang, B.; Truong, T.N.; Xiao, C.; Al-Jassim, M.M.; et al. Emission Control from Transition Metal Dichalcogenide Monolayers by Aggregation- Induced Molecular Rotors. ACS Nano 2020, 14, 7444. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, G.A.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. Available online: https://gaussian.com/glossary/g09/ (accessed on 1 March 2023).
- Ge, F.S.; Xu, F.; Gong, K.; Liu, D.Z.; Li, W.; Wang, L.C.; Zhou, X.Q. Sensitizers designed toward efficient intramolecular charge separation for p-type dye-sensitized solar cells. Dye. Pigment. 2022, 200, 110127. [Google Scholar] [CrossRef]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242. [Google Scholar] [CrossRef] [Green Version]
- Bredas, J.-L. Mind the gap! Mater. Horiz. 2014, 1, 17. [Google Scholar] [CrossRef]
- Ma, C.P.; He, J.J.; Xu, B.J.; Xie, G.Y.; Xie, Z.L.; Mao, Z.; Chi, Z.G. A TPE–benzothiazole piezochromic and acidichromic molecular switch with high solid state luminescent efficiency. RSC Adv. 2018, 8, 6252. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Sun, R.; Sun, J.; Gao, J.; Liu, R.; Zhu, Y.; Liu, D.; Liu, Z.; Zeng, J.; Zhu, Y.; et al. Donor-Acceptor structured phenylmethylene pyridineacetonitrile derivative with aggregation-induced emission characteristics: Photophysical, mechanofluorochromic and electroluminescent properties. J. Mol. Struct. 2022, 1262, 132957. [Google Scholar] [CrossRef]
- Liu, X.; Wei, X.; Miao, Y.; Tao, P.; Wang, H.; Xu, B. Triphenylamine-based small molecules with aggregation-induced emission and mechanochromic luminescence properties for OLED application. Tetrahedron 2021, 86, 132061. [Google Scholar] [CrossRef]
- Martínez-Abadía, M.; Giménez, R.; Ros, M.B. Self-Assembled α-Cyanostilbenes for Advanced Functional Materials. Adv. Mater. 2018, 30, 1704161. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Qian, J.; Liu, Y.; Zhu, N.; Xu, B.; Ho, C.-L.; Tian, W.; Wong, W.-Y. Imidazole-containing cyanostilbene-based molecules with aggregation-induced emission characteristics: Photophysical and electroluminescent properties. New J. Chem. 2019, 43, 1844. [Google Scholar] [CrossRef]
Compound | λabs (nm) | λemi (nm) | Stokes Shift (nm) | τf (ns) | Φf,s a | kf b (s−1) | knr b (s−1) |
---|---|---|---|---|---|---|---|
o-DBCNPy | 408 | 549 | 141 | 1.10 | 0.11 | 1.00 × 108 | 8.09 × 108 |
m-DBCNPy | 402 | 541 | 139 | 0.85 | 0.10 | 1.18 × 108 | 1.06 × 109 |
p-DBCNPy | 413 | 566 | 153 | 0.81 | 0.08 | 9.88 × 107 | 1.14 × 109 |
Compound | λemi (nm) | τf a (ns) | Φf,f a | kf b (s−1) | knr b (s−1) |
---|---|---|---|---|---|
o-DBCNPy | 543 | 7.96 | 0.81 | 1.02 × 108 | 2.36 × 107 |
m-DBCNPy | 541 | 3.32 | 0.47 | 1.42 × 108 | 1.60 × 108 |
p-DBCNPy | 549 | 5.94 | 0.57 | 9.60 × 107 | 7.24 × 107 |
Compound | Eox a (V) | Ered a (V) | IP b (eV) | EA c (eV) |
---|---|---|---|---|
o-DBCNPy | 0.60 | −1.98 | 5.53 | 2.95 |
m-DBCNPy | 0.62 | −2.01 | 5.55 | 2.92 |
p-DBCNPy | 0.61 | −1.93 | 5.54 | 3.00 |
Devices | Maximum Brightness (cd m−2) | Maximum Current Efficiency (CE) (cd A−1) | Maximum Power Efficiency (PE) (lm W−1) | Maximum External Quantum Efficiency (EQE) (%) | CIE Coordinates |
---|---|---|---|---|---|
o-DBCNPy | 4487 | 18.95 | 15.76 | 4.31 | 0.26, 0.70 |
m-DBCNPy | 2561 | 14.32 | 11.54 | 3.25 | 0.25, 0.71 |
p-DBCNPy | 3604 | 16.88 | 14.59 | 3.99 | 0.29, 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Chen, S.; Zhong, A.; Sun, R.; Jin, J.; Yang, J.; Liu, D.; Niu, J.; Lu, S. Tuning Photophysical Properties via Positional Isomerization of the Pyridine Ring in Donor–Acceptor-Structured Aggregation-Induced Emission Luminogens Based on Phenylmethylene Pyridineacetonitrile Derivatives. Molecules 2023, 28, 3282. https://doi.org/10.3390/molecules28073282
Sun H, Chen S, Zhong A, Sun R, Jin J, Yang J, Liu D, Niu J, Lu S. Tuning Photophysical Properties via Positional Isomerization of the Pyridine Ring in Donor–Acceptor-Structured Aggregation-Induced Emission Luminogens Based on Phenylmethylene Pyridineacetonitrile Derivatives. Molecules. 2023; 28(7):3282. https://doi.org/10.3390/molecules28073282
Chicago/Turabian StyleSun, Haiya, Shuixin Chen, Aiguo Zhong, Rong Sun, Jiajie Jin, Jiahao Yang, Dongzhi Liu, Junfeng Niu, and Shengli Lu. 2023. "Tuning Photophysical Properties via Positional Isomerization of the Pyridine Ring in Donor–Acceptor-Structured Aggregation-Induced Emission Luminogens Based on Phenylmethylene Pyridineacetonitrile Derivatives" Molecules 28, no. 7: 3282. https://doi.org/10.3390/molecules28073282
APA StyleSun, H., Chen, S., Zhong, A., Sun, R., Jin, J., Yang, J., Liu, D., Niu, J., & Lu, S. (2023). Tuning Photophysical Properties via Positional Isomerization of the Pyridine Ring in Donor–Acceptor-Structured Aggregation-Induced Emission Luminogens Based on Phenylmethylene Pyridineacetonitrile Derivatives. Molecules, 28(7), 3282. https://doi.org/10.3390/molecules28073282