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Abstract: A series of aggregation-induced emission (AIE)-featured phenylmethylene pyridineacetoni-
trile derivatives named o-DBCNPy ((Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-2-yl)acrylonitrile),
m-DBCNPy ((Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-3-yl)acrylonitrile), and p-DBCNPy ((Z)-
3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-4-yl)acrylonitrile) have been synthesized by tuning the
substitution position of the pyridine ring. The linkage manner of the pyridine ring had influences on
the molecular configuration and conjugation, thus leading to different photophysical properties. The
absorption and fluorescence emission peak showed a bathochromic shift when the linking position
of the pyridine ring changed from the meta to the ortho and para position. Meanwhile, o-DBCNPy
exhibited the highest fluorescence quantum yield of 0.81 and the longest fluorescence lifetime of
7.96 ns as a neat film among all three isomers. Moreover, non-doped organic light-emitting diodes
(OLEDs) were assembled in which the molecules acted as the light-emitting layer. Due to the relatively
prominent emission properties, the electroluminescence (EL) performance of the o-DBCNPy-based
OLED was superior to those of the devices based on the other two isomers with an external quantum
efficiency (EQE) of 4.31%. The results indicate that delicate molecular modulation of AIE molecules
could endow them with improved photophysical properties, making them potential candidates for
organic photoelectronic devices.

Keywords: aggregation-induced emission; phenylmethylene pyridineacetonitrile; positional
isomerization; fluorescence emission; non-doped organic light-emitting diode

1. Introduction

In recent years, the solid-state luminescence of organic materials has drawn much
attention due to the rapid development of optoelectronic devices and applications such
as organic light emitting diodes (OLEDs) [1–3], optical sensors [4], stimuli responses, and
anti-counterfeit printing [5]. However, many organic materials exhibit intense fluorescence
emission in dilute solutions, while the emission is severely quenched in the aggregate
state. This undesirable aggregation-caused quenching (ACQ) effect has, to a large extent,
restricted the applications of organic fluorescence materials in the solid state [6,7]. Fortu-
nately, molecules with aggregation-induced emission (AIE) characteristics, which were
first reported in 2001 by Tang’s group, have shown their superiority in terms of strong
fluorescent emission and high photostability in the aggregate state [8–10]. The concept
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of AIE describes a unique phenomenon in that some organic fluorophores are weakly
or non-emissive in a molecularly dissolved state (dilute solution), but intensely emissive
in aggregate (solid) states [11]. The mechanism responsible for the AIE phenomenon is
currently considered to be the restriction of intramolecular motions (RIM) [12–14]. As
such, AIE luminogens (AIEgens) are usually characterized by propeller-shaped peripheral
intramolecular rotors [15] or twisted configurations [16].

To date, several AIEgens, including silole [17], tetraphenylethene (TPE) [18], dis-
tyrylanthracene [19], tetraphenylpyrazine [20], quinoline-malononitrile [21], and cyanos-
tilbene [22], have been reported. To exploit the fluorescence properties of AIEgens in
aggregate states and to promote their application in solid-supported materials and devices,
several strategies have been proposed in terms of molecular design. One strategy is to
develop AIEgens with novel structures additional to the “traditional” silole and TPE core.
For instance, chiral AIEgens based on 1,1′-bi-2-naphthol, metal complexes, and other chiral
alkyl chains were reported and applied in circularly polarized organic light-emitting diodes
(CPOLEDs) to pursue higher contrast and better emission efficiency in 3D displays [23].
Diarylethenes containing a benzobis(thiadiazole) linkage with large steric hindrance have
been reported, of which some compounds show excellent potential for super-resolution
imaging [24]. A series of organometallic or coordination AIEgens have been synthesized
as mechanochromic luminescence (MCL) materials with better photophysical properties,
richer emission colors, and more controllable MCL effects [25]. AIE polymers characterized
by fused heterocyclic building blocks were also developed for the practical application of
morphological structure visualization (e.g., microphase separation of polymer blends) and
external stimuli response [26]. These research efforts have paved the way for the devel-
opment of AIE-based optoelectronic devices, yet the synthetic complexity and material
cost (such as the molecules containing noble metals) are currently the limitations for the
broader applications of these AIEgens. Another strategy is the systematic structural tuning
of the present AIEgens to optimize the solid-state luminescent properties. For organic fluo-
rophores that are facilely modified, the substitution position effect of the functional groups
or building blocks significantly affects the conjugation, intramolecular charge distribution,
and transfer, and subsequently the photophysical properties [27–37]. Though some research
has been performed that has provided the optimized substitution manner of the AIEgens,
which led to the enhanced performance of the solid photoelectronic devices [38–40], more
detailed investigations are still in demand to reveal and to further manipulate the detailed
structure¬–property relationship.

To this end, a series of phenylmethylene pyridineacetonitrile derivatives bearing a
triphenylamine (TPA) structure and pyridine ring with the nitrogen atom at the ortho
(o-DBCNPy), meta (m-DBCNPy), and para (p-DBCNPy) position were designed and syn-
thesized. The propeller-like TPA moiety was introduced as a strong electron donor and to
prevent intimate π–π intermolecular stacking. The acceptor strength was tuned by varying
the linking manner of the pyridyl ring. The photophysical properties of the compounds in
solutions and the solid state were investigated. The emission performances in solid-state
applications, including mechanofluorochromism and non-doped OLEDs, were studied and
correlated to the substitutional position of the pyridyl group.

2. Results and Discussions
2.1. Synthesis and Characterization

The molecules were synthesized through Knoevenagel condensation between pyridinyl
acetonitriles and 4-(di-p-tolylamino)benzaldehyde with yields of 65–75% (Scheme 1), and
their structures were characterized by 1H NMR, 13C NMR, and HRMS (Figures S1–S6,
Supplementary Materials). For solid fluorescence materials, thermal stability was a prereq-
uisite before they were employed in the devices. Thermogravimetric analysis (TGA) results
of the compounds are shown in Figure S7. The thermal decomposition temperatures (Td,
5% weight loss) for o-DBCNPy, m-DBCNPy, and p-DBCNPy were 375 ◦C, 344 ◦C, and
343 ◦C, respectively, showing relatively good thermal stability.
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Scheme 1. Synthetic routes of the compounds.

2.2. Spectral Analysis

Figure 1 shows the UV-vis absorption spectra of the compounds in solvents with
different polarities. Two absorption peaks can be observed for all three molecules at around
295 nm and in the range of 400–420 nm: the former was ascribed to the TPA-localized
electronic π–π* transition [41,42], and the latter with a longer wavelength was due to
the intramolecular charge transfer (ICT) resulting from electronic transition [43,44]. The
absorption peak wavelength was barely shifted in the different solvents, indicating that
the ground state charge transfer was hardly affected by the solvent polarity. Among the
three molecules, p-DBCNPy showed the most redshifted absorption peak, which was due
to the increased conjugation between the para-pyridine and the TPA-acrylonitrile part [30].
Specifically, p-DBCNPy had the largest absorption peak wavelength in THF (413 nm) in
comparison to those of o-DBCNPy (408 nm) and m-DBCNPy (402 nm).
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Figure 1. Absorption spectra of o-DBCNPy (a), m-DBCNPy (b), and p-DBCNPy (c) in 1 × 10−5 M
solutions (THF, tetrahydrofuran; DCM, dichloromethane; DMF, N, N-dimethylformamide).

The fluorescence emission spectra of the molecules are shown in Figure 2a–c. The
solvent polarity had a large effect on the emission. On the one hand, a general trend was
observed for all three fluorophores that the fluorescence emission peak was redshifted
(62 nm for o-DBCNPy, 57 nm for m-DBCNPy, and 81 nm for p-DBCNPy, respectively) and
in the meantime, the emission intensity was diminished when the solvent polarity increased
(from toluene to acetonitrile). The trend of increasing Stokes shift with the enhancement
of the solvent polarity was also illustrated by the Lippert–Mataga model. As shown in
Figure 2d, Stokes shifts of the molecules in different solvents rose linearly with a slope
of over 5000 as the solvent orientation polarizability (∆f ) grew, indicative of an obvious
solvatochromic effect. On the other hand, the substituent positions of the pyridine ring
also affected the emission property. For p-DBCNPy, the best conjugation and the strongest
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donor–acceptor interaction result in the most redshifted emission peak (566 nm in THF).
In comparison, due to the less conjugated meta-linkage mode, the fluorescent emission
peak wavelength was 25 nm shorter for m-DBCNPy in THF. The photophysical data of the
isomers in THF are summarized in Table 1.
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Figure 2. Fluorescence emission spectra of o-DBCNPy (a), m-DBCNPy (b), and p-DBCNPy (c) in
1 × 10−5 M solutions (THF, tetrahydrofuran; DCM, dichloromethane; DMF, N, N-dimethylformamide);
the plot of Stokes shifts of the three isomers in different solvents versus solvent orientation polarizability
(∆f ) (d).

Table 1. Photophysical data of the isomers in 1 × 10−5 M THF solutions.

Compound λabs
(nm)

λemi
(nm)

Stokes
Shift (nm)

τf
(ns) Φf,s

a kf
b

(s−1)
knr

b

(s−1)

o-DBCNPy 408 549 141 1.10 0.11 1.00 × 108 8.09 × 108

m-DBCNPy 402 541 139 0.85 0.10 1.18 × 108 1.06 × 109

p-DBCNPy 413 566 153 0.81 0.08 9.88 × 107 1.14 × 109

a Fluorescence quantum yield in THF solutions. Rhodamine B (0.7 in ethanol) was used as the reference [18]. b kf,
radiative decay rate constant (kf = Φf,s/τf); knr, nonradiative decay rate constant (knr = 1/τf − kf) [43].

The photophysical properties of the molecules at solid state (as neat film) were in-
vestigated. Figure S8 shows that the absorption bands of the compound neat films were
around 410 nm, and the emission peak wavelengths were slightly different (543 nm for
o-DBCNPy, 541 nm for m-DBCNPy, and 548 nm for p-DBCNPy). The fluorescence life-
times of the solid-state compounds were elongated in comparison to those in solutions
(Figure 3). Specifically, the o-DBCNPy film showed the longest fluorescence lifetime of
7.96 ns, 7.2 times extended when compared to the emission lifetime in THF. Meanwhile,
the fluorescence quantum yields of the neat films of all compounds (Φf,f) were measured.
O-DBCNPy film was highly emissive, with the Φf,f reaching 0.81, showing good poten-
tial as an organic light-emitting material. In comparison, m-DBCNPy showed the lowest
Φf,f (0.49) among all three isomers, which was attributed to its short fluorescence lifetime.
Overall, the enhanced emission intensity and the extended fluorescence lifetime of the
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non-doped films indicates that the formation of the aggregate state may affect the decay
pathway of the excited state, i.e., suppressing the nonradiative decay [45–47]. The different
fluorescence lifetimes and quantum yields among the isomers were probably derived from
the varied molecular configurations and conjugations in the solid state due to the substitu-
tional position of the pyridine ring [48]. For o-DBCNPy, the strongest emission intensity
might be derived from a more planarized molecular configuration led by the interaction
between the ortho-nitrogen atom and the vinyl hydrogen atom (-CH=C-). The fluorescence
emission data of the compound films are listed in Table 2.
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Figure 3. Fluorescence lifetimes of o-DBCNPy (a), m-DBCNPy (b), and p-DBCNPy (c) in THF and
as neat film.

Table 2. Fluorescence properties of the neat films of the molecules.

Compound λemi
(nm)

τf
a

(ns) Φf,f
a kf

b

(s−1)
knr

b

(s−1)

o-DBCNPy 543 7.96 0.81 1.02 × 108 2.36 × 107

m-DBCNPy 541 3.32 0.47 1.42 × 108 1.60 × 108

p-DBCNPy 549 5.94 0.57 9.60 × 107 7.24 × 107

a Absolute fluorescence quantum yields of the films (Φf,f) were obtained by a calibrated integrating sphere. b kf,
radiative decay rate constant (kf = Φf,s/τf); knr, nonradiative decay rate constant (knr = 1/τf − kf).

2.3. Aggregation-Induced Emission (AIE)

To understand the spectral properties of the compounds from solutions to aggregate
state, the absorption and fluorescence emission spectra were recorded in the THF (good
solvent)–water (poor solvent) mixtures with increasing water fractions (f w, by volume %).
As shown in Figure S9, the absorption of the compounds was barely affected when f w was
below 70%. When the water ratio further increased, the absorption band was redshifted
with a level-off absorption tail extended to a longer wavelength. This was due to the Mie
scattering by the nano-aggregates of the molecules at high f w [49]. The fluorescence emis-
sion spectra of all isomers are shown in Figure 4a–c, and the variations in emission intensity
and peak position with respect to the f w are also shown in Figure 4d–f. As the f w increased
to 70–80%, the emission intensity steadily dropped with the fluorescence quantum yield in
solution (Φf,s), decreased to less than 0.02, and the emission maximum wavelength shifted
bathochromatically. The diminished fluorescence emission can be explained by the twisted
intramolecular charge transfer process of a typical donor–acceptor (D–A) fluorophore in
solvents with high polarity [50]. The redshifted emission was due to solvatochromism.
When f w increased, the fluorescence emission was intensified drastically. At f w = 95%, the
dispersions of the three molecules showed significantly increased Φf,s values of 0.25–0.34.
This could be attributed to the formation of aggregates [47,51]. Considering that (1) the
molecules were highly emissive in the solid state and (2) they showed significantly enhanced
fluorescence emission during the aggregate formation, the DBCNPy isomers belonged to
typical AIE molecules.
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(insets are SEM images of the particles).

Moreover, the formation of the nano-aggregates of the isomers in THF–water mixtures
at high f w is evidenced by the results from the dynamic light scattering (DLS) and scanning
electron microscopy (SEM) characterizations. Figure 4g–i shows that the average sizes of
the aggregates were within the range of 120–150 nm. The particles can also be observed in
the inset SEM images, which support the DLS data.

2.4. Electronic Properties

To gain insight into the molecular structures and the electronic properties of the
DBCNPy isomers, density functional theory (DFT) calculations were performed with
the Gaussian 09 program at the B3LYP/6-311g(d) basis set [52]. The optimized molecular
geometries (Figure 5) revealed the different planarities of the isomers’ acceptor moieties. The
torsion angle between the pyrimidine ring and the central -C=C-plane increased from 11.22◦ in
p-DBCNPy to 31.43◦ in m-DBCNPy, which was presumably due to the repulsion between the
cyano group and the lone-pair electrons on the meta-nitrogen atom. In o-DBCNPy, however,
the torsion angle was decreased to only 0.98◦. This could be attributed to the interaction
between the ortho-nitrogen atom and the hydrogen on the vinyl group (-CH=C-) The torsion
extent of the pyridine ring in the three isomers might partly explain the differences in their
fluorescence properties: higher planarity between the imide and the pyridine led to elongated
fluorescence lifetime and more intense fluorescence emission. In addition, the distributions
of the frontier molecular orbitals are also depicted in Figure 5. The highest occupied
molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) of the
isomers were spatially separated, with the former mainly located on the TPA moiety and
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the latter distributed on the imide and pyridine part, demonstrating the D–A feature of the
isomers [53].
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Cyclic voltammetry (CV) analysis was carried out and the CV curves of the fluorophores
were recorded (Figure 6). The oxidation potential (Eox) of the three molecules from the quasi-
reversible oxidation peak of the triphenylamine part were similar (0.60–0.62 V). The reduction
potentials (Ered) showed a slight difference among the isomers, and were determined to be
−1.98V, −2.01V, and −1.93V for o-DBCNPy, m-DBCNPy, and p-DBCNPy, respectively.
Accordingly, the vertical ionization potential (IP) and the vertical electron affinity (EA)
were estimated by the equations IP = 4.93 eV + Eox and EA = 4.93 eV + Ered [54,55], and
the data are given in Table 3. The results indicate that the para-pyridine showed a stronger
electron-accepting ability than the other two isomers. This is also in accordance with the
results of the spectral analysis. Notably, the IP and EA values matched well with most of the
hole- and electron-transporting materials, meaning that these isomers were energetically
appropriate to be assembled into electroluminescence devices as emitting materials.
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Table 3. Electrochemical data of the isomers.

Compound Eox
a (V) Ered

a (V) IP b (eV) EA c (eV)

o-DBCNPy 0.60 −1.98 5.53 2.95
m-DBCNPy 0.62 −2.01 5.55 2.92
p-DBCNPy 0.61 −1.93 5.54 3.00

a Oxidation (reduction) potential, estimated from the onset of the first oxidation (reduction) wave, V versus
Ag/Ag+; b vertical ionization potential, IP = 4.93 eV + Eox (the value (minus) 4.93 eV was obtained from the
calibration of the Ag+ electrode versus vacuum) [44]; c vertical electron affinity, EA = 4.93 eV + Ered.

2.5. Mechanofluorochromism

Considering that p-DBCNPy was relatively sensitive toward the stimulus of external
force, the mechanofluorochromic (MFC) properties of the other two isomers were also
investigated, and their emission spectra and powder X-ray diffraction (XRD) patterns at
different states are demonstrated in Figure 7. Unfortunately, the MFC effect of o-DBCNPy
and m-DBCNPy was not as prominent as that of p-DBCNPy. Although o-DBCNPy and m-
DBCNPy showed good reversibility during grinding and solvent fuming, the wavelength
changes were no more than 20 nm. This was probably due to a smaller change in the
powder morphology under external force: partially losing their crystallinity instead of
fully converting into an amorphous form [56]. After hard grinding, the XRD patterns of o-
DBCNPy and m-DBCNPy retained some features of a microcrystalline structure, as shown
in Figure 7d,e. Furthermore, the differential scanning calorimetry (DSC) curves (Figure S10)
show only weak exothermic peaks at 93.5 ◦C for o-DBCNPy and 99.7 ◦C for m-DBCNPy,
indicative of a smaller extent of the cold crystallization process than that of p-DBCNPy [57].
Meanwhile, although attempts were made to grow single crystals of o-DBCNPy and m-
DBCNPy, the needle-like crispy microcrystals were unable to be analyzed by single-crystal
X-ray diffraction. In comparison, p-DBCNPy easily formed well-ordered microcrystals or
even single crystals through slow solvent evaporation, and the orderly arranged molecules
transformed into an amorphous state upon grinding (Figure 7f). The results indicate that
the substitution position of the pyridine ring could affect the crystallinity and MFC property
of the molecule series.
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the each solid under 365 nm UV light.
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2.6. OLED Device Performances

Non-doped organic light-emitting diode (OLED) devices based on the three molecules
were fabricated due to their relatively high fluorescence quantum yields in solid state (film)
and appropriate IPs and EAs. The devices were assembled based on the following configura-
tion: ITO/MoO3 (hole injection layer, 3 nm)/TAPC (hole-transporting layer, 50 nm)/TCTA
(exciton-blocking layer, 10 nm)/DBCNPy isomers (light-emitting layer, 25 nm)/TPBi
(electron-transporting layer, 50 nm)/LiF (electron injection layer, 1 nm)/Al [58]. The
electroluminescence (EL) characteristics of the devices are demonstrated in Figure 8, and
the data are summarized in Table 4. All OLEDs emit green light with a brightness exceed-
ing 2000 cd m2, and the light colors of the o-DBCNPy- and m-DBCNPy-based devices
were close to pure green (color coordinates (0.21, 0.71)). The best electroluminescence
performance was achieved by the device base on o-DBCNPy with a maximum current effi-
ciency (CE), power efficiency (PE), and external quantum efficiency (EQE) of 18.95 cd A−1,
15.76 lm W−1, and 4.31%, respectively, and the color coordinates are (0.26, 0.70). By com-
paring the EL performances among the three devices, it was observed that the parameters
(especially EQE) were roughly in accordance with the fluorescence quantum yields of the
non-doped films (Φf,f). In terms of EQE, the o-DBCNPy-based device was among the
best of the traditional fluorescent OLEDs based on cyanostilbene derivatives reported so
far [59,60], including doped and non-doped devices. In addition, the EL performances and
the structural modification feasibility made it possible to produce white OLEDs using the
DBCNPy molecule series as the emitting materials.
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Table 4. Electroluminescence (EL) performance of non-doped OLEDs based on the molecules.

Devices
Maximum
Brightness
(cd m−2)

Maximum Current
Efficiency (CE)

(cd A−1)

Maximum Power
Efficiency (PE)

(lm W−1)

Maximum External
Quantum Efficiency

(EQE) (%)

CIE
Coordinates

o-DBCNPy 4487 18.95 15.76 4.31 0.26, 0.70
m-DBCNPy 2561 14.32 11.54 3.25 0.25, 0.71
p-DBCNPy 3604 16.88 14.59 3.99 0.29, 0.67

3. Materials and Methods
3.1. Materials and Characterization

Starting materials including the donor molecule 4-(di-p-tolylamino)benzaldehyde, the
acceptor building block 2-(pyridin-2-yl)acetonitrile, 3-(pyridin-2-yl)acetonitrile, 4-(pyridin-
2-yl)acetonitrile, and MoO3, LiF, 4,4′-cyclohexylidene bis[N, N-bis(p-tolyl)aniline] (TAPC),
1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), and 4,4′,4”-tris(carbazol-9-yl)-
triphenylamine (TCTA) for device fabrication were obtained from Energy Chemical (Shang-
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hai, China), Bide Pharmatech Co., Ltd. (Shanghai, China) and Aladdin Biochemical Tech-
nology Co., Ltd. (Shanghai, China), and were used without further treatment. All solvents
were of AR grade and were purified by the established procedures.

Nuclear magnetic resonance measurements, including 1H NMR (400 MHz) and
13C NMR (100 MHz), were performed on Bruker spectrometers at 25 ◦C. High-resolution
mass spectroscopy (HRMS) analysis was performed on a Bruker micrOTOF-Q II mass
spectrometer. For spectral analysis, the absorption and fluorescence emission spectra were
acquired on a Bruker UV/vis spectrometer and a Bruker fluorescence spectrophotome-
ter, respectively. Time-resolved fluorescence analysis and fluorescence quantum yield
measurements were carried out on an Edinburgh FLS1000 (Livingston, UK) fluorescence
spectrophotometer. For nano-aggregates, the particle size was measured through dynamic
light scattering (DLS) measurements via a Malvern Zetasizer Nano ZS90 (Malvern Panalyt-
ical, Malvern, UK) size analyzer and observed using a Zeiss Sigma 300 (Jena, Germany)
scanning electron microscope (SEM). The microcrystalline structure of the compounds was
analyzed via an X-ray diffraction (XRD) SmartLab (Rigaku, Tokyo, Japan) X-ray diffrac-
tometer at room temperature.

3.2. Synthesis

General synthetic method of the molecules. The target compounds were synthesized
according to a previous report [57]. Briefly, 4-(di-p-tolylamino)benzaldehyde (1 equiv.) and
(pyridin-2-yl)acetonitrile derivatives (1.2 equiv.) were dissolved in 20–30 mL acetonitrile,
and a catalytic amount of piperidine (usually three drops per mmol of the reactant) was
added into the solution. The reactant mixture was stirred at 85 ◦C for 8–10 h and was then
filtered. The precipitate was rinsed with cold ethanol and recrystallized in a mixed solvent
of cyclohexane and dichloromethane (10:1–15:1, v/v).

Synthesis and characterization of (Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-2-
yl)acrylonitrile (o-DBCNPy). o-DBCNPy was obtained as a bright yellow solid from the starting
material 4-(di-p-tolylamino)benzaldehyde and 2-(pyridin-2-yl)acetonitrile (yield: 71%). 1H NMR
(400 MHz, CDCl3, δ): 8.60 (d, J = 4.4 Hz, 1H), 8.34 (s, 1H), 7.85 (d, J = 8.8 Hz, 2H), 7.77–7.69
(m, 2H), 7.23–7.20 (m, 1H), 7.13 (d, J = 8.4 Hz, 4H), 7.07 (d, J = 8.4 Hz, 4H), 6.97 (d, J = 8.8 Hz,
2H), 2.34 (s, 6H). 13C NMR (100 MHz, CDCl3, δ): 152.02, 150.96, 149.46, 144.62, 143.82, 137.24,
134.53, 131.61, 130.26, 126.10, 125.00, 122.62, 120.76, 119.23, 118.88, 105.18, 20.96. HRMS (ESI) m/z:
[M + H]+ calcd for C28H23N3, 402.1965; found, 402.1961.

Synthesis and characterization of (Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-3-
yl)acrylonitrile (m-DBCNPy). m-DBCNPy was acquired as a pale yellow solid from 4-(di-p-
tolylamino)benzaldehyde and 3-(pyridin-2-yl)acetonitrile (yield: 66%). 1H NMR (40 MHz,
CDCl3, δ): 8.88 (d, J = 2.0 Hz, 1H), 8.57 (d, J = 4.8 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.76 (d,
J = 8.8 Hz, 2H), 7.42 (s, 1H), 7.36–7.30 (m, 1H), 7.14 (d, J = 8.4 Hz, 4H), 7.07 (d, J = 8.4 Hz, 4H),
6.98 (d, J = 8.8 Hz, 2H), 2.35 (s, 6H). 13C NMR (100 MHz, CDCl3, δ): 150.91, 149.22, 146.78,
143.77, 143.28, 134.59, 133.00, 131.38, 130.98, 130.28, 126.06, 124.86, 123.54, 119.31, 118.22, 103.19,
20.96. HRMS (ESI) m/z: [M + H]+ calcd for C28H23N3, 402.1965; found, 402.1959.

Synthesis and characterization of (Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-4-
yl)acrylonitrile (p-DBCNPy). p-DBCNPy was obtained as a bright yellow crystal from
4-(di-p-tolylamino)benzaldehyde and 4-(pyridin-2-yl)acetonitrile (yield: 75%). The charac-
terization data have been reported by [57].

3.3. Electrochemical Measurement

The CHI 660E Electrochemical Workstation was used to conduct the measurements
of the electrochemical properties. A three-electrode set up, calibrated by utilizing the fer-
rocene/ferrocenium (Fc/Fc+) redox couple, was used in the measurements. The Ag/AgNO3
electrode was chosen as the reference electrode. Tetra-butyl ammonium hexafluorophos-
phate (TBAPF6) was dissolved in dichloromethane (0.1 M) as the electrolyte.
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3.4. Fabrication and Characterization of Electroluminescent Devices

Indium tin oxide (ITO) conducting glass was washed, cleaned ultrasonically, and
treated with ultraviolet and ozone prior to use. The compounds were sublimated at the
condition of 200 ◦C and 1 × 10−3 Pa. The light-emitting layer, electron/hole transport
layer, and electrode were deposited onto the ITO substrates at a pressure of 5 × 10−4 Pa.
The electroluminescence characteristics and the emission spectra of the devices were mea-
sured by a Keithey 2400 (Tektronix, Inc., Beaverton, OR, USA) source meter and a PR655
(North Syracuse, NY, USA) SpectraScan® spectrometer.

4. Conclusions

In conclusion, three phenylmethylene pyridineacetonitrile derivatives (o-DBCNPy,
m-DBCNPy, and p-DBCNPy) with various substitution positions of the pyridine ring have
been synthesized via Knoevenagel condensation in good yields. All three compounds were
characterized with aggregation-induced emission (AIE) features since they were highly
emissive in the solid state and their fluorescence emission showed significant enhancement
during aggregate formation. The positional isomerization of the pyridine ring has affected
the configuration and conjugation of the molecules, resulting in different photophysical
properties. From m-DBCNPy to o-DBCNPy and to p-DBCNPy, the absorption and fluo-
rescence emission peaks were bathochromically shifted in solutions and as neat films due
to the enhanced intramolecular conjugation. Especially, o-DBCNPy exhibited the highest
fluorescence quantum yield of 0.81 and the longest fluorescence lifetime of 7.96 ns as neat
film of all three isomers. Moreover, non-doped organic OLEDs were fabricated using the
molecules as the light-emitting layer. The best EL performance of all devices was achieved
by the one based on o-DBCNPy. The maximum CE, PE, and EQE were 18.95 cd A−1,
15.76 lm W−1, and 4.31%, respectively, with color coordinates of (0.26, 0.70), which were
close to that of the pure green color. The EL performances were mainly derived from
the high fluorescence quantum yield of the o-DBCNPy neat film. Therefore, the delicate
molecular tuning of AIEgens could provide them with enhanced photophysical properties,
which makes them promising candidates for organic photoelectronic devices.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28073282/s1. Figure S1: 1H NMR (400 MHz, CDCl3)
spectrum of compound o-DBCNPy; Figure S2: 13C NMR (100 MHz, CDCl3) spectrum of compound
o-DBCNPy; Figure S3: HRMS spectrum of compound o-DBCNPy; Figure S4: 1H NMR (400 MHz,
CDCl3) spectrum of compound m-DBCNPy; Figure S5: 13C NMR (100 MHz, CDCl3) spectrum of com-
pound m-DBCNPy; Figure S6: HRMS spectrum of compound m-DBCNPy; Figure S7: TGA curves
of o-DBCNPy, m-DBCNPy, and p-DBCNPy; Figure S8: Absorption (a) and fluorescence emission
(b) spectra of the non-doped film of the compounds; Figure S9: Absorption spectra of o-DBCNPy (a),
m-DBCNPy (b), and p-DBCNPy (c) in THF/water mixtures. Concentration: 1 × 10−5 M; Figure S10:
DSC curves of o-DBCNPy (a) and m-DBCNPy (b) in different states.
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