Between the Devil and the Deep Blue Sea—Resveratrol, Sulfotransferases and Sulfatases—A Long and Turbulent Journey from Intestinal Absorption to Target Cells
Abstract
:1. Introduction
2. Bioavailability of Resveratrol
3. The Sulfate Metabolites
3.1. Anticancer Activity
3.2. The Sulfate Metabolites’ Anti-Inflammatory Activity
3.3. Anti-Aging Effect
Assay | Resveratrol | Resveratrol-3-O-4′-O-Sulfate | Resveratrol-3-O-Sulfate | Ref. |
---|---|---|---|---|
COX-1 inhibition at 34 µM (%) | 75.2 ± 4.53 | 63.2 ± 3.39 | 74.3 ± 0.99 | [70] |
COX-2 inhibition at 34 µM (%) | 72.2 ± 4.67 | 65.8 ± 7.64 | 62.0 ± 1.7 | [70] |
NF-κB inhibition (%) | 75.7 ± 2.12 | 64.0 ± 2.26 | 33.0 ± 4.81 | [70] |
Nitric Oxide inhibition (%) | 71.8 ± 3.5 | 56.8 ± 5.9 | 41.0 ± 0.7 | [70] |
Aromatase inhibition (%) | 34.8 ± 1.21 | 30.4 ± 0.56 | 28.2 ± 1.12 | [70] |
DPPH inhibition (%) | 65.2 ± 2.0 | 42.8 ± 2.5 | 68.0 ± 1.9 | [70] |
Cytotoxicity KB cells survival at 20 µg/mL (%) | 47.8 ± 5.2 | 70.3 ± 8.8 | 108.5 ± 10.3 | [70] |
Cytotoxicity MCF-7 cells survival at 20 µg/mL (%) | 38.6 ± 3.5 | 103.4 ± 8.8 | 51.7 ± 0.2 | [70] |
COX-1 IC50 (µM) | 6.65 ± 2.5 | 5.55 ± 1.73 | 3.60 ± 0.8 | [70] |
COX-1 IC50 (µM) | 1.1 ± 0.44 | 5.1 ± 0.55 | 68 ± 2.8 | [71] |
COX-2 IC50 (µM) | 0.75 | 8.95 | 7.53 | [70] |
COX-2 IC50 (µM) | 1.3 ± 0.40 | 2.5 ± 0.35 | >300 | [71] |
Nitric Oxide IC50 (µM) | 0.173 ± 0.05 | 18.2 ± 0.99 | - | [70] |
IC50 (µM) RAW 264.7 cells | 15.0 ± 2.6 | [70] | ||
DPPH IC50 (µM) | 178.5 ± 9.3 | - | 219.2 ± 3.1 | [70] |
Estrogenic activity (yeast) EC50 hERα (M) | - | - | 3.80 × 10−4 ± 0.01 | [88] |
Estrogenic activity (yeast) EC50 hERβ (M) | - | - | 2.20 × 10−4 ± 0.05 | [88] |
QR1CD (µM) | 21 ± 0.46 | >6.9 | 2.6 ± 0.38 | [70] |
SIRT1 Ka (µM) | 32.2 ± 3.4 | 36.4 ± 6.7 | 52.6 ± 6.6 | [71] |
3.4. Delipidating Activity
3.5. Antiestrogenic Activity
3.6. Modulating the Integrity of the Tight Junction Barrier and the Composition of Intestinal Microflora
3.7. In Silico Calculations
Assay | Resveratrol | Resveratrol-4′-O-Sulfate | Resveratrol-3-O-Sulfate | Resveratrol-3-O-4′-O-Sulfate | Ref. |
---|---|---|---|---|---|
Formula | C14H12O3 | C14H12O6S | C14H12O6S | C14H12O9S2 | [111] |
MW | 228.24 | 308.31 | 308.31 | 388.37 | [111] |
#Rotatable bonds | 2 | 4 | 4 | 6 | [111] |
#H-bond acceptors | 3 | 6 | 6 | 9 | [111] |
#H-bond donors | 3 | 3 | 3 | 3 | [111] |
MR Molar refractivity | 67.88 | 78.08 | 78.08 | 88.28 | [111] |
Topological Polar Surface Area (TPSA) (Å2) | 60.69 | 112.44 | 112.44 | 164.19 | [111] |
iLOGP | 1.71 | 1.25 | 0.69 | 0.50 | [111] |
XLOGP3 | 3.13 | 2.53 | 2.53 | 1.94 | [111] |
WLOGP | 2.76 | 3.31 | 3.31 | 3.87 | [111] |
MLOGP | 2.26 | 1.64 | 1.64 | 1.16 | [111] |
Silicos-IT Log P | 2.57 | 0.94 | 0.94 | −0.62 | [111] |
Consensus Log P | 2.48 | 1.94 | 1.82 | 1.37 | [111] |
ESOL Log S | −3.62 | −3.50 | −3.50 | −3.43 | [111] |
Ali Log S | −4.07 | −4.54 | −4.54 | −5.01 | [111] |
Silicos-IT LogSw | −3.29 | −2.93 | −2.93 | −2.54 | [111] |
ESOL Solubility (mg/mL) | 5.51 × 10−2 | 9.65 × 10−2 | 9.65 × 10−2 | 1.45 × 10−1 | [111] |
Ali Solubility (mg/mL) | 1.93 × 10−2 | 8.94 × 10−3 | 8.94 × 10−3 | 3.78 × 10−3 | [111] |
Silicon-IT Solubility (mg/mL) | 1.18 × 10−1 | 3.61 × 10−1 | 3.61 × 10−1 | 1.11 × 10 | [111] |
ESOL Solubility (mol/L) | 2.41 × 10−4 | 3.13 × 10−4 | 3.13 × 10−4 | 3.72 × 10−4 | [111] |
Ali Solubility (mol/L) | 8.44 × 10−5 | 2.90 × 10−5 | 2.90 × 10−5 | 9.72 × 10−6 | [111] |
Silicos-IT Solubility (mol/L) | 5.16 × 10−4 | 1.17 × 10−3 | 1.17 × 10−3 | 2.86 × 10−3 | [111] |
ESOL Class | Soluble | Soluble | Soluble | Soluble | [111] |
Ali Class | Moderately soluble | Moderately soluble | Moderately soluble | Moderately soluble | [111] |
Silicos-IT class | Soluble | Soluble | Soluble | Soluble | [111] |
Synthetic Accessibility | 2.02 | 2.71 | 2.84 | 3.01 | [111] |
Bioavailability Score | 0.55 | 0.56 | 0.56 | 0.11 | [111,126] |
Lipinski #violations | 0 | 0 | 0 | 0 | [111,117] |
Ghose #violations | 0 | 0 | 0 | 0 | [111,118] |
Veber #violations | 0 | 0 | 0 | 1 (TPSA > 140) | [111,119] |
Egan #violations | 0 | 0 | 0 | 1 (TPSA > 131.6) | [111,120] |
Muegge #violations | 0 | 0 | 0 | 1 (TPSA > 150) | [111,121] |
Leadlikeness #violations | 1 (MW < 250) | 0 | 0 | 1 (MW > 350) | [111,122] |
PAINS #alerts | 0 | 0 | 0 | 0 | [111,123] |
Brenk #alerts | 1 (stilbene) | 2 (stilbene, sufonic acid) | 2 (stilbene, sulfonic acid) | 2 (stilbene, sufonic acid) | [111,124] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Constant, J. Alcohol, Ischemic Heart Disease, and the French Paradox. Coron. Artery Dis. 1997, 8, 645–649. [Google Scholar] [CrossRef]
- Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French Paradox Revisited. Front. Pharmacol. 2012, 3, 141. [Google Scholar] [CrossRef] [Green Version]
- Renaud, S.; de Lorgeril, M. Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart Disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020, 10, 1111. [Google Scholar] [CrossRef] [PubMed]
- Rocha-González, H.I.; Ambriz-Tututi, M.; Granados-Soto, V. Resveratrol: A Natural Compound with Pharmacological Potential in Neurodegenerative Diseases. CNS Neurosci. Ther. 2008, 14, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Jhanji, M.; Rao, C.N.; Sajish, M. Towards Resolving the Enigma of the Dichotomy of Resveratrol: Cis- and Trans-Resveratrol Have Opposite Effects on TyrRS-Regulated PARP1 Activation. GeroScience 2021, 43, 1171–1200. [Google Scholar] [CrossRef] [PubMed]
- Jhanji, M.; Rao, C.N.; Massey, J.C.; Hope, M.C.; Zhou, X.; Keene, C.D.; Ma, T.; Wyatt, M.D.; Stewart, J.A.; Sajish, M. Cis- and Trans-Resveratrol Have Opposite Effects on Histone Serine-ADP-Ribosylation and Tyrosine Induced Neurodegeneration. Nat. Commun. 2022, 13, 3244. [Google Scholar] [CrossRef]
- Hsieh, T.; Lu, X.; Wang, Z.; Wu, J.M. Induction of Quinone Reductase NQO1 by Resveratrol in Human K562 Cells Involves the Antioxidant Response Element ARE and Is Accompanied by Nuclear Translocation of Transcription Factor Nrf2. Med. Chem. 2006, 2, 275–285. [Google Scholar] [CrossRef]
- Papierska, K.; Krajka-Kuźniak, V. The Role of STAT3 in the Colorectal Cancer Therapy. J. Med. Sci. 2020, 89, e427. [Google Scholar] [CrossRef]
- Ko, J.-H.; Sethi, G.; Um, J.-Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The Role of Resveratrol in Cancer Therapy. Int. J. Mol. Sci. 2017, 18, 2589. [Google Scholar] [CrossRef] [Green Version]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxidative Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (–)-Epicatechin, and Betaine. Cells 2021, 10, 1346. [Google Scholar] [CrossRef] [PubMed]
- Pezzuto, J.M. Resveratrol: Twenty Years of Growth, Development and Controversy. Biomol. Ther. 2019, 27, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Masih, I.; Deopujari, J.; Charpentier, C. Occurrence of Resveratrol and Pterostilbene in Age-Old Darakchasava, an Ayurvedic Medicine from India. J. Ethnopharmacol. 1999, 68, 71–76. [Google Scholar] [CrossRef]
- Lançon, A.; Hanet, N.; Jannin, B.; Delmas, D.; Heydel, J.-M.; Lizard, G.; Chagnon, M.-C.; Artur, Y.; Latruffe, N. Resveratrol in Human Hepatoma HepG2 Cells: Metabolism and Inducibility of Detoxifying Enzymes. Drug Metab. Dispos. 2007, 35, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, R.; Ebrahimzadeh, M.A. Resveratrol—A Comprehensive Review of Recent Advances in Anticancer Drug Design and Development. Eur. J. Med. Chem. 2020, 200, 112356. [Google Scholar] [CrossRef]
- Berretta, M.; Bignucolo, A.; Di Francia, R.; Comello, F.; Facchini, G.; Ceccarelli, M.; Iaffaioli, R.V.; Quagliariello, V.; Maurea, N. Resveratrol in Cancer Patients: From Bench to Bedside. Int. J. Mol. Sci. 2020, 21, 2945. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Liu, B.; Cailing, E.; Liu, J.; Zhang, Q.; Liu, J.; Chen, N.; Chen, R.; Zhu, R. Resveratrol Inhibits the Proliferation of Human Melanoma Cells by Inducing G1/S Cell Cycle Arrest and Apoptosis. Mol. Med. Rep. 2015, 11, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Kodarahmian, M.; Amidi, F.; Moini, A.; Kashani, L.; Shabani Nashtaei, M.; Pazhohan, A.; Bahramrezai, M.; Berenjian, S.; Sobhani, A. The Modulating Effects of Resveratrol on the Expression of MMP-2 and MMP-9 in Endometriosis Women: A Randomized Exploratory Trial. Gynecol. Endocrinol. 2019, 35, 719–726. [Google Scholar] [CrossRef]
- Tino, A.B.; Chitcholtan, K.; Sykes, P.H.; Garrill, A. Resveratrol and Acetyl-Resveratrol Modulate Activity of VEGF and IL-8 in Ovarian Cancer Cell Aggregates via Attenuation of the NF-ΚB Protein. J. Ovarian Res. 2016, 9, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, P.; Sureda, A.; Tur, J.A.; Andreoletti, P.; Cherkaoui-Malki, M.; Latruffe, N. How Efficient Is Resveratrol as an Antioxidant of the Mediterranean Diet, towards Alterations during the Aging Process? Free. Radic. Res. 2019, 53, 1101–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, Prooxidant and Cytotoxic Activity of Hydroxylated Resveratrol Analogues: Structure-Activity Relationship. Biochem. Pharmacol. 2005, 69, 903–912. [Google Scholar] [CrossRef]
- Albuquerque, R.V.; Malcher, N.S.; Amado, L.L.; Coleman, M.D.; dos Santos, D.C.; Borges, R.S.; Valente, S.A.S.; Valente, V.C.; Monteiro, M.C. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells. PLoS ONE 2015, 10, e0134768. [Google Scholar] [CrossRef] [Green Version]
- Briskey, D.; Rao, A. Trans-Resveratrol Oral Bioavailability in Humans Using LipiSperseTM Dispersion Technology. Pharmaceutics 2020, 12, 1190. [Google Scholar] [CrossRef]
- Alesci, A.; Nicosia, N.; Fumia, A.; Giorgianni, F.; Santini, A.; Cicero, N. Resveratrol and Immune Cells: A Link to Improve Human Health. Molecules 2022, 27, 424. [Google Scholar] [CrossRef]
- Kobylka, P.; Kucinska, M.; Kujawski, J.; Lazewski, D.; Wierzchowski, M.; Murias, M. Resveratrol Analogues as Selective Estrogen Signaling Pathway Modulators: Structure–Activity Relationship. Molecules 2022, 27, 6973. [Google Scholar] [CrossRef]
- Murias, M.; Miksits, M.; Aust, S.; Spatzenegger, M.; Thalhammer, T.; Szekeres, T.; Jaeger, W. Metabolism of Resveratrol in Breast Cancer Cell Lines: Impact of Sulfotransferase 1A1 Expression on Cell Growth Inhibition. Cancer Lett. 2008, 261, 172–182. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and Antifungal Properties of Resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef]
- Kedzierski, L.; Curtis, J.M.; Kaminska, M.; Jodynis-Liebert, J.; Murias, M. In Vitro Antileishmanial Activity of Resveratrol and Its Hydroxylated Analogues against Leishmania Major Promastigotes and Amastigotes. Parasitol. Res. 2007, 102, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Smoliga, J.M.; Blanchard, O. Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability Is the Problem, What Is the Solution? Molecules 2014, 19, 17154–17172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, D.M.; Yan, J.; Soleas, G.J. Absorption of Three Wine-Related Polyphenols in Three Different Matrices by Healthy Subjects. Clin. Biochem. 2003, 36, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf-Life Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, K.; Strydom, M.; Steenkamp, V. A Brief Updated Review of Advances to Enhance Resveratrol’s Bioavailability. Molecules 2021, 26, 4367. [Google Scholar] [CrossRef]
- Vesely, O.; Baldovska, S.; Kolesarova, A. Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021, 13, 3095. [Google Scholar] [CrossRef]
- De Santi, C.; Pietrabissa, A.; Spisni, R.; Mosca, F.; Pacifici, G.M. Sulphation of Resveratrol, a Natural Compound Present in Wine, and Its Inhibition by Natural Flavonoids. Xenobiotica 2000, 30, 857–866. [Google Scholar] [CrossRef]
- De Santi, C.; Pietrabissa, A.; Mosca, F.; Pacifici, G.M. Glucuronidation of Resveratrol, a Natural Product Present in Grape and Wine, in the Human Liver. Xenobiotica 2000, 30, 1047–1054. [Google Scholar] [CrossRef]
- Johnson, J.J.; Nihal, M.; Siddiqui, I.A.; Scarlett, C.O.; Bailey, H.H.; Mukhtar, H.; Ahmad, N. Enhancing the Bioavailability of Resveratrol by Combining It with Piperine. Mol. Nutr. Food Res. 2011, 55, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Biasutto, L.; Zoratti, M. Prodrugs of Quercetin and Resveratrol: A Strategy under Development. Curr. Drug Metab. 2014, 15, 77–95. [Google Scholar] [CrossRef]
- Biasutto, L.; Mattarei, A.; Azzolini, M.; La Spina, M.; Sassi, N.; Romio, M.; Paradisi, C.; Zoratti, M. Resveratrol Derivatives as a Pharmacological Tool. Ann. N. Y. Acad. Sci. 2017, 1403, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Pai, R.S. Recent Advances of Resveratrol in Nanostructured Based Delivery Systems and in the Management of HIV/AIDS. J. Control. Release 2014, 194, 178–188. [Google Scholar] [CrossRef]
- Zhu, Y.; Fu, J.; Shurlknight, K.L.; Soroka, D.N.; Hu, Y.; Chen, X.; Sang, S. Novel Resveratrol-Based Aspirin Prodrugs: Synthesis, Metabolism, and Anticancer Activity. J. Med. Chem. 2015, 58, 6494–6506. [Google Scholar] [CrossRef] [PubMed]
- Koyani, R.D.; Vazquez-Duhalt, R. Enzymatic Activation of the Emerging Drug Resveratrol. Appl. Biochem. Biotechnol. 2018, 185, 248–256. [Google Scholar] [CrossRef]
- Falomir, E.; Lucas, R.; Peñalver, P.; Martí-Centelles, R.; Dupont, A.; Zafra-Gómez, A.; Carda, M.; Morales, J.C. Cytotoxic, Antiangiogenic and Antitelomerase Activity of Glucosyl- and Acyl- Resveratrol Prodrugs and Resveratrol Sulfate Metabolites. Chembiochem 2016, 17, 1343–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenzel, E.; Somoza, V. Metabolism and Bioavailability of Trans-Resveratrol. Mol. Nutr. Food Res. 2005, 49, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Van de Wetering, K.; Burkon, A.; Feddema, W.; Bot, A.; de Jonge, H.; Somoza, V.; Borst, P. Intestinal Breast Cancer Resistance Protein (BCRP)/Bcrp1 and Multidrug Resistance Protein 3 (MRP3)/Mrp3 Are Involved in the Pharmacokinetics of Resveratrol. Mol. Pharmacol. 2009, 75, 876–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, C.; Vitrac, X.; Decendit, A.; Ennamany, R.; Krisa, S.; Mérillon, J.-M. Cellular Uptake and Efflux of Trans-Piceid and Its Aglycone Trans-Resveratrol on the Apical Membrane of Human Intestinal Caco-2 Cells. J. Agric. Food Chem. 2005, 53, 798–803. [Google Scholar] [CrossRef]
- Walle, T. Bioavailability of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef]
- Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of Dietary Polyphenols: The Role of Metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [Google Scholar] [CrossRef]
- Delmas, D.; Aires, V.; Limagne, E.; Dutartre, P.; Mazué, F.; Ghiringhelli, F.; Latruffe, N. Transport, Stability, and Biological Activity of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Sharan, S.; Iwuchukwu, O.F.; Canney, D.J.; Zimmerman, C.L.; Nagar, S. In Vivo-Formed versus Preformed Metabolite Kinetics of Trans-Resveratrol-3-Sulfate and Trans-Resveratrol-3-Glucuronide. Drug Metab. Dispos. 2012, 40, 1993–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boocock, D.J.; Faust, G.E.S.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.; Gescher, A.J.; et al. Phase I Dose Escalation Pharmacokinetic Study in Healthy Volunteers of Resveratrol, a Potential Cancer Chemopreventive Agent. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1246–1252. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Zhang, Y.; Liu, H.; Yuan, J.; Zheng, Z.; Zou, G. Transport of a Cancer Chemopreventive Polyphenol, Resveratrol: Interaction with Serum Albumin and Hemoglobin. J. Fluoresc. 2007, 17, 580–587. [Google Scholar] [CrossRef]
- De Paula Rezende, J.; Hudson, E.A.; De Paula, H.M.C.; Meinel, R.S.; Da Silva, A.D.; Da Silva, L.H.M.; dos Santos Pires, A.C. Human Serum Albumin-Resveratrol Complex Formation: Effect of the Phenolic Chemical Structure on the Kinetic and Thermodynamic Parameters of the Interactions. Food Chem. 2020, 307, 125514. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, D.; Tan, X.; Chen, J. Interaction Between Trans-Resveratrol and Serum Albumin in Aqueous Solution. J. Solut. Chem. 2009, 38, 1193–1202. [Google Scholar] [CrossRef]
- Park, E.-J.; Pezzuto, J.M. The Pharmacology of Resveratrol in Animals and Humans. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2015, 1852, 1071–1113. [Google Scholar] [CrossRef] [Green Version]
- Sale, S.; Verschoyle, R.D.; Boocock, D.; Jones, D.J.L.; Wilsher, N.; Ruparelia, K.C.; Potter, G.A.; Farmer, P.B.; Steward, W.P.; Gescher, A.J. Pharmacokinetics in Mice and Growth-Inhibitory Properties of the Putative Cancer Chemopreventive Agent Resveratrol and the Synthetic Analogue Trans 3,4,5,4′-Tetramethoxystilbene. Br. J. Cancer 2004, 90, 736–744. [Google Scholar] [CrossRef]
- El-Mohsen, M.; Bayele, H.; Kuhnle, G.; Gibson, G.; Debnam, E.; Srai, K.; Rice-Evans, C.; Spencer, J. Distribution of [3H]Trans-Resveratrol in Rat Tissues Following Oral Administration. Br. J. Nutr. 2006, 96, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Böhmdorfer, M.; Szakmary, A.; Schiestl, R.H.; Vaquero, J.; Riha, J.; Brenner, S.; Thalhammer, T.; Szekeres, T.; Jäger, W. Involvement of UDP-Glucuronosyltransferases and Sulfotransferases in the Excretion and Tissue Distribution of Resveratrol in Mice. Nutrients 2017, 9, 1347. [Google Scholar] [CrossRef] [Green Version]
- Sergides, C.; Chirilă, M.; Silvestro, L.; Pitta, D.; Pittas, A. Bioavailability and Safety Study of Resveratrol 500 Mg Tablets in Healthy Male and Female Volunteers. Exp. Ther. Med. 2016, 11, 164–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier-Salamon, A.; Böhmdorfer, M.; Riha, J.; Thalhammer, T.; Szekeres, T.; Jaeger, W. Interplay between Metabolism and Transport of Resveratrol. Ann. N. Y. Acad. Sci. 2013, 1290, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Springer, M.; Moco, S. Resveratrol and Its Human Metabolites—Effects on Metabolic Health and Obesity. Nutrients 2019, 11, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutlu, E.; Gibbs, S.T.; South, N.; Pierfelice, J.; Burback, B.; Germolec, D.; Waidyanatha, S. Comparative Toxicokinetics of Trans-Resveratrol and Its Major Metabolites in Harlan Sprague Dawley Rats and B6C3F1/N Mice Following Oral and Intravenous Administration. Toxicol. Appl. Pharmacol. 2020, 394, 114962. [Google Scholar] [CrossRef]
- Miksits, M.; Maier-Salamon, A.; Aust, S.; Thalhammer, T.; Reznicek, G.; Kunert, O.; Haslinger, E.; Szekeres, T.; Jaeger, W. Sulfation of Resveratrol in Human Liver: Evidence of a Major Role for the Sulfotransferases SULT1A1 and SULT1E1. Xenobiotica 2005, 35, 1101–1119. [Google Scholar] [CrossRef]
- Miksits, M.; Wlcek, K.; Svoboda, M.; Thalhammer, T.; Ellinger, I.; Stefanzl, G.; Falany, C.N.; Szekeres, T.; Jaeger, W. Expression of Sulfotransferases and Sulfatases in Human Breast Cancer: Impact on Resveratrol Metabolism. Cancer Lett. 2010, 289, 237–245. [Google Scholar] [CrossRef]
- Sharan, S.; Nagar, S. Pulmonary Metabolism of Resveratrol: In Vitro and In Vivo Evidence. Drug Metab. Dispos. 2013, 41, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Aguirre, C.E.; Vallejo, F.; Beltrán, D.; Berná, J.; Puigcerver, J.; Alajarín, M.; Selma, M.V.; Espín, J.C. 4-Hydroxydibenzyl: A Novel Metabolite from the Human Gut Microbiota after Consuming Resveratrol. Food Funct. 2022, 13, 7487–7493. [Google Scholar] [CrossRef]
- Bode, L.M.; Bunzel, D.; Huch, M.; Cho, G.-S.; Ruhland, D.; Bunzel, M.; Bub, A.; Franz, C.M.; Kulling, S.E. In Vivo and in Vitro Metabolism of Trans-Resveratrol by Human Gut Microbiota. Am. J. Clin. Nutr. 2013, 97, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, J.; Park, E.-J.; Kondratyuk, T.P.; Marler, L.; Pezzuto, J.M.; van Breemen, R.B.; Mo, S.; Li, Y.; Cushman, M. Selective Synthesis and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites. J. Med. Chem. 2010, 53, 5033–5043. [Google Scholar] [CrossRef] [Green Version]
- Calamini, B.; Ratia, K.; Malkowski, M.G.; Cuendet, M.; Pezzuto, J.M.; Santarsiero, B.D.; Mesecar, A.D. Pleiotropic Mechanisms Facilitated by Resveratrol and Its Metabolites. Biochem. J. 2010, 429, 273–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, K.R.; Andreadi, C.; Britton, R.G.; Horner-Glister, E.; Karmokar, A.; Sale, S.; Brown, V.A.; Brenner, D.E.; Singh, R.; Steward, W.P.; et al. Sulfate Metabolites Provide an Intracellular Pool for Resveratrol Generation and Induce Autophagy with Senescence. Sci. Transl. Med. 2013, 5, 205ra133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, V.A.; Patel, K.R.; Viskaduraki, M.; Crowell, J.A.; Perloff, M.; Booth, T.D.; Vasilinin, G.; Sen, A.; Schinas, A.M.; Piccirilli, G.; et al. Repeat Dose Study of the Cancer Chemopreventive Agent Resveratrol in Healthy Volunteers: Safety, Pharmacokinetics and Effect on the Insulin-like Growth Factor Axis. Cancer Res. 2010, 70, 9003–9011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreadi, C.; Britton, R.G.; Patel, K.R.; Brown, K. Resveratrol-Sulfates Provide an Intracellular Reservoir for Generation of Parent Resveratrol, Which Induces Autophagy in Cancer Cells. Autophagy 2014, 10, 524–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koushki, M.; Amiri-Dashatan, N.; Ahmadi, N.; Abbaszadeh, H.-A.; Rezaei-Tavirani, M. Resveratrol: A Miraculous Natural Compound for Diseases Treatment. Food Sci. Nutr. 2018, 6, 2473–2490. [Google Scholar] [CrossRef] [Green Version]
- Pezzuto, J.M. Resveratrol as an Inhibitor of Carcinogenesis. Pharm. Biol. 2008, 46, 443–573. [Google Scholar] [CrossRef]
- Delmas, D.; Lançon, A.; Colin, D.; Jannin, B.; Latruffe, N. Resveratrol as a Chemopreventive Agent: A Promising Molecule for Fighting Cancer. Curr. Drug Targets 2006, 7, 423–442. [Google Scholar] [CrossRef]
- Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jäger, W. Resveratrol Analogues as Selective Cyclooxygenase-2 Inhibitors: Synthesis and Structure-Activity Relationship. Bioorganic Med. Chem. 2004, 12, 5571–5578. [Google Scholar] [CrossRef]
- Lalle, G.; Twardowski, J.; Grinberg-Bleyer, Y. NF-ΚB in Cancer Immunity: Friend or Foe? Cells 2021, 10, 355. [Google Scholar] [CrossRef]
- Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and Its Analogs: Defense against Cancer, Coronary Disease and Neurodegenerative Maladies or Just a Fad? Mutat. Res. Rev. Mutat. Res. 2008, 658, 68–94. [Google Scholar] [CrossRef]
- Patel, K.R.; Brown, V.A.; Jones, D.J.; Britton, R.G.; Hemingway, D.; Miller, A.S.; West, K.P.; Booth, T.D.; Perloff, M.; Crowell, J.A.; et al. Clinical Pharmacology of Resveratrol and Its Metabolites in Colorectal Cancer Patients. Cancer Res. 2010, 70, 7392–7399. [Google Scholar] [CrossRef] [Green Version]
- Aires, V.; Limagne, E.; Cotte, A.K.; Latruffe, N.; Ghiringhelli, F.; Delmas, D. Resveratrol Metabolites Inhibit Human Metastatic Colon Cancer Cells Progression and Synergize with Chemotherapeutic Drugs to Induce Cell Death. Mol. Nutr. Food Res. 2013, 57, 1170–1181. [Google Scholar] [CrossRef]
- Riha, J.; Brenner, S.; Böhmdorfer, M.; Giessrigl, B.; Pignitter, M.; Schueller, K.; Thalhammer, T.; Stieger, B.; Somoza, V.; Szekeres, T.; et al. Resveratrol and Its Major Sulfated Conjugates Are Substrates of Organic Anion Transporting Polypeptides (OATPs): Impact on Growth of ZR-75-1 Breast Cancer Cells. Mol. Nutr. Food Res. 2014, 58, 1830–1842. [Google Scholar] [CrossRef] [PubMed]
- Ladurner, A.; Schachner, D.; Schueller, K.; Pignitter, M.; Heiss, E.; Somoza, V.; Dirsch, V. Impact of Trans-Resveratrol-Sulfates and -Glucuronides on Endothelial Nitric Oxide Synthase Activity, Nitric Oxide Release and Intracellular Reactive Oxygen Species. Molecules 2014, 19, 16724–16736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morselli, E.; Maiuri, M.C.; Markaki, M.; Megalou, E.; Pasparaki, A.; Palikaras, K.; Criollo, A.; Galluzzi, L.; Malik, S.A.; Vitale, I.; et al. Caloric Restriction and Resveratrol Promote Longevity through the Sirtuin-1-Dependent Induction of Autophagy. Cell Death Dis. 2010, 1, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrashekara, K.T.; Shakarad, M.N. Aloe Vera or Resveratrol Supplementation in Larval Diet Delays Adult Aging in the Fruit Fly, Drosophila Melanogaster. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 965–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, C.; Lodesani, M.; Maistrello, L. Effect of Thymol and Resveratrol Administered with Candy or Syrup on the Development of Nosema Ceranae and on the Longevity of Honeybees (Apis mellifera L.) in Laboratory Conditions. Apidologie 2010, 41, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Ruotolo, R.; Calani, L.; Fietta, E.; Brighenti, F.; Crozier, A.; Meda, C.; Maggi, A.; Ottonello, S.; Del Rio, D. Anti-Estrogenic Activity of a Human Resveratrol Metabolite. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1086–1092. [Google Scholar] [CrossRef]
- Lasa, A.; Churruca, I.; Eseberri, I.; Andrés-Lacueva, C.; Portillo, M.P. Delipidating Effect of Resveratrol Metabolites in 3T3-L1 Adipocytes. Mol. Nutr. Food Res. 2012, 56, 1559–1568. [Google Scholar] [CrossRef]
- Johnston, E.K.; Abbott, R.D. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023, 12, 407. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R. Adipocytokines: Mediators Linking Adipose Tissue, Inflammation and Immunity. Nat. Rev. Immunol. 2006, 6, 772–783. [Google Scholar] [CrossRef]
- Liang, W.; dong Ye, D. The Potential of Adipokines as Biomarkers and Therapeutic Agents for Vascular Complications in Type 2 Diabetes Mellitus. Cytokine Growth Factor Rev. 2019, 48, 32–39. [Google Scholar] [CrossRef]
- Recinella, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Brunetti, L.; Leone, S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front. Physiol. 2020, 11, 578966. [Google Scholar] [CrossRef]
- Gibas-Dorna, M.; Turkowski, P.; Bernatek, M.; Mikrut, K.; Kupsz, J.; Piątek, J. Liposuction-Induced Metabolic Alterations—the Effect on Insulin Sensitivity, Adiponectin, Leptin and Resistin. J. Med. Sci. 2015, 84, 249–256. [Google Scholar] [CrossRef]
- Eseberri, I.; Lasa, A.; Churruca, I.; Portillo, M.P. Resveratrol Metabolites Modify Adipokine Expression and Secretion in 3T3-L1 Pre-Adipocytes and Mature Adipocytes. PLoS ONE 2013, 8, e63918. [Google Scholar] [CrossRef] [Green Version]
- Jamka, M.; Walach, H.; Hołubiec, M.; Wasiewicz, M.; Walkowiak, J. Effect of Vitamin K Supplementation on Anthropometric Parameters and Adipokine Levels—A Systematic Review: Vitamin K and Anthropometric Parameters. J. Med. Sci. 2019, 88, 244–255. [Google Scholar] [CrossRef]
- Holmes-McNary, M.; Baldwin, A.S., Jr. Chemopreventive Properties of Trans-Resveratrol Are Associated with Inhibition of Activation of the IκB Kinase1. Cancer Res. 2000, 60, 3477–3483. [Google Scholar]
- Kundu, J.K.; Shin, Y.K.; Surh, Y.-J. Resveratrol Modulates Phorbol Ester-Induced pro-Inflammatory Signal Transduction Pathways in Mouse Skin in Vivo: NF-ΚB and AP-1 as Prime Targets. Biochem. Pharmacol. 2006, 72, 1506–1515. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xu, Y.; Lv, H.; Pang, W.; Wang, J.; Ma, H.; Wang, S. Intestinal Pharmacokinetics of Resveratrol and Regulatory Effects of Resveratrol Metabolites on Gut Barrier and Gut Microbiota. Food Chem. 2021, 357, 129532. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-González, P.F.; Liceaga, A.M.; Aguilar-Toalá, J.E. Postbiotics and Paraprobiotics: From Concepts to Applications. Food Res. Int. 2020, 136, 109502. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, M.; Yañéz-Gascón, M.J.; Selma, M.V.; González-Sarrías, A.; Toti, S.; Cerón, J.J.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Effect of a Low Dose of Dietary Resveratrol on Colon Microbiota, Inflammation and Tissue Damage in a DSS-Induced Colitis Rat Model. J. Agric. Food Chem. 2009, 57, 2211–2220. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Sun, J.; Xia, S.; Tang, X.; Shi, Y.; Le, G. Effects of Resveratrol on Gut Microbiota and Fat Storage in a Mouse Model with High-Fat-Induced Obesity. Food Funct. 2014, 5, 1241–1249. [Google Scholar] [CrossRef]
- Most, J.; Penders, J.; Lucchesi, M.; Goossens, G.H.; Blaak, E.E. Gut Microbiota Composition in Relation to the Metabolic Response to 12-Week Combined Polyphenol Supplementation in Overweight Men and Women. Eur. J. Clin. Nutr. 2017, 71, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, D.; Ke, W.; Liang, D.; Hu, X.; Chen, F. Resveratrol-Induced Gut Microbiota Reduces Obesity in High-Fat Diet-Fed Mice. Int. J. Obes. 2020, 44, 213–225. [Google Scholar] [CrossRef]
- Wan, M.L.Y.; Ling, K.H.; Wang, M.F.; El-Nezami, H. Green Tea Polyphenol Epigallocatechin-3-Gallate Improves Epithelial Barrier Function by Inducing the Production of Antimicrobial Peptide PBD-1 and PBD-2 in Monolayers of Porcine Intestinal Epithelial IPEC-J2 Cells. Mol. Nutr. Food Res. 2016, 60, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Fei, Y.; Zhang, S.; Qiu, B.; Zhu, L.; Li, F.; Berglund, B.; Xiao, H.; Li, L. Gut Microbiota Composition in Relation to the Metabolism of Oral Administrated Resveratrol. Nutrients 2022, 14, 1013. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Muzzio, M.; Huang, Z.; Hu, S.-C.; Johnson, W.D.; McCormick, D.L.; Kapetanovic, I.M. Determination of Resveratrol and Its Sulfate and Glucuronide Metabolites in Plasma by LC-MS/MS and Their Pharmacokinetics in Dogs. J. Pharm. Biomed. Anal. 2012, 59, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Xu, Y.; Liu, S.; Lv, H.; Hu, Y.; Wang, Y.; Li, Z.; Wang, J.; Ji, X.; Ma, H.; et al. Dietary Supplementation of Foxtail Millet Ameliorates Colitis-Associated Colorectal Cancer in Mice via Activation of Gut Receptors and Suppression of the STAT3 Pathway. Nutrients 2020, 12, 2367. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.-F. Reciprocal Interactions between Resveratrol and Gut Microbiota Deepen Our Understanding of Molecular Mechanisms Underlying Its Health Benefits. Trends Food Sci. Technol. 2018, 81, 232–236. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. AdmetSAR 2.0: Web-Service for Prediction and Optimization of Chemical ADMET Properties. Bioinformatics 2019, 35, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- PreADMET PreADMET. 2014. Available online: https://preadmet.webservice.bmdrc.org (accessed on 20 January 2023).
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [Green Version]
- Seki, H.; Akiyoshi, T.; Imaoka, A.; Ohtani, H. Inhibitory Kinetics of Fruit Components on CYP2C19 Activity. Drug Metab. Pharmacokinet. 2019, 34, 181–186. [Google Scholar] [CrossRef]
- Chagas, C.M.; Moss, S.; Alisaraie, L. Drug Metabolites and Their Effects on the Development of Adverse Reactions: Revisiting Lipinski’s Rule of Five. Int. J. Pharm. 2018, 549, 133–149. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef] [PubMed]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Teague, S.J.; Davis, A.M.; Leeson, P.D.; Oprea, T. The Design of Leadlike Combinatorial Libraries. Angew. Chem. Int. Ed. 1999, 38, 3743–3748. [Google Scholar] [CrossRef]
- Baell, J.B.; Holloway, G.A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Mattarei, A.; Biasutto, L.; Romio, M.; Zoratti, M.; Paradisi, C. Synthesis of Resveratrol Sulfates: Turning a Nightmare into a Dream. Tetrahedron 2015, 71, 3100–3106. [Google Scholar] [CrossRef]
- Martin, Y.C. A Bioavailability Score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, T.J.; Ertl, P.; Lewis, R. The Graphical Representation of ADME-Related Molecule Properties for Medicinal Chemists. Drug Discov. Today 2011, 16, 65–72. [Google Scholar] [CrossRef]
- Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, X.; Gu, Z.; Zhao, Y. Recent Advances in Upconversion Nanoparticles-Based Multifunctional Nanocomposites for Combined Cancer Therapy. Adv. Mater. Weinh. 2015, 27, 7692–7712. [Google Scholar] [CrossRef]
Assay | Resveratrol | Resveratrol-4′-O-Sulfate | Resveratrol-3-O-Sulfate | Resveratrol-3-O-4′-O-Sulfate | Ref. |
---|---|---|---|---|---|
CYP1A2 inhibitor | Yes | No | No | Yes | [111] |
CYP1A2 inhibitor | Yes | No | No | No | [112] |
CYP2C9 inhibitor | Yes | No | No | No | [111] |
CYP2C9 inhibitor | Yes | Yes | Yes | Yes | [113] |
CYP2C9 inhibitor | Yes | No | No | No | [112] |
CYP2C19 inhibitor | No | No | No | No | [111] |
CYP2C19 inhibitor | Yes | No | No | No | [113] |
CYP2C19 inhibitor | Yes | No | No | No | [112] |
CYP2D6 inhibitor | No | No | No | No | [111] |
CYP2D6 inhibitor | No | No | No | No | [112] |
CYP 2D6 inhibitor | No | No | No | No | [113] |
CYP 3A4 inhibitor | Yes | Yes | Yes | No | [113] |
CYP3A4 inhibitor | Yes | No | No | No | [111] |
CYP3A4 inhibitor | Yes | No | No | No | [112] |
CYP2C9 substrate | No | No | No | No | [112] |
CYP2D6 substrate | No | No | No | No | [113] |
CYP2D6 substrate | No | No | No | No | [112] |
CYP3A4 substrate | No | No | No | No | [112] |
CYP3A4 substrate | No | No | Weak | Weak | [113] |
P-gp (MDR1, ABCB1) substrate | No | No | No | No | [111] |
P-gp (MDR1, ABCB1) substrate | No | No | No | No | [112] |
P-gp (MDR1, ABCB1) inhibitor | No | No | No | No | [113] |
P-gp (MDR1, ABCB1) inhibitor | No | No | No | No | [112] |
Aromatase binding | Yes | Yes | Yes | No | [112] |
Aromatase | No | No | No | No | [114] |
Aryl hydrocarbon Receptor (AhR) | No | No | No | No | [114] |
CYP inhibitory promiscuity | Yes | No | No | No | [112] |
OATP1B1 inhibitor | Yes | Yes | Yes | Yes | [112] |
OATP1B3 inhibitor | Yes | Yes | Yes | Yes | [112] |
OATP2B1 inhibitor | No | No | No | No | [112] |
OCT1 inhibitor | No | No | No | No | [112] |
OCT2 inhibitor | No | No | No | No | [112] |
hERG_inhibition risk | medium | medium | Medium | low | [113] |
BRCP inhibitor | No | No | No | No | [112] |
BSEP (ABCB11) inhibitor | No | No | No | No | [112] |
MATE1 inhibitor | No | No | No | No | [112] |
Estrogen receptor binding | Yes | Yes | Yes | No | [112] |
Estrogen Receptor Alpha (ER) | Yes | No | No | No | [114] |
Androgen Receptor Ligand Binding Domain (AR-LBD) | No | No | No | No | [114] |
Androgen Receptor (AR) | Yes | No | No | No | [114] |
Androgen receptor binding | Yes | Yes | Yes | Yes | [112] |
Estrogen Receptor Ligand Binding Domain (ER-LBD) | Yes | No | No | No | [114] |
Glucocorticoid receptor binding | Yes | No | Yes | No | [112] |
Thyroid receptor binding | Yes | No | No | No | [112] |
Human Intestinal Absorption | Yes | Yes | Yes | Yes | [112] |
Human oral bioavailability | No | No | No | No | [112] |
Caco-2 | Yes | Yes | Yes | No | [112] |
GI absorption | High | High | High | Low | [111] |
Blood Brain Barrier permeant | Yes | No | No | No | [111] |
Blood Brain Barrier permeant | No | Yes | Yes | Yes | [112] |
PPAR gamma | Yes | Yes | Yes | Yes | [112] |
Human Ether-a-go-go-Related Gene inhibition | No | No | No | No | [112] |
Heat shock factor response element (HSE) | No | No | No | No | [114] |
Assay | Resveratrol | Resveratrol-4′-O-Sulfate | Resveratrol-3-O-Sulfate | Resveratrol-3-O-4′-O-Sulfate | Ref. |
---|---|---|---|---|---|
Eye corrosion | No | No | Yes | Yes | [112] |
Eye irritation | Yes | Yes | Yes | Yes | [112] |
Skin sensitisation | Yes | No | No | No | [112] |
Fish aquatic toxicity | Yes | Yes | Yes | Yes | [112] |
Crustacea aquatic toxicity | Yes | No | Yes | Yes | [112] |
Honey bee toxicity | No | No | No | No | [112] |
Avian toxicity | No | No | No | No | [112] |
Nephrotoxicity | Yes | Yes | Yes | Yes | [112] |
Hepatotoxicity | No | No | No | No | [112] |
Respiratory toxicity | No | No | No | No | [112] |
Hepatotoxicity | No | No | No | No | [114] |
Immunotoxicity | No | No | No | No | [114] |
Reproductive toxicity | No | No | No | No | [112] |
Mutagenicity | No | No | No | No | [114] |
Cytotoxicity | No | No | No | No | [114] |
Mitochondrial toxicity | No | No | No | No | [112] |
Mitochondrial Membrane Potential (MMP) | Yes | No | No | No | [114] |
Micronuclear test | No | Yes | Yes | Yes | [112] |
Ames test | Yes | No | Yes | No | [113] |
Carcinogenicity mouse | No | Yes | No | Yes | [113] |
Carcinogenicity rat | No | No | Yes | No | [113] |
Carcinogenicity | No | No | No | No | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymkowiak, I.; Kucinska, M.; Murias, M. Between the Devil and the Deep Blue Sea—Resveratrol, Sulfotransferases and Sulfatases—A Long and Turbulent Journey from Intestinal Absorption to Target Cells. Molecules 2023, 28, 3297. https://doi.org/10.3390/molecules28083297
Szymkowiak I, Kucinska M, Murias M. Between the Devil and the Deep Blue Sea—Resveratrol, Sulfotransferases and Sulfatases—A Long and Turbulent Journey from Intestinal Absorption to Target Cells. Molecules. 2023; 28(8):3297. https://doi.org/10.3390/molecules28083297
Chicago/Turabian StyleSzymkowiak, Izabela, Malgorzata Kucinska, and Marek Murias. 2023. "Between the Devil and the Deep Blue Sea—Resveratrol, Sulfotransferases and Sulfatases—A Long and Turbulent Journey from Intestinal Absorption to Target Cells" Molecules 28, no. 8: 3297. https://doi.org/10.3390/molecules28083297
APA StyleSzymkowiak, I., Kucinska, M., & Murias, M. (2023). Between the Devil and the Deep Blue Sea—Resveratrol, Sulfotransferases and Sulfatases—A Long and Turbulent Journey from Intestinal Absorption to Target Cells. Molecules, 28(8), 3297. https://doi.org/10.3390/molecules28083297