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Abstract: Unnatural amino acids with enhanced properties, such as increased complexing ability
and luminescence, are considered to be highly attractive building blocks for bioinspired frameworks,
such as probes for biomolecule dynamics, sensitive fluorescent chemosensors, and peptides for
molecular imaging, among others. Therefore, a novel series of highly emissive heterocyclic alanines
bearing a benzo[d]oxazolyl unit functionalized with different heterocyclic π-spacers and (aza)crown
ether moieties was synthesized. The new compounds were completely characterized using the
usual spectroscopic techniques and evaluated as fluorimetric chemosensors in acetonitrile and
aqueous mixtures in the presence of various alkaline, alkaline-earth, and transition metal ions. The
different crown ether binding moieties as well as the electronic nature of the π-bridge allowed for
fine tuning of the sensory properties of these unnatural amino acids towards Pd2+ and Fe3+, as seen
by spectrofluorimetric titrations.

Keywords: crown ether; benzoxazole; unnatural amino acids; recognition; palladium; fluori-
metric chemosensors

1. Introduction

Synthetic unnatural amino acids can be a source of structural diversity and functional
versatility and are often used as building blocks and molecular scaffolds in the construction
of peptide and proteins with tailored properties [1–17]. Recently, systems incorporating
unnatural amino acids have been reported in applications as diverse as probes for the regula-
tion of enzyme activity and conformational studies [1–3], sensors and biosensors, reservoirs
of metal binding motifs in metabolically stable and biologically active molecules [4,5], the
targeting of peptides for molecular imaging [6–8], peptide drug candidates with better
selectivity, activity, and lower toxicity [9–13], and in enzyme engineering for tuning and
expanding the structural and functional features of unnatural amino acids [14–16] and
catalysts [17] via site-specific incorporation, among many other examples.

Ion sensing is imperative in many areas, including environmental, biological, clinical,
and waste management applications [18–20]. There is great interest in the development of
artificial receptors that mimic the molecular recognition phenomenon observed in nature,
which is a key event in biological processes including signaling, transport, and catalysis [18].
Specifically, interest in the development of fluorescent sensors can be explained by the dis-
tinct advantages offered by fluorescence detection in terms of sensitivity, selectivity, and fast
response time. Suitable fluorescent reporters must efficiently transduce a binding event into
a measurable fluorescence signal by combining a fluorophore with an analyte-responsive
receptor via a saturated or unsaturated spacer [19]. The development of chemosensors for
the sensing of transition metal ions is one of the most active research fields, particularly in
systems that are sensitive to Cu2+, Pd2+, Hg2+, and Fe3+ [20].

Metallic cations can be complexed through N, O, and S donor atoms in natural amino
acids, but synthetic manipulation at their side chain by the insertion of suitable hetero-
cyclic systems can create novel functions as well as altered physicochemical properties,
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e.g., luminescence and recognition ability for metal ions and other analytes [21–26]. Con-
sidering only their photophysical properties, these unnatural amino acids can be used to as-
semble fluorescent, intrinsically labeled peptides without requiring additional probes [27].

Following our previous work on the synthesis and characterization of the optical
properties of novel heterocyclic amino acids as well as their evaluation as efficient col-
orimetric/fluorescent probes for cations and anions [21–27], we now report the design,
synthesis, and chemosensory abilities of five novel unnatural alanine derivatives bearing a
benzoxazole as the reporting unit at the side chain, which is substituted at position 2 with a
phenyl ring or a five-membered heterocycle (furan and thiophene) and linked to (aza)crown
ether moieties of different size. Crown ethers display selectivity in complexation based on
cavity and cation size and, in addition to alkaline metals, they are also effective complexing
agents for alkaline-earth and transition metal ions [28]. If oxygen in the crown is replaced
with softer donor atoms, such as nitrogen or sulfur, transition metals can also be complexed
according to the hard and soft acids and bases (HSAB) theory [28]. The benzoxazole nu-
cleus was chosen because of its photophysical properties (increased UV absorption and
fluorescence) and also to increase the number of potential binding sites. The benzoxazole
was further functionalized with electron donor heterocycles of different electronic nature
(furan and thiophene) in order to modulate the response of the resulting unnatural amino
acids as optical chemosensors.

Palladium is widely used in various materials, such as dental crowns, catalysts, fuel
cells, and jewelry [29]. A significant quantity of palladium is released by cars to the roadside,
where dust samples collected from broad-leaved plants are found to contain palladium,
and rain may also wash Pd into local water systems. On the other hand, Pd-catalyzed
reactions are extremely useful for the synthesis of complex molecules, although residual
palladium (typically 300–2000 ppm) is often found in the product and may thus constitute
a health hazard. Therefore, methods are urgently needed for the sensitive and selective
detection of palladium [29].

The interaction of the novel amino acids with various alkaline, alkaline-earth, and
transition metal cations was studied by means of UV-visible and fluorescence spectroscopy,
through preliminary sensing studies, and spectrofluorimetric titrations in acetonitrile and
aqueous mixtures.

2. Results and Discussion
2.1. Synthesis

The novel crown ether benzoxazol-5-yl-alanines 3a–e were synthesized in good
to excellent yields by condensation of the methyl ester of N-tert-butyloxycarbonyl-3-
amino-L-tyrosine 2 and heterocyclic aldehydes 1a–e, which were commercially available
(1b, Figure 1) or prepared by Vilsmeier formylation (1a, Figure 1) or Suzuki coupling (1c–e,
Scheme 1). The various aldehydes consisted of (aza)crown ethers of different size, func-
tionalized with (hetero)aryls of different electronic character (phenyl, thienyl, and furyl),
in order to modulate the photophysical and chemosensory properties of the resulting
benzoxazol-5-yl-alanines. Furan and thiophene are electron donor heterocycles that can
contribute to the overall conjugation and provide additional binding sites for cations. It was
expected that additional non-covalent interactions with the O and S heteroatoms would
play a synergetic role in differentiating soft transition metal cations.
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Figure 1. Structures of formylated azacrown ether 1a and benzocrown ether 1b.



Molecules 2023, 28, 3326 3 of 15

Molecules 2023, 28, x FOR PEER REVIEW 3 of 16 
 

 

Figure 1. Structures of formylated azacrown ether 1a and benzocrown ether 1b. 

Azacrown ether 1a was obtained by Vilsmeier formylation of N-phenylaza-15-crown-
5 with phosphorus oxychloride in N,N-dimethylformamide as a light yellow solid in 90% 
yield after silica gel flash chromatography, as previously published [30]. 

Benzo-18-crown-6 ethers 1c-e were prepared by standard Suzuki coupling through 
the palladium-catalyzed reaction between 4’-bromobenzo-18-crown-6 ether and different 
(hetero) arylboronic acids, namely 4-formylphenylboronic acid, 5-formyl-2-thienylboronic 
acid, and 5-formyl-2-furanylboronic acid, using 1,2-dimethoxyethane (DME) as the sol-
vent in the presence of tetrakis (triphenylphosphine) palladium(0) as the catalyst and po-
tassium carbonate as the base (Scheme 1). Compounds 1c–e were obtained in high yields 
after purification by silica gel column chromatography (1c, 91%; 1d, 93%; 1e, 90%). 

 
Scheme 1. Synthesis of formyl crown ethers 1c–e by Suzuki coupling. 

 
The structures of the crown ether aldehydes 1a,c–e were confirmed by 1H and 13C 

NMR spectroscopy with the characteristic formyl group signals appearing in the range of 
9.61–10.00 ppm (for 1H) and 181.00–191.76 ppm (for 13C). The NMR of compound 1c was 
in accordance with the previously published assignment [31]. 

Tyrosine 2 was obtained from commercial 3-nitro-L-tyrosine by introducing ade-
quate protecting groups at the N- and C-termini using standard procedures and reduction 
of the nitro group to amine, as previously published [24]. Crown ether aldehydes 1a–e and 

(hetero)arylOHC B(OH2)

O

O

O

OO

O

Br
+

O

O

O

OO

O

(hetero)arylOHC

1c-e

c

d

e
S

O

N2
Pd(PPh3)4 
K2CO3 
DME(hetero)aryl =

Scheme 1. Synthesis of formyl crown ethers 1c–e by Suzuki coupling.

Azacrown ether 1a was obtained by Vilsmeier formylation of N-phenylaza-15-crown-5
with phosphorus oxychloride in N,N-dimethylformamide as a light yellow solid in 90% yield
after silica gel flash chromatography, as previously published [30].

Benzo-18-crown-6 ethers 1c–e were prepared by standard Suzuki coupling through
the palladium-catalyzed reaction between 4′-bromobenzo-18-crown-6 ether and different
(hetero) arylboronic acids, namely 4-formylphenylboronic acid, 5-formyl-2-thienylboronic
acid, and 5-formyl-2-furanylboronic acid, using 1,2-dimethoxyethane (DME) as the solvent
in the presence of tetrakis (triphenylphosphine) palladium(0) as the catalyst and potassium
carbonate as the base (Scheme 1). Compounds 1c–e were obtained in high yields after
purification by silica gel column chromatography (1c, 91%; 1d, 93%; 1e, 90%).

The structures of the crown ether aldehydes 1a,c–e were confirmed by 1H and 13C
NMR spectroscopy with the characteristic formyl group signals appearing in the range of
9.61–10.00 ppm (for 1H) and 181.00–191.76 ppm (for 13C). The NMR of compound 1c was
in accordance with the previously published assignment [31].

Tyrosine 2 was obtained from commercial 3-nitro-L-tyrosine by introducing adequate
protecting groups at the N- and C-termini using standard procedures and reduction of
the nitro group to amine, as previously published [24]. Crown ether aldehydes 1a–e and
tyrosine 2 were condensed in a two-step procedure: the imines were obtained by heating in
ethanol under reflux and used without purification in the following oxidative intramolecu-
lar cyclization, aided by lead tetraacetate (LTA) in dimethyl sulfoxide, to afford the desired
crown ether benzoxazolyl-alanines 3a–e (Scheme 2).

The novel crown ether benzoxazolyl-alanines 3a–e were obtained as oils in 72–96% yields
and fully characterized using the usual spectroscopic techniques. The 1H NMR spec-
tra of alanines 3a–e showed the characteristic signals for α-H (4.60–4.67 ppm), β-CH2
(3.16–3.27 ppm), as well as signals due to the benzoxazole moiety. The structures were also
confirmed by 13C NMR, with the oxazole C2 appearing between 155 and 164 ppm. In the
IR spectra, the characteristic absorption bands for the NH and C=O bonds of the protecting
groups (ester and urethane) were also visible, confirming that the oxidative cyclization
reaction conditions did not affect the integrity of the protecting groups.
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2.2. Photophysical Characterization

The photophysical properties of crown ether benzoxazolyl-alanines 3a–e were evalu-
ated by UV-vis absorption and fluorescence spectroscopy of degassed 1.0 × 10−5 M solu-
tions in UV-grade acetonitrile [32]. The UV-Vis absorption and fluorescence data (maximum
wavelength of absorption, λabs; molar absorptivity, ε; maximum fluorescence wavelength,
λem; relative fluorescence quantum yield, ΦF; and Stokes’ shift, ∆λ) are presented in Table 1.
Relative fluorescence quantum yields were calculated using 9,10-diphenylanthracene as
the standard (ΦF = 0.95 in ethanol) [33].

Table 1. UV-visible absorption and fluorescence data for benzoxazolyl-alanines 3a–e in acetonitrile.

Compound Absorption Fluorescence
λabs (nm) log ε λem (nm) ΦF ∆λ (nm) (cm−1)

3a 334 4.04 395 0.82 61 4624
3b 310 4.03 362 0.87 52 4634
3c 324 3.99 428 0.62 104 7500
3d 363 4.01 445 0.69 82 5076
3e 351 4.04 426 0.65 75 5016

Overall, benzoxazolyl-alanines 3a–e showed intense fluorescence in the range of
362–445 nm with high relative quantum yields. The longer maximum wavelengths of
absorption displayed by compounds 3c–e were consistent with more extensive conjugation
along the π-system, and the position of the absorption and fluorescence bands could have
been related to the different π-bridges between the amino acid core and the crown ether unit.
Thus, replacement of the phenyl group in 3c by a thiophene in 3d resulted in redshifted
bands due to the higher electron donor character of the sulfur heterocycle [27]. A similar
rationale could be made in the comparison of 3b and 3d (not taking into account the slight
difference in the crown ring size), for which the introduction of a thiophenic π-bridge
between the benzoxazole and the crown unit caused a redshift of about 50 nm in the
absorption band and 80 nm in the fluorescence band. For compounds 3a–b, which lacked
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additional π-bridges, the electron donor effect of the nitrogen at the azacrown unit was
responsible for the bathochromic shift seen for 3a compared to 3b [30].

Comparison of the absorption and fluorescence data of the new crown ether benzoxazolyl-
alanines 3a–e with previously reported benzoxazolyl-alanines bearing different substituents
at position 2 of the benzoxale [25–27] revealed that the introduction of crown ether units
did not alter significantly the photophysical properties. Most importantly, the new un-
natural amino acids displayed more interesting photophysical parameters due to the
extended intramolecular electron delocalization and the higher push–pull character of the
benzoxazole-π-bridge-crown ether system, resulting in a set of compounds that excelled in
tryptophan, the most fluorescent natural amino acid (with a fluorescence quantum yield
of 0.14) [34]. Therefore, this observation is of interest for the future incorporation of these
unnatural amino acids into bioinspired systems such as peptide/protein structures for
biological assays based on fluorescence spectroscopy, as it suggests that the interesting
photophysical properties of the isolated amino acids can be preserved to yield fluorescent
peptides for various applications. Our previous work in synthetic fluorescent amino acids
showed that such amino acids could be incorporated into short sequences and the resulting
peptides also displayed fluorescence and sensing ability [27].

Figure 2 shows the normalized absorption and fluorescence spectra of benzoxazolyl-
alanines 3c–e, as representative examples, to better visualize the relationship between
the nature of the π-bridge and the absorption and emission properties of this family
of compounds.
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Figure 2. Normalized UV-visible absorption and fluorescence spectra of benzoxazolyl-alanines 3c–e
in 10−5 M solution in acetonitrile.

2.3. Preliminary Chemosensing Studies

The novel benzoxazolyl-alanines 3a–e were evaluated as fluorimetric chemosensors for
the detection of different metal cations with biological and environmental relevance through
preliminary chemosensory studies. These compounds consisted of a phenylalanine core
modified through the introduction of an extra UV-active and highly fluorescent heterocycle
at its side chain, which was expected to provide additional binding sites for a variety of ions
through the heterocyclic donor oxygen, nitrogen, and sulfur atoms as well as improved
photophysical properties for the chemosensing studies.

The fluorimetric behavior of compounds 3a–e in the presence of selected cations
was studied in acetonitrile by adding 10 equivalents of each cation to a solution of each
compound. This amount is usually considered in preliminary qualitative chemosensing
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tests because it provides quick evidence of the sensitivity of the system being tested.
Acetonitrile is an aprotic solvent widely used in these studies because it lacks the ability to
establish hydrogen bonds with the analytes or sensing molecules. It was found that the
compounds had different fluorimetric responses for different cations, showing a preference
for interactions with mercury, lead, palladium, copper, and iron cations. Compound 3c
exhibited marked fluorescence quenching upon interaction with Hg2+, Pb2+, and Pd2+

and complete quenching with Fe3+ (Figure 3c); compound 3d showed similar behavior,
(Figure 3d); and compound 3e showed decreased fluorescence upon interaction with
Hg2+, Pb2+, and Pd2+ and complete quenching was seen in the presence of Cu2+ and Fe3+

(Figure 3e). Notably, compounds 3e–c were able to discriminate between iron cations in
different oxidation states by remarkable and selective quenching of fluorescence upon
interaction with Fe3+ compared to interaction with Fe2+.
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Figure 3. Preliminary qualitative fluorescent chemosensing study of benzoxazolyl-alanines 3a (a),
3b (b), 3c (c), 3d (d), and 3e (e) in acetonitrile in the presence of 10 equivalents of each cation, visual-
ized under a 365 nm lamp ([3a] = [3c] = [3d] = 3.0× 10−5 M; [3b] = 6.0× 10−6 M; [3e] = 1.0 × 10−5 M,
at room temperature).

Although there was a relationship between the ionic radius of the metals and the
crown cavity size (e.g., Li+ bound preferably to 15-C-5 while K+ bound to 18-C-6) [28], the
additional binding sites at the various heteroatoms of compounds 3a–e could be the key
for the marked interaction with the transition metals.

The recognition of this type of analyte in biological and environmental media is of
the utmost importance, so the development of water-soluble probes is required [35,36].
The new unnatural amino acid derivatives 3a–e were poorly water soluble in their
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protected form and metal cations are prone to strong solvation by water, imposing an
energetic barrier that inhibits sensing processes in aqueous solution. To circumvent
these limitations in the fluorogenic detection of metal cations in water, instead of mix-
tures with pure water, a common strategy is to use surfactants [37,38]. In the case of
the anionic surfactant sodium dodecyl sulfate (SDS), it has been reported that optical
chemosensors as well as metal cations can be embedded into the inner hydrophobic
core of SDS micelles, allowing detection of metal cations in aqueous solution by changes
in fluorescence [38].

Therefore, the fluorimetric response of compounds 3a–e was also tested in aqueous
mixtures of SDS (20 mM, pH 7.5) solution with acetonitrile, 90:10 v/v. In fact, all com-
pounds were completely soluble at a concentration of 1.0 × 10−5 M. As before, changes in
fluorescence were examined upon interaction with 10 and 20 equivalents of each cation.
The use of a larger number of cation equivalents resulted in a more noticeable difference
in the fluorimetric response. Interestingly, a selective fluorometric response was seen for
Pd2+ in SDS aqueous solutions for compounds 3a,c–e (Figure 4). Compound 3b was not
included due to low fluorescence. For compounds 3a,c–e, the fluorescence quenching
could be assigned to SDS-assisted internalization of Pd2+ into the inner micellar core with
subsequent interaction with the fluorescent probe.
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Figure 4. Preliminary qualitative fluorescent chemosensing study of benzoxazolyl-alanines 3a (a),
3c (b), 3d (c), and 3e (d) in SDS (20 mM, pH 7.5)/acetonitrile (90:10) in the presence of 10 and
20 equivalents of each cation, visualized under a 365 nm lamp ([3a] = [3c] = [3d] = [3e] = 1.0 × 10−5 M
at room temperature).

2.4. Spectrofluorimetric Titrations

Given the results obtained in the photophysical characterization and the preliminary
chemosensing study, crown ether benzoxazolyl-alanines 3c–e were chosen as representative
examples and their interaction with selected cations was evaluated through spectrofluori-
metric titrations in acetonitrile.

It was found that benzoxazolyl-alanines 3c–e responded with decreased fluorescence
intensity (a chelation enhancement of quenching, CHEQ effect) to increased concentrations
of the tested metal cations and the sensitivity towards Fe3+ was evident, since the addition
of a low number of metal equivalents (2–10 equiv) resulted in the complete quenching of
fluorescence (Figure 5).
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(a) [3c] = 1.0 × 10−5 M, λexc = 324 nm. Inset: normalized emission at 428 nm as a function of added
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Fluorimetric titrations in acetonitrile were also conducted for compound 3e with Fe2+

to confirm its ability to discriminate between Fe3+ and Fe2+. Total fluorescence quenching
was not reached even after the addition of a much larger number of equivalents of the
metal cation (450 equiv for ca. 40% quenching) (Figure 6).
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Figure 6. Normalized fluorimetric titrations of benzoxazolyl-alanine 3e with Fe2+ in acetonitrile:
[3e] = 1.0 × 10−5 M], λexc = 351 nm. Inset: Normalized emission at 426 nm as a function of added
ion equivalents.

Bearing in mind the behavior of benzoxazolyl-alanines 3c–e in aqueous solution in
the preliminary tests and the apparent selective response for Pd2+, the corresponding
fluorimetric titrations were performed in SDS (20 mM, pH 7.5)/acetonitrile (90:10) for
compound 3d. Upon the addition of increasing amounts of Pd2+, complete fluorescence
quenching required 50 equiv of cation (Figure 7b). In comparison with titrations with Pd2+
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in acetonitrile, which required 200 equiv for total loss of fluorescence (Figure 7a), this can
still be considered an interesting result for chemosensing in aqueous mixtures.
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Figure 7. Normalized fluorimetric titrations of benzoxazolyl-alanine 3d with Pd2+: (a) in acetonitrile
and (b) in SDS (20 mM, pH 7.5)/acetonitrile (90:10). [3d] = 1.0 × 10−5 M], λexc = 363 nm. Inset:
Normalized emission at 447 nm as a function of added ion equivalents.

This chelation-induced quenching of fluorescence was in accordance with previous
reports on palladium chemosensors possessing crown ether moieties, which was attributed
to energy transfer quenching of the π* emissive state through low-lying, metal-centered,
unfilled d-orbitals for Pd2+ [39]. Moreover, cooperative effects from the N and O atoms
of the benzoxazole and also the O or S atoms of the furan or thiophene bridges may have
been in play, also acting as binding sites for palladium.

For benzoxazolyl-alanine 3d in SDS (20 mM, pH 7.5)/acetonitrile (90:10), the detection
limit (DL) for Pd2+ was calculated using the equation DL = 3σ/slope method, where σ is
the standard deviation of the fluorescent intensity of the analyte free solution and S is the
slope of the linear plot of concentration-dependent fluorescence response [40]. It was found
to be 5.81 µM, which was lower than the WHO threshold for palladium content in drugs
[47 µM (5 ppm) to 94 µM (10 ppm)] [41].

In order to understand the mode of coordination between compound 3d (as a represen-
tative example) and Pd2+, a Job’s plot was constructed in SDS (20 mM, pH 7.5)/acetonitrile
(90:10). As can be seen in Figure 8, compound 3d clearly formed a complex with Pd2+ in a
1:1 stoichiometry.
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Figure 8. Job’s plot for the interaction of compound 3d with Pd2+ by measuring the fluorescence
intensity at 447 nm in SDS (20 mM, pH 7.5)/acetonitrile (90:10). The total concentration of 3d and
Pd2+ was 1.0 × 10−5 M (χ represents molar fraction, F0 is the initial fluorescence intensity and F is
the fluorescence intensity in the presence of Pd2+).
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3. Materials and Methods
3.1. Synthesis General

Melting points were measured using a Stuart SMP3 melting point apparatus. TLC
analyses were carried out on 0.25 mm thick precoated silica plates (Merck Fertigplatten
Kieselgel 60F254) and spots were visualized under UV light. Chromatography on silica
gel was carried out on Merck Kieselgel (230–240 mesh). NMR spectra were obtained on
a Bruker Avance III 400 at an operating frequency of 400 MHz for 1H and 100.6 MHz for
13C, using the solvent peak as the internal reference at 25 ◦C. The solvents are indicated in
parenthesis before the chemical shift values (δ relative to TMS and given in ppm). Assign-
ments were supported by bidimensional heteronuclear correlation techniques. Infrared
spectra were recorded on a BOMEM MB 104 spectrophotometer. Mass spectra were ob-
tained at “C.A.C.T.I. Unidad de Espectrometria de Masas” at the University of Vigo, Spain.
All commercially available reagents were used as received. We previously synthesized
formylated azacrown ether 1a and protected 3-aminotyrosine 2 [24,30].

3.2. Synthesis of Formyl Crown Ethers 1c–e by Suzuki Coupling

General method for Suzuki coupling: In a round bottom flask under nitrogen atmo-
sphere, 4′-bromobenzo-18-crown-6 ether (150 mg, 0.38 mmol) was dissolved in a mixture
of 1,2-dimethoxyethane (6 mL) and deionized water (2 mL) at room temperature and
boronic acid (0.46 mmol), tetrakis(triphenylphosphine)palladium(0) (27 mg, 0.023 mmol),
and potassium carbonate (315 mg, 2.28 mmol) were added. The mixture was heated at
80 ◦C for about 24 h until the disappearance of the halide (checked by TLC). After cooling
to room temperature, the mixture was transferred to an extraction funnel and saturated
NaCl solution (10 mL) was added, followed by extraction with ethyl acetate (3 × 15 mL).
The organic extracts were combined and washed with water (20 mL) and 10% aqueous
NaOH (20 mL). The organic extract was dried over anhydrous magnesium sulfate, filtered,
and evaporated to dryness. The crude extract was purified by column chromatography
on silica gel using dichloromethane and mixtures of increasing polarity with methanol
(up to DCM/MeOH, 9:1) as the eluent. The fractions containing the pure compound were
combined and evaporated to dryness.

3.2.1. Phenylbenzocrown 1c

Starting from 4-formylphenylboronic acid (69 mg, 0.46 mmol), phenylbenzocrown
1c was obtained as a light brown oil (143 mg, 91%). 1H NMR (400 MHz, CDCl3):
δ 3.63–3.77 (m, 10H, 5 × CH2 ) , 3.87–3.90 (m, 2H, CH2), 3.93–3.95 (m, 2H, CH2),
4.09–4.11 (m, 2H, CH2), 4.19–4.24 (m, 4H, 2 × CH2), 6.93 (d, J 8.0 Hz, 1H, H6′), 7.13 (d,
J 2.0 Hz, 1H, H3′), 7.18 (dd, J 8.2 and 2.0 Hz, 1H, H5′), 7.67 (d, J 8.2 Hz, 2H, H3 and H5),
7.89 (d, J 8.2 Hz, 2H, H2 and H6), 10.00 (s, 1H, CHO) ppm. 13C NMR (100.6 MHz, CDCl3):
δ 68.65 (CH2), 68.77 (CH2), 68.83 (CH2), 68.92 (CH2), 69.16 (CH2), 69.26 (CH2), 69.30 (CH2),
69.36 (CH2), 70.47 (CH2), 70.54 (CH2), 112.84 (C3′), 113.62 (C6′), 120.35 (C5′), 127.05 (C3
and C5), 130.14 (C2 and C6), 132.65 (C4′), 134.65 (C1), 146.72 (C4), 148.95 (C1′), 149.44 (C2′),
191.76 (CHO) ppm. FTIR (neat): ν 2916, 1659, 1630, 1594, 1456, 1347, 1253, 1123, 958, 867,
799 cm−1. MS (ESI) m/z (%): 417 (M++1, 62), 416 (M+, 45).

3.2.2. Thienylbenzocrown 1d

Starting from 5-formyl-2-thienylboronic acid (72 mg, 0.46 mmol), thienylbenzocrown
1d was obtained as a light yellow solid (180 mg, 93%). M.p. 175.9–177.1 ◦C. 1H NMR
(400 MHz, CDCl3): δ 3.69–3.79 (m, 12H, 6× CH2), 3.92–3.96 (m, 4H, 2× CH2), 4.20–4.24 (m,
4H, 2 × CH2), 6.91 (d, J 8.4 Hz, 1H, H6′), 7.17 (d, J 1.6 Hz, 1H, H3′), 7.25 (dd, J 8.4 and
1.6 Hz, 1H, H5′), 7.29 (d, J 3.6 Hz, 1H, H4), 7.71 (d, J 3.6 Hz, 1H, H3), 9.86 (s, 1H, CHO)
ppm. 13C NMR (100.6 MHz, CDCl3): δ 69.04 (CH2), 69.37 (CH2), 69.43 (CH2), 69.48 (CH2),
69.56 (CH2), 70.72 (CH2), 70.74 (CH2), 70.76 (CH2), 70.87 (CH2), 70.89 (CH2), 112.40 (C3′),
113.92 (C6′), 119.95 (C5′), 123.22 (C4), 126.36 (C2), 137.54 (C3), 141.61 (C5), 149.17 (C2′),
150.36 (C1′), 154.48 (C4′), 182.62 (CHO) ppm. FTIR (KBr disc): ν 2917, 1660, 1629, 1535,
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1506, 1447, 1348, 1268, 1248, 956, 865, 798, 753 cm−1. MS (ESI) m/z (%): 423 (M++1, 81),
422 (M+, 55).

3.2.3. Furylbenzocrown 1e

Starting from 5-formyl-2-furanylboronic acid (64 mg, 0.46 mmol), furylbenzocrown 1e
was obtained as a light brown oil (168 mg, 90%). 1H NMR (400 MHz, CDCl3): δ 3.68–3.73 (m,
8H, 4 × CH2), 3.77–3.79 (m, 4H, 2 × CH2), 3.95–3.98 (m, 4H, 2 × CH2), 4.21–4.23 (m, 2H,
CH2), 4.25–4.28 (m, 2H, CH2), 6.73 (d, J 3.6 Hz, 1H, H4), 6.91 (d, J 8.4 Hz, 1H, H6′), 7.31 (d,
J 3.6 Hz, 1H, H3), 7.34 (d, J 2.0 Hz, 1H, H3′), 7.39 (dd, J 8.4 and 2.0 Hz, 1H, H5′), 9.61 (s,
1H, CHO) ppm. 13C NMR (100.6 MHz, CDCl3): δ 68.27 (2 × CH2), 69.13 (2 × CH2),
69.54 (2 × CH2), 69.99 (2 × CH2), 70.37 (2 × CH2), 106.72 (C4), 110.07 (C3′), 113.01 (C6′),
119.20 (C5′), 122.30 (C4′), 124.41 (C3), 148.79 (C2′), 150.11 (C1′), 151.66 (C2), 159.64 (C5),
181.00 (CHO) ppm. FTIR (neat): ν 2923, 1665, 1594, 1488, 1455, 1357, 1253, 1212, 1122, 957,
766 cm−1. MS (ESI) m/z (%): 407 (M++1, 92), 406 (M+, 68).

3.3. Synthesis of Crown Ether Benzoxazolyl-alanines 3a–e

General method for oxidative cyclization: In a round bottom flask, the formylated crown
ethers 1a–e (1 equiv) and protected 3-aminotyrosine 2 (1 equiv) were dissolved in absolute
ethanol (10 mL) and heated under reflux for 24 h. The mixture was evaporated to dryness
and the imine (checked by 1H NMR in CDCl3) was obtained as a light brown oil, which
did not undergo further purification. The oily imine was dissolved in DMSO (2 mL) and
lead tetraacetate (3 equiv) was added, followed by stirring at room temperature for 3 days.
After the addition of deionized water (10 mL), the mixture was extracted with ethyl acetate
(3 × 10 mL). The organic extracts were combined, dried over anhydrous magnesium
sulfate, filtered, and evaporated to dryness. The crude extract was purified by column
chromatography on silica gel using dichloromethane and mixtures of increasing polarity
with methanol (up to DCM/MeOH, 9:1) as the eluent. The fractions containing the pure
compound were combined and evaporated to dryness (the NMR spectra are presented in
the supplementary material).

3.3.1. Benzoxazolyl-alanine 3a

Starting from N-(4′-formylphenyl)aza-15-crown-5 1a (91 mg, 0.28 mmol) and protected
tyrosine 2 (87 mg, 0.28 mmol), benzoxazolyl-alanine 3a was obtained as a yellow oil (124 mg,
72%). 1H NMR (400 MHz, DMSO-d6): δ 1.28 (s, 9H, C(CH3)3), 2.90–3.00 (m, 2H, β-CH2),
3.45–3.61 (m, 20H, 10 × CH2), 3.61 (s, 3H, OCH3), 4.12–4.20 (m, 1H, α-H), 6.79 (d, J 8.8 Hz,
1H, NH), 7.16 (d, J 8.4 Hz, 1H, H6), 7.30 (d, J 8.4 Hz, 2H, H3′ and H5′), 7.52–7.68 (m, 3H,
H4, H2′ and H6′), 7.93 (d, J 8.8 Hz, 1H, H7) ppm. 13C NMR (100.6 MHz, DMSO-d6): δ 28.14
(C(CH3)3, 36.45 (β-CH2), 52.13 (OCH3), 55.66 (α-C), 60.28 (2 × CH2), 67.76 (2 × CH2),
69.12 (2 × CH2), 69.62 (2 × CH2), 69.85 (CH2), 72.38 (CH2), 79.21 (C(CH3)3), 109.87 (C7),
111.52 (C3′ and C5′), 119.39 (C4), 120.08 (C1′), 128.89 (C6), 131.22 (C2′ and C6′), 131.67 (C5),
142.18 (C3a), 148.90 (C7a), 150.25 (C4′), 155.52 (C=O Boc), 163.64 (C2), 172.66 (C=O) ppm.
FTIR (neat): ν 3348, 2954, 2925, 2885, 1742, 1714, 1607, 1505, 1456, 1367, 1259, 1170, 822 cm−1.
HRMS m/z (ESI): calcd. for C32H44N3O9 614.30721, found 614.30721.

3.3.2. Benzoxazolyl-alanine 3b

Starting from 4′-formylbenzo-15-crown-5 1b (107 mg, 0.37 mmol) and protected
tyrosine 2 (111 mg, 0.36 mmol), benzoxazolyl-alanine 3b was obtained as a yellow oil
(180 mg, 85%). 1H NMR (400 MHz, CDCl3): δ 1.38 (s, 9H, C(CH3)3), 3.15–3.19 (m, 2H,
β-CH2), 3.69 (s, 3H, OCH3), 3.69–3.73 (m, 8H, 4 × CH2), 3.88–3.90 (m, 4H, 2 × CH2),
4.14–4.25 (m, 4H, 2 × CH2), 4.58–4.61 (m, 1H, α-H), 5.08 (d, J 8.0 Hz, 1H, NH), 6.91
(d, J 8.4 Hz, 1H, H5′), 7.06 (dd, J 8.4 and 1.6 Hz, 1H, H6), 7.42 (d, J 8.0 Hz, 1H, H7),
7.46 (br s, 1H, H4), 7.69 (d, J 1.6 Hz, 1H, H2′), 7.77 (dd, J 8.4 and 1.6 Hz, 1H, H6′)
ppm. 13C NMR (100.6 MHz, CDCl3): δ 28.14 (C(CH3)3, 38.14 (β-CH2), 52.16 (OCH3),
54.54 (α-C), 68.48 (CH2), 68.89 (CH2), 69.05 (CH2), 69.13 (CH2), 70.07 (CH2), 70.13 (CH2),
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70.85 (2 × CH2), 79.85 (C(CH3)3), 110.15 (C7), 112.17 (C2′), 112.75 (C5′), 119.41 (C3′or
C4′), 119.88 (C4), 121.51 (C6′), 125.91 (C6), 132.56 (C5), 141.94 (C3a), 148.92 (C3′ or C4′),
149.62 (C7a), 152.05 (C1′), 154.99 (C=O Boc), 163.36 (C2), 172.04 (C=O) ppm. FTIR (neat):
ν 3333, 2952, 2869, 1750, 1688, 1563, 1537, 1478, 1436, 1352, 1278, 1135, 970, 863 cm−1. HRMS
m/z (ESI): calcd. for C30H38N2NaO10 609.24187, found 609.24185.

3.3.3. Benzoxazolyl-alanine 3c

Starting from phenylbenzocrown 1c (100 mg, 0.24 mmol) and protected tyrosine 2
(74 mg, 0.24 mmol), benzoxazolyl-alanine 3c was obtained as a light brown oil (150 mg,
89%). 1H NMR (400 MHz, CDCl3): δ 1.43 (s, 9H, C(CH3)3), 3.23–3.28 (m, 2H, β-CH2),
3.68–3.79 (m, 12H, 6 × CH2), 3.75 (s, 3H, OCH3), 3.90–3.97 (m, 4H, 2 × CH2), 4.13–4.28 (m,
4H, 2 × CH2), 4.65 (br s, 1H, α-H), 5.06 (d, J 8.4 Hz, 1H, NH), 6.73 (d, J 8.4 Hz, 1H,
H6”), 7.13–7.24 (m, 3H, H6, H3” and H5”), 7.52 (d, J 8.4 Hz, 1H, H7), 7.56 (br s, 1H,
H4), 7.70 (d, J 8.4 Hz, 2H, H-3′ and H-5′), 8.29 (d, J 8.4 Hz, 2H, H2′ and H6′) ppm. 13C
NMR (100.6 MHz, DMSO-d6): δ 28.14 (C(CH3)3, 42.50 (β-CH2), 55.60 (α-C), 57.48 (OCH3),
67.94 (2 × CH2), 68.01 (2 × CH2), 68.17 (2 × CH2), 68.51 (CH2), 68.55 (CH2), 68.65 (CH2),
68.71 (CH2), 78.44 (C(CH3)3), 111.91 (C7), 114.30 (C3”), 115.61 (C6”), 119.42 (C5”), 120.25 (C4),
123.22 (C4”), 124.67 (C6), 126.73 (C3′ and C5′), 127.13 (C2′ and C6′), 131.56 (C5), 134.61 (C1′),
141.69 (C3a), 143.29 (C4′), 147.51 (C1”), 148.42 (C7a), 149.02 (C2”), 155.54 (C=O Boc),
162.52 (C2), 172.61 (C=O) ppm. FTIR (neat): ν 3423, 2926, 2877, 1742, 1713, 1602, 1497,
1393, 1254, 1057, 953, 844 cm−1. HRMS m/z (ESI): calcd. for C38H46N2NaO11 729.29938,
found 729.29924.

3.3.4. Benzoxazolyl-alanine 3d

Starting from thienylbenzocrown 1d (101 mg, 0.24 mmol) and protected tyrosine 2
(74 mg, 0.24 mmol), benzoxazolyl-alanine 3d was obtained as a light brown oil (165 mg,
96%). 1H NMR (400 MHz, CDCl3): δ 1.42 (s, 9H, C(CH3)3), 3.20–3.23 (m, 2H, β-CH2),
3.69–3.77 (m, 12H, 6 × CH2), 3.77 (s, 3H, OCH3), 3.94–3.95 (m, 4H, 2 × CH2), 4.20–4.23 (m,
4H, 2 × CH2), 4.62–4.64 (m, 1H, α-H), 5.06 (d, J 8.0 Hz, 1H, NH), 6.89 (d, J 8.4 Hz, 1H, H6”),
7.09 (dd, J 8.0 and 1.6 Hz, 1H, H6), 7.14 (d, J 1.6 Hz, 1H, H3”), 7.21–7.25 (m, 2H, H5” and
H4′), 7.44 (d, J 8.4 Hz, 1H, H7), 7.46 (br s, 1H, H4), 7.81 (d, J 3.6 Hz, 1H, H3′) ppm. 13C
NMR (100.6 MHz, DMSO-d6): δ 28.13 (C(CH3)3, 38.20 (β-CH2), 51.92 (OCH3), 55.57 (α-C),
67.53 (3 × CH2), 67.56 (2×CH2), 68.43 (3×CH2), 68.48 (2 × CH2), 78.41 (C(CH3)3), 109.73 (C7),
110.22 (C3”), 112.66 (C6”), 118.70 (C5”), 119.90 (C4), 124.49 (C4′), 125.52 (C6), 126.11 (C4”),
126.63 (C2′), 131.67 (C3′), 134.76 (C5), 141.60 (C3a), 148.18 (C1”), 148.62 (C2”), 148.85 (C5′),
148.89 (C7a), 155.51 (C=O Boc), 158.42 (C2), 172.58 (C=O) ppm. FTIR (neat): ν 3385, 2925,
1740, 1714, 1576, 1505, 1448, 1367, 1255, 1124, 956, 849 cm−1. HRMS m/z (ESI): calcd. for
C36H45N2O11S 713.27386, found 713.27394.

3.3.5. Benzoxazolyl-alanine 3e

Starting from furylbenzocrown 1e (114 mg, 0.28 mmol) and protected tyrosine 2
(87 mg, 0.28 mmol), benzoxazolyl-alanine 3e was obtained as a light brown oil (173 mg,
89%). 1H NMR (400 MHz, CDCl3): δ 1.39 (s, 9H, C(CH3)3), 3.17–3.20 (m, 2H, β-CH2),
3.65–3.73 (m, 12H, 6 × CH2), 3.73 (s, 3H, OCH3), 3.81–3.92 (m, 4H, 2 × CH2), 4.12–4.24 (m,
4H, 2 × CH2), 4.58–4.60 (m, 1H, α-H), 5.09 (d, J 8.0 Hz, 1H, NH), 6.69 (d, J 3.6 Hz, 1H,
H4′), 6.84–6.89 (m, 2H, H6” and H3′), 7.09 (d, J 8.0 Hz, 1H, H6), 7.31 (d, J 2.0 Hz, 1H,
H3”), 7.35 (dd, J 8.4 and 2.0 Hz, 1H, H5”), 7.50 (d, J 8.4 Hz, 1H, H7), 7.55 (d, J 1.2 Hz, 1H,
H4) ppm. 13C NMR (100.6 MHz, DMSO-d6): δ 28.11 (C(CH3)3, 42.16 (β-CH2), 51.87 (OCH3),
54.87 (α-C), 67.95 (2 × CH2), 68.15 (CH2), 68.33 (2×CH2), 68.66 (2×CH2), 68.72 (2 × CH2),
68.79 (CH2), 78.38 (C(CH3)3), 107.40 (C4′), 109.08 (C7), 110.27 (C3”), 113.13 (C6”), 117.52 (C3′),
120.07 (C5”), 120.90 (C4), 122.03 (C4”), 126.61 (C6), 134.74 (C5), 140.32 (C2′), 141.43 (C3a),
148.17 (C1”), 148.52 (C7a), 149.07 (C2”), 154.88 (C=O Boc), 155.49 (C2), 156.81 (C5′),
172.57 (C=O) ppm. FTIR (neat): ν 3371, 2975, 2929, 2879, 1744, 1711, 1641, 1509, 1366,
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1254, 1165, 958, 855 cm−1. HRMS m/z (ESI): calcd. for C36H44N2NaO12 719.27865,
obtido 719.27860.

3.4. Sensing Studies General

The UV-vis absorption spectra were obtained in acetonitrile solution (1.0 × 10−5 M) us-
ing a Shimadzu UV/2501PC spectrophotometer and the fluorescence spectra were obtained
using a Horiba FluoroMax-4 spectrofluorometer.

Evaluation of benzoxazolyl-alanines 3a–e as fluorimetric chemosensors was carried
out in the presence of several cations (Ag+, K+, Li+, Hg2+, Ca2+, Co2+, Pb2+, Mn2+, Fe2+,
Zn2+, Ni2+, Cd2+, Cu2+, Pd2+, Fe3+, and Al3+). Solutions of compounds 3a–e (3.0 × 10−5 M)
and the ions under study (1.0 × 10−2 M) were prepared in acetonitrile. Solutions of
compounds 3a–e (1.0 × 10−5 M) and the ions under study (1.0 × 10−2 M) were prepared in
aqueous mixtures of SDS (20 mM, pH 7.5) solution with acetonitrile, 90:10 v/v. Preliminary
studies were carried out by adding up to 10 equivalents of each cation to the solutions
of compounds 3a–e in acetonitrile. A similar study was performed by adding up to
10 and 20 equivalents of each cation to the solutions of compounds 3a–e in an aqueous
environment using SDS. The solutions were visualized in a Vilber Lourmat CN15 viewing
cabinet under a UV lamp at 365 nm.

4. Conclusions

Considering the obtained results, it can be concluded that benzoxazolyl-alanines bear-
ing crown ether moieties 3a–e are sensitive, although not selective, fluorimetric chemosen-
sors in acetonitrile solution, and their sensory behavior is characterized by a variable
decrease in the initial fluorescence intensity upon the addition of increasing amounts of
different metal cations. Alanines 3c–e, which bear a benzo-18-crown-6 ether, gave a note-
worthy response for trivalent iron, needing between 2 to 10 equivalents of the metal cation
for complete quenching.

Bearing in mind the interest in developing chemosensors able to display selective
optical responses in aqueous mixtures, solutions of alanines 3c–e in aqueous SDS (20 mM,
pH 7.5) with acetonitrile (90:10 v/v) demonstrated a selective response in the presence
of Pd2+ through marked fluorescence quenching, with a low detection limit of 5.81 µM.
The encouraging results in terms of photophysical and metal ion sensing properties of
these compounds opens up the possibility for their use in the assembly of peptides with
chemosensory/probing abilities.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28083326/s1, 1H and 13C NMR spectra of compounds 3a–e.
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