Switch-on Fluorescence Analysis of Protease Activity with the Assistance of a Nickel Ion-Nitrilotriacetic Acid-Conjugated Magnetic Nanoparticle
Abstract
:1. Introduction
2. Results and Discussion
2.1. Principle of This Proposal
2.2. Feasibility for Cas3 Detection
2.3. Optimization of Experimental Conditions
2.4. Analytical Performances
2.5. Selectivity
2.6. Evaluation of Cell Apoptosis
3. Experimental
3.1. Chemicals and Reagents
3.2. Procedures for Cas3 Detection
3.3. Apoptosis Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Poreba, M.; Szalek, A.; Kasperkiewicz, P.; Rut, W.; Salvesen, G.S.; Drag, M. Small molecule active site directed tools for studying human caspases. Chem. Rev. 2015, 115, 12546–12629. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Rios, M.; Megia-Fernandez, A.; Norman, D.J.; Bradley, M. Peptide probes for proteases–innovations and applications for monitoring proteolytic activity. Chem. Soc. Rev. 2022, 51, 2081–2120. [Google Scholar] [CrossRef] [PubMed]
- Bąchor, R. Peptidyl-resin substrates as a tool in the analysis of caspase activity. Molecules 2022, 27, 4107. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Saadatidizaji, Z.; Maleki, A.; de la Guardia, M.; Mahdavi, M.; Barzegar, S.; Ahadian, S. Recent progresses in development of biosensors for thrombin detection. Biosensors 2022, 12, 767. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett. 2020, 30, 127377. [Google Scholar] [CrossRef] [PubMed]
- Ong, I.L.H.; Yang, K.-L. Recent developments in protease activity assays and sensors. Analyst 2017, 142, 1867–1881. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.J.; Kim, J.H.; Chung, S.J. Homogeneous detection of caspase-3 using intrinsic fluorescence resonance energy transfer (iFRET). Biosens. Bioelectron. 2015, 67, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Yang, B.; Chen, B.; He, M.; Hu, B. Multifunctional gold nanocluster decorated metal–organic framework for real-time monitoring of targeted drug delivery and quantitative evaluation of cellular therapeutic response. Anal. Chem. 2019, 91, 10596–10603. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, D.; Zhang, X.; Xu, Q.; Ma, F.; Zhang, C.-Y. Label-free and amplified detection of apoptosis-associated caspase activity using branched rolling circle amplification. Chem. Commun. 2020, 56, 5243–5246. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liang, Y.; Ruan, L.; Ren, J. Chemiluminescent detection of cell apoptosis enzyme by gold nanoparticle-based resonance energy transfer assay. Anal. Bioanal. Chem. 2014, 406, 5677–5684. [Google Scholar] [CrossRef] [PubMed]
- Munoz-San Martin, C.; Pedrero, M.; Gamella, M.; Montero-Calle, A.; Barderas, R.; Campuzano, S.; Pingarron, J.M. A novel peptide-based electrochemical biosensor for the determination of a metastasis-linked protease in pancreatic cancer cells. Anal. Bioanal. Chem. 2020, 412, 6177–6188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qi, H.; Li, Z.; Zhang, N.; Gao, Q.; Zhang, C. Electrogenerated chemiluminescence bioanalytic system based on biocleavage of probes and homogeneous detection. Anal. Chem. 2015, 87, 6510–6515. [Google Scholar] [CrossRef]
- Wei, C.; Sun, R.; Jiang, Y.; Guo, X.; Ying, Y.; Wen, Y.; Yang, H.; Wu, Y. Protease-protection strategy combined with the SERS tags for detection of O-GlcNAc transferase activity. Sens. Actuat. B Chem. 2021, 345, 130410. [Google Scholar] [CrossRef]
- Schuerle, S.; Dudani, J.S.; Christiansen, M.G.; Anikeeva, P.; Bhatia, S.N. Magnetically actuated protease sensors for in vivo tumor profiling. Nano Lett. 2016, 16, 6303–6310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.; Zhou, J.; Zhou, X.; Xing, D. Peptide cleavage induced assembly enables highly sensitive electrochemiluminescence detection of protease activity. Sens. Actuat. B Chem. 2018, 262, 516–521. [Google Scholar] [CrossRef]
- Wignarajah, S.; Suaifan, G.A.R.Y.; Bizzarro, S.; Bikker, F.J.; Kaman, W.E.; Zourob, M. Colorimetric assay for the detection of typical biomarkers for periodontitis using a magnetic nanoparticle biosensor. Anal. Chem. 2015, 87, 12161–12168. [Google Scholar] [CrossRef] [PubMed]
- Suaifan, G.A.R.Y.; Esseghaier, C.; Ng, A.; Zourob, M. Ultra-rapid colorimetric assay for protease detection using magnetic nanoparticle-based biosensors. Analyst 2013, 138, 3735–3739. [Google Scholar] [CrossRef]
- Lee, G.-H.; Lee, E.J.; Hah, S.S. TAMRA- and Cy5-labeled probe for efficient kinetic characterization of caspase-3. Anal. Biochem. 2014, 446, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Vuojola, J.; Syrjänpää, M.; Lamminmäki, U.; Soukka, T. Genetically encoded protease substrate based on lanthanide-binding peptide for time-gated fluorescence detection. Anal. Chem. 2013, 85, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ye, S.; Fang, J.; Zhang, Y.; Cui, C.; Wang, A.; Zhao, Y.; Shi, H. Real-time visualization of embryonic apoptosis using a near-infrared fluorogenic probe for embryo development evaluation. Anal. Chem. 2021, 93, 12122–12130. [Google Scholar] [CrossRef]
- den Hamer, A.; Dierickx, P.; Arts, R.; de Vries, J.S.P.M.; Brunsveld, L.; Merkx, M. Bright bioluminescent BRET sensor proteins for measuring intracellular caspase activity. ACS Sens. 2017, 2, 729–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Zhang, R.; Cheng, X.; Xu, S.; Liu, B. A FRET probe with AIEgen as the energy quencher: Dual signal turn-on for self-validated caspase detection. Chem. Sci. 2016, 7, 4245–4250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cihlova, B.; Huskova, A.; Böserle, J.; Nencka, R.; Boura, E.; Silhan, J. High-throughput fluorescent assay for inhibitor screening of proteases from RNA viruses. Molecules 2021, 26, 3792. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Rajapaksha, T.W.; Peter, M.E.; Mrksich, M. Assays of endogenous caspase activities: A comparison of mass spectrometry and fluorescence formats. Anal. Chem. 2006, 78, 4945–4951. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liang, Y.; Zhang, C. Label-free and homogenous detection of caspase-3-like proteases by disrupting homodimerization-directed bipartite tetracysteine display. Anal. Chem. 2017, 89, 4055–4061. [Google Scholar] [CrossRef]
- Su, D.; Hu, X.; Dong, C.; Ren, J. Determination of Caspase 3 activity and its inhibition constant by combination of fluorescence correlation spectroscopy with a microwell chip. Anal. Chem. 2017, 89, 9788–9796. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cheng, M.; Zeng, L.; Liu, W.; Zhang, T.; Xing, D. Specific capture of the hydrolysate on magnetic beads for sensitive detecting plant vacuolar processing enzyme activity. Biosens. Bioelectron. 2016, 79, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yu, D.; Zhao, Y.; Fan, A. Turn-on chemiluminescent sensing platform for label-free protease detection using streptavidin-modified magnetic beads. Biosens. Bioelectron. 2014, 61, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.; Li, S.; Wang, H.; Chen, C.; Chen, X.; Cai, C. Simultaneous detection of two hepatocellar carcinoma-related microRNAs using a clever single-labeled fluorescent probe. Anal. Chim. Acta 2017, 983, 181. [Google Scholar] [CrossRef]
- Wang, L.; Tian, J.; Li, H.; Zhang, Y.; Sun, X. A novel single-labeled fluorescent oligonucleotide probe for silver (I) ion detection based on the inherent quenching ability of deoxyguanosines. Analyst 2011, 136, 891–893. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Hao, Y.; Yang, P.; Xia, N.; Yu, W.; Liu, X.; Liu, L. Single-labeled peptide substrates for detection of protease activity based on the inherent fluorescence quenching ability of Cu2+. Anal. Methods 2019, 11, 1248–1253. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Wang, Z.; Song, D. Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for caspase-9 activity detection in vitro and in vivo. Biosens. Bioelectron. 2019, 141, 111403. [Google Scholar] [CrossRef]
- Yang, Y.; He, Y.; Deng, Z.; Li, J.; Huang, J.; Zhong, S. Intelligent nanoprobe: Acid-responsive drug release and in situ evaluation of its own therapeutic effect. Anal. Chem. 2020, 92, 12371–12378. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Shi, X.; He, X.; Ma, N.; Chen, H. Highly sensitive detection of caspase-3 activities via a nonconjugated gold nanoparticle–quantum dot pair mediated by an inner-filter effect. ACS Appl. Mater. Interfaces 2013, 5, 9798–9802. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Liu, L.-H.; Cheng, H.; Li, B.; Qiu, W.-X.; Zhang, X.-Z. A dual-FRET-based fluorescence probe for the sequential detection of MMP-2 and caspase-3. Chem. Commun. 2015, 51, 14520–14523. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Lee, J.; Min, D.-H. Graphene oxide for fluorescence-mediated enzymatic activity assays. J. Mater. Chem. B 2014, 2, 2452–2460. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Jian, M.; Li, X.; Wei, J.; Meng, X.; Wang, Z. Biosensors and bioassays for determination of matrix metalloproteinases: State of the art and recent advances. J. Mater. Chem. B 2020, 8, 3261–3291. [Google Scholar] [CrossRef]
- Nirantar, S.R.; Yeo, K.S.; Chee, S.; Lane, D.P.; Ghadessy, F.J. A generic scaffold for conversion of peptide ligands into homogenous biosensors. Biosens. Bioelectron. 2013, 47, 421–428. [Google Scholar] [CrossRef]
- Xia, N.; Liu, G.; Yi, X. Surface plasmon resonance for protease detection by integration of homogeneous reaction. Biosensors 2021, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lei, C.; Nie, Z.; Guo, M.; Huang, Y.; Yao, S. Label-free fluorescent detection of thrombin activity based on a recombinant enhanced green fluorescence protein and nickel ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles. Talanta 2013, 116, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Wieneke, R.; Tamp, R. Multivalent chelators for in vivo protein labeling. Angew. Chem. Int. Ed. 2019, 58, 8278–8290. [Google Scholar] [CrossRef]
- Wasserberg, D.; Cabanas-Danés, J.; Prangsma, J.; O’Mahony, S.; Cazade, P.-A.; Tromp, E.; Blum, C.; Thompson, D.; Huskens, J.; Subramaniam, V.; et al. Controlling protein surface orientation by strategic placement of oligo-histidine tags. ACS Nano 2017, 11, 9068–9083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, C.; Piehler, J. Multivalent chelators for spatially and temporally controlled protein functionalization. Anal. Bioanal. Chem. 2014, 406, 3345–3357. [Google Scholar] [CrossRef]
- Mu, B.; Zhang, J.; McNicholas, T.P.; Reuel, N.F.; Kruss, S.; Strano, M.S. Recent advances in molecular recognition based on nanoengineered platforms. Acc. Chem. Res. 2020, 47, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Tateo, S.; Shinchi, H.; Matsumoto, H.; Nagata, N.; Hashimoto, M.; Wakao, M.; Suda, Y. Optimized immobilization of single chain variable fragment antibody onto non-toxic fluorescent nanoparticles for efficient preparation of a bioprobe. Colloids Surf. B Biointerfaces 2023, 224, 113192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-S.; Yin, Y.-L.; Wang, L.; Xia, Y.; Ju Ryu, S.; Xi, Z.; Li, L.-Y.; Zhang, Z.-S. Self-assembling nitrilotriacetic acid nanofibers for tracking and enriching His-tagged proteins in living cells. J. Mater. Chem. B 2021, 9, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Huang, X.; Zheng, L.; Zheng, F.; Dong, J.; Chen, F.; Zeng, W. Biosensors for caspase-3: From chemical methodologies to biomedical applications. Talanta 2022, 240, 123198. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Wang, X.; Wang, D.; Liu, F.; Mei, B.; Tang, A.; Jiang, J.; Liang, G. Multifunctional fluorescent probe for sequential detections of glutathione and caspase 3 in vitro and in cells. Anal. Chem. 2013, 85, 6203–6207. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, L.; Zhang, L.; Zhao, J.; Jiang, Z.; Wang, W. Peptide-derived biosensors and their applications in tumor immunology-related detection. Anal. Chem. 2022, 94, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; La, M. Recent developments in electrochemical, electrochemiluminescent, photoelectrochemical methods for the detection of caspase-3 activity. Int. J. Electrochem. Sci. 2020, 15, 6852–6862. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, Q.; Gao, X.; Xu, K.; Tang, B. Monitoring the activation of caspases-1/3/4 for describing the pyroptosis pathways of cancer cells. Anal. Chem. 2021, 93, 12022–12031. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, X.; Luan, D.; Hu, B.; Xu, K.; Tang, B. Real-time in situ cisualizing of the sequential activation of caspase cascade using a multicolor gold–selenium bonding fluorescent nanoprobe. Anal. Chem. 2019, 91, 5994–6002. [Google Scholar] [CrossRef]
- Hu, X.; Li, H.; Huang, X.; Zhu, Z.; Zhu, H.; Gao, Y.; Zhu, Z.; Chen, H. Cell membrane-coated gold nanoparticles for apoptosis imaging in living cells based on fluorescent determination. Microchim. Acta 2020, 187, 175. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yi, C.; Zhang, Z.; Zhang, H.; Li, M.; Yang, M.; Yang, Q. Peptide-bridged assembly of hybrid nanomaterial and its application for caspase 3 detection. ACS Appl. Mater. Interfaces 2013, 5, 6494–6501. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Q.; Chu, X.; Chen, T.; Ge, J.; Yu, R. Graphene oxide–peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew. Chem. Int. Ed. 2011, 50, 7065–7069. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Qiu, Q.; Wen, Q.; Zhang, Q.; Yang, W.; Yuwen, L.; Weng, L.; Wang, L. Efficient biofunctionalization of MoS2 nanosheets with peptides as intracellular fluorescent biosensor for sensitive detection of caspase-3 activity. J. Colloid Interface Sci. 2019, 543, 96–105. [Google Scholar] [CrossRef]
- Dong, X.; Ong, S.Y.; Zhang, C.; Chen, W.; Du, S.; Xiao, Q.; Gao, L.; Yao, S.Q. Broad-spectrum polymeric nanoquencher as an efficient fluorescence sensing platform for biomolecular detection. ACS Sens. 2021, 6, 3102–3111. [Google Scholar] [CrossRef]
- Shen, Y.; Xin, Z.; Zhu, Y.; Wang, J. Mesoporous carbon nanospheres featured multifunctional fluorescent nanoprobe: Simultaneous activation and tracing of caspase-3 involved cell apoptosis. Sens. Actuat. B Chem. 2022, 358, 131485. [Google Scholar] [CrossRef]
- Xia, N.; Huang, Y.; Cui, Z.; Liu, S.; Deng, D.; Liu, L.; Wang, J. Impedimetric biosensor for assay of caspase-3 activity and evaluation of cell apoptosis using self-assembled biotin-phenylalanine network as signal enhancer. Sens. Actuat. B Chem. 2020, 320, 128436. [Google Scholar] [CrossRef]
- Xia, N.; Sun, Z.; Ding, F.; Wang, Y.; Sun, W.; Liu, L. Protease biosensor by conversion of a homogeneous assay into a surface-tethered electrochemical analysis based on streptavidin-biotin interactions. ACS Sens. 2021, 6, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Vuojol, J.; Riuttamäki, T.; Kulta, E.; Arppe, R.; Soukka, T. Fluorescence-quenching-based homogeneous caspase-3 activity assay using photon upconversion. Anal. Chim. Acta 2012, 725, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Valanne, A.; Malmi, P.; Appelblom, H.; Niemelä, P.; Soukka, T. A dual-step fluorescence resonance energy transfer-based quenching assay for screening of caspase-3 inhibitors. Anal. Biochem. 2008, 375, 71–81. [Google Scholar] [CrossRef] [PubMed]
Materials/Reporters | Linear Range | LOD | Ref. |
---|---|---|---|
AuNPs/dye | 0–1 unit/mL | 0.0079 unit/mL | [51] |
AuNPs/dye | 0–300 ng/mL | 0.073 ng/mL | [52] |
AuNPs/dye | 3.2–100 pg/mL | 1.3 pg/mL | [53] |
AuNPs/SiNPs | 0.05–1.0 U/mL | 0.05 U/mL | [54] |
GO/dye | 7.25–362 ng/mL | 7.25 ng/mL | [55] |
GO/dye | 2–360 ng/mL | 0.33 ng/mL | [56] |
qPNPs/dye | 2–40 nM | 0.09 nM | [57] |
MCN/dye | 0.01–1 ng/mL | 0.4 pg/mL | [58] |
MB/dye | 0.01–25 ng/mL | 4 pg/mL | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Lv, Y.; Liu, P.; Hao, Y.; Xia, N. Switch-on Fluorescence Analysis of Protease Activity with the Assistance of a Nickel Ion-Nitrilotriacetic Acid-Conjugated Magnetic Nanoparticle. Molecules 2023, 28, 3426. https://doi.org/10.3390/molecules28083426
Ma X, Lv Y, Liu P, Hao Y, Xia N. Switch-on Fluorescence Analysis of Protease Activity with the Assistance of a Nickel Ion-Nitrilotriacetic Acid-Conjugated Magnetic Nanoparticle. Molecules. 2023; 28(8):3426. https://doi.org/10.3390/molecules28083426
Chicago/Turabian StyleMa, Xiaohua, Yingxin Lv, Panpan Liu, Yuanqiang Hao, and Ning Xia. 2023. "Switch-on Fluorescence Analysis of Protease Activity with the Assistance of a Nickel Ion-Nitrilotriacetic Acid-Conjugated Magnetic Nanoparticle" Molecules 28, no. 8: 3426. https://doi.org/10.3390/molecules28083426
APA StyleMa, X., Lv, Y., Liu, P., Hao, Y., & Xia, N. (2023). Switch-on Fluorescence Analysis of Protease Activity with the Assistance of a Nickel Ion-Nitrilotriacetic Acid-Conjugated Magnetic Nanoparticle. Molecules, 28(8), 3426. https://doi.org/10.3390/molecules28083426