Structural Analysis of Spermidine Synthase from Kluyveromyces lactis
Abstract
:1. Introduction
2. Results
2.1. Overall Structure
2.2. Gate-Keeping Loop
2.3. Active Site
3. Discussion
4. Materials and Methods
4.1. Preparation of KlSpdS Expression Constructs
4.2. Purification of Recombinant Proteins
4.3. Crystallization and Improvements
4.4. Data Collection and Structure Determination
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wu, H.; Min, J.; Ikeguchi, Y.; Zeng, H.; Dong, A.; Loppnau, P.; Pegg, A.E.; Plotnikov, A.N. Structure and mechanism of spermidine synthases. Biochemistry 2007, 46, 8331–8339. [Google Scholar] [CrossRef] [PubMed]
- Miller-Fleming, L.; Olin-Sandoval, V.; Campbell, K.; Ralser, M. Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J. Mol. Biol. 2015, 427, 3389–3406. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chua, T.K.; Tkaczuk, K.L.; Bujnicki, J.M.; Sivaraman, J. The crystal structure of Escherichia coli spermidine synthase SpeE reveals a unique substrate-binding pocket. J. Struct. Biol. 2010, 169, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, E.; Marques, M.P.; Calheiros, R.; Gil, F.P.; Tempera, G.; Viceconte, N.; Battaglia, V.; Grancara, S.; Toninello, A. Polyamines: Fundamental characters in chemistry and biology. Amino Acids. 2010, 38, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Terui, Y.; Ohnuma, M.; Hiraga, K.; Kawashima, E.; Oshima, T. Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem. J. 2005, 388, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, K.; Hidese, R.; Fukuda, W.; Niitsu, M.; Takao, K.; Horai, Y.; Umezawa, N.; Higuchi, T.; Oshima, T.; Yoshikawa, Y.; et al. Identification of a novel aminopropyltransferase involved in the synthesis of branched-chain polyamines in hyperthermophiles. J. Bacteriol. 2014, 196, 1866–1876. [Google Scholar] [CrossRef] [Green Version]
- Dufe, V.T.; Luersen, K.; Eschbach, M.L.; Haider, N.; Karlberg, T.; Walter, R.D.; Al-Karadaghi, S. Cloning, expression, characterisation and three-dimensional structure determination of Caenorhabditis elegans spermidine synthase. FEBS Lett. 2005, 579, 6037–6043. [Google Scholar] [CrossRef] [Green Version]
- Gevrekci, A.O. The roles of polyamines in microorganisms. World J. Microbiol. Biotechnol. 2017, 33, 204. [Google Scholar] [CrossRef]
- Sagar, N.A.; Tarafdar, S.; Agarwal, S.; Tarafdar, A.; Sharma, S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med. Sci. 2021, 9, 44. [Google Scholar] [CrossRef]
- Pietrocola, F.; Lachkar, S.; Enot, D.P.; Niso-Santano, M.; Bravo-San Pedro, J.M.; Sica, V.; Izzo, V.; Maiuri, M.C.; Madeo, F.; Marino, G.; et al. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ. 2015, 22, 509–516. [Google Scholar] [CrossRef]
- Saini, P.; Eyler, D.E.; Green, R.; Dever, T.E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 2009, 459, 118–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.H.; Wolff, E.C. Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. J. Biol. Chem. 2018, 293, 18710–18718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, H.L.; Blumenthal, R.M.; Cheng, X. Many paths to methyltransfer: A chronicle of convergence. Trends Biochem. Sci. 2003, 28, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozbial, P.Z.; Mushegian, A.R. Natural history of S-adenosylmethionine-binding proteins. BMC Struct. Biol. 2005, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.; Miyauchi, K.; Ikeuchi, Y.; Thiaville, P.C.; Crecy-Lagard, V.; Suzuki, T. Discovery of the beta-barrel-type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs. Nucleic. Acids Res. 2014, 42, 9350–9365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontecave, M.; Atta, M.; Mulliez, E. S-adenosylmethionine: Nothing goes to waste. Trends Biochem. Sci. 2004, 29, 243–249. [Google Scholar] [CrossRef]
- Tabor, C.W.; Tabor, H. Polyamines. Annu. Rev. Biochem. 1984, 53, 749–790. [Google Scholar] [CrossRef]
- Pegg, A.E.; McCann, P.P. Polyamine metabolism and function. Am. J. Physiol. 1982, 243, C212–C221. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.O.; Lee, Y.S.; Lee, S.H.; Cho, Y.D. Polyamine synthesis in plants: Isolation and characterization of spermidine synthase from soybean (Glycine max) axes. Biochim. Biophys. Acta 2000, 1475, 17–26. [Google Scholar] [CrossRef]
- Zappia, V.; Cacciapuoti, G.; Pontoni, G.; Oliva, A. Mechanism of propylamine-transfer reactions. Kinetic and inhibition studies on spermidine synthase from Escherichia coli. J. Biol. Chem. 1980, 255, 7276–7280. [Google Scholar] [CrossRef]
- Haider, N.; Eschbach, M.L.; Dias Sde, S.; Gilberger, T.W.; Walter, R.D.; Luersen, K. The spermidine synthase of the malaria parasite Plasmodium falciparum: Molecular and biochemical characterisation of the polyamine synthesis enzyme. Mol. Biochem. Parasitol. 2005, 142, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Korolev, S.; Ikeguchi, Y.; Skarina, T.; Beasley, S.; Arrowsmith, C.; Edwards, A.; Joachimiak, A.; Pegg, A.E.; Savchenko, A. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat. Struct. Biol. 2002, 9, 27–31. [Google Scholar] [CrossRef]
- Samejima, K.; Yamanoha, B. Purification of spermidine synthase from rat ventral prostate by affinity chromatography on immobilized S-adenosyl(5′)-3-thiopropylamine. Arch. Biochem. Biophys. 1982, 216, 213–222. [Google Scholar] [CrossRef]
- Guedez, G.; Pothipongsa, A.; Siren, S.; Liljeblad, A.; Jantaro, S.; Incharoensakdi, A.; Salminen, T.A. Crystal structure of dimeric Synechococcus spermidine synthase with bound polyamine substrate and product. Biochem. J. 2019, 476, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Yang, Y.T.; Lin, V.; Huang, H. Site-directed mutations of the gatekeeping loop region affect the activity of Escherichia coli spermidine synthase. Mol. Biotechnol. 2013, 54, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Sekula, B.; Dauter, Z. Spermidine Synthase (SPDS) Undergoes Concerted Structural Rearrangements Upon Ligand Binding—A Case Study of the Two SPDS Isoforms From Arabidopsis thaliana. Front. Plant Sci. 2019, 10, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufe, V.T.; Qiu, W.; Muller, I.B.; Hui, R.; Walter, R.D.; Al-Karadaghi, S. Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. J. Mol. Biol. 2007, 373, 167–177. [Google Scholar] [CrossRef]
- Lu, P.K.; Tsai, J.Y.; Chien, H.Y.; Huang, H.; Chu, C.H.; Sun, Y.J. Crystal structure of Helicobacter pylori spermidine synthase: A Rossmann-like fold with a distinct active site. Proteins 2007, 67, 743–754. [Google Scholar] [CrossRef]
- Amano, Y.; Namatame, I.; Tateishi, Y.; Honboh, K.; Tanabe, E.; Niimi, T.; Sakashita, H. Structural insights into the novel inhibition mechanism of Trypanosoma cruzi spermidine synthase. Acta Crystallogr. D Biol. Crystallogr. 2015, 71, 1879–1889. [Google Scholar] [CrossRef]
- Seckute, J.; McCloskey, D.E.; Thomas, H.J.; Secrist, J.A., III; Pegg, A.E.; Ealick, S.E. Binding and inhibition of human spermidine synthase by decarboxylated S-adenosylhomocysteine. Protein. Sci. 2011, 20, 1836–1844. [Google Scholar] [CrossRef]
- Kim, S.; Nguyen, G.T.; Chang, J.H. Purification, crystallization, and X-ray crystallographic analysis of spermidine synthase from Kluyveromyces lactis. BioDesign 2021, 9, 36–40. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkoczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Z-Score | RMS Deviation (Å) | Identity (%) | Cα | PDB Code |
---|---|---|---|---|---|
Homo sapiens | 43.3 | 0.9 | 57 | 289 | 2O06 |
Plasmodium falciparum | 40.6 | 1.4 | 48 | 270 | 2HTE |
Arabidopsis thaliana | 40.4 | 1.4 | 49 | 285 | 1XJ5 |
Caenorhabditis elegans | 40.1 | 1.1 | 56 | 276 | 2B2C |
Trypanosoma cruzi | 40.0 | 1.5 | 44 | 294 | 4YUV |
Statistics | KlSpdS |
---|---|
Data collection | |
Space group | P212121 |
Cell dimensions (Å) | |
a, b, c (Å) | 65.252, 98.180, 102.134 |
α, β, γ (°) | 90, 90, 90 |
Resolution range (Å) a | 50.0–1.9 |
No. of reflections | 676,985 |
No. of unique reflections | 52,396 |
Rmerge b (%) | 13.5 (45.2) |
I/σ (I) | 33.0 (4.9) |
Completeness (%) | 100 (100) |
Redundancy | 12.9 (12.1) |
CC1/2 | 0.996 (0.965) |
Structure refinement | |
Resolution (Å) | 48.0–1.9 |
No. of reflections | 676,985 (52,396) |
Rwork c/Rfree | 16.8/19.9 |
No. atoms | |
Protein | 4639 |
Water | 555 |
R.m.s. deviation | |
Bond lengths (Å) | 0.007 |
Angles (°) | 0.818 |
Average B-factor (Å2) | 23.7 |
Ramachandran plot (%) | |
Favored region | 97.4 |
Outliers | 0.0 |
PDB code | 8IYI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Chang, J.H. Structural Analysis of Spermidine Synthase from Kluyveromyces lactis. Molecules 2023, 28, 3446. https://doi.org/10.3390/molecules28083446
Kim S, Chang JH. Structural Analysis of Spermidine Synthase from Kluyveromyces lactis. Molecules. 2023; 28(8):3446. https://doi.org/10.3390/molecules28083446
Chicago/Turabian StyleKim, Seongjin, and Jeong Ho Chang. 2023. "Structural Analysis of Spermidine Synthase from Kluyveromyces lactis" Molecules 28, no. 8: 3446. https://doi.org/10.3390/molecules28083446
APA StyleKim, S., & Chang, J. H. (2023). Structural Analysis of Spermidine Synthase from Kluyveromyces lactis. Molecules, 28(8), 3446. https://doi.org/10.3390/molecules28083446