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Abstract: Spermidine is a polyamine molecule that performs various cellular functions, such as DNA
and RNA stabilization, autophagy modulation, and eIF5A formation, and is generated from pu-
trescine by aminopropyltransferase spermidine synthase (SpdS). During synthesis, the aminopropyl
moiety is donated from decarboxylated S-adenosylmethionine to form putrescine, with 5′-deoxy-5′-
methylthioadenosine being produced as a byproduct. Although the molecular mechanism of SpdS
function has been well-established, its structure-based evolutionary relationships remain to be fully
understood. Moreover, only a few structural studies have been conducted on SpdS from fungal
species. Here, we determined the crystal structure of an apo-form of SpdS from Kluyveromyces lactis
(KlSpdS) at 1.9 Å resolution. Structural comparison with its homologs revealed a conformational
change in the α6 helix linked to the gate-keeping loop, with approximately 40◦ outward rotation.
This change caused the catalytic residue Asp170 to move outward, possibly due to the absence of
a ligand in the active site. These findings improve our understanding of the structural diversity of
SpdS and provide a missing link that expands our knowledge of the structural features of SpdS in
fungal species.
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1. Introduction

Polyamines are ubiquitous components in most cells, among which diamine pu-
trescine, triamine spermidine, and tetraamine spermine are widely found in living
organisms [1–4]. Other polyamines such as thermospermine are found in thermophiles
that survive at extremely high temperatures [5,6]. Polyamines bind easily to cellular polyan-
ions; in Escherichia coli, almost half of putrescine and 90% of spermidine is complexed with
cellular RNA [7,8]. Spermidine is a type of polyamine produced from a shorter chain
putrescine, which is involved in various biological processes, including the regulation
of membrane potential, inhibition of nitric oxide synthase (NOS), and the induction of
autophagy [9]. In particular, spermidine suppresses protein acetylation by inhibiting the
activity of acetyltransferases such as E1A-associated protein p300 (EP300) [10], which can
rapidly induce autophagy by altering autophagic flux [10]. Spermidine also influences
translation through eIF5A, which forms an uncommon amino acid hypusine on eIF5A by
conjugating a lysine residue and the aminobutyl moiety from spermidine [11,12].

Aminopropyltransferases are involved in synthesizing polyamines in dependence of de-
carboxylated S-adenosylmethionine (dcSAM), which is converted from S-adenosylmethionine
(SAM) by S-adenosylmethionine decarboxylase (SAMDC) [13–16]. In turn, dcSAM fa-
cilitates the catalytic reaction by transferring its aminopropyl moiety to a shorter-chain
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polyamine, resulting in a longer-chain polyamine, with methylthioadenosine (MTA) formed
as a byproduct [17,18].

Spermidine synthase (SpdS; EC 2.5.1.16) is a major type of aminopropyltransferase
that converts putrescine into spermidine [13–15]. The general reaction mechanism of SpdS
has been well established: putrescine initiates nucleophilic attack on dcSAM, which do-
nates an aminopropyl moiety to active site residues, such as Asp, Tyr, and Ser, to produce
spermidine [1]. There are two types of enzymatic mechanisms for SpdS: ping-pong and
sequential. SpdS in Glycine max (soybean) and E. coli follow a ping-pong mechanism [19,20],
whereas SpdS in Thermotoga maritima, Plasmodium falciparum, Rattus rattus (rat), and
Homo sapiens utilize a sequential mechanism [1,21–23].

SpdS consists of an N-terminal domain, which contains four β-strands, and a C-terminal
domain containing a Rossmann-like fold [22]. In addition, SpdS contains a structural
feature known as the gate-keeping loop, which is located in the vicinity of the entrance
to the active site [22,24]. This loop is involved in recognizing the putrescine substrate,
and mutational studies have revealed that several residues in this loop contribute toward
substrate-binding and stabilization of the active site [25]. Since the first crystal structure of
an aminopropyltransferase was reported in 2002 from the thermophilic anaerobic bacteria
T. maritima [22], several other SpdS structures have been made available for several species
including H. sapiens [1], Arabidopsis thaliana [26], P. falciparum [27], Helicobacter pylori [28],
and E. coli [3]; however, our understanding of the structural features and evolutionary
relationships of SpdS from fungal species remains limited.

In this study, we determined the crystal structure of the fungal Kluyveromyces lactis
SpdS (KlSpdS) and compared its gate-keeping loop and active site with homologous
structures. Structural analysis revealed several distinct conformational features in KlSpdS.

2. Results
2.1. Overall Structure

KlSpdS exists as a dimer in the asymmetric unit, and each monomer in the dimeric
KlSpdS is positioned with two-fold symmetry (Figure 1A). The N- and C-terminal regions
in each monomer are mainly involved in dimerization via interactions with β3 and α8-α9
of their partner molecules. Each KlSpdS monomer consists of three domains: an N-terminal
domain (residues 4–66), a central catalytic core domain (residues 67–250), and a C-terminal
domain (residues 251–292; Figure 1B, Supplemental Figure S1). The N-terminal domain
includes six β-strands and is smaller than the catalytic core domain. The first two β-sheets
of the N-terminal domain form a β-hairpin structure, followed by a four-stranded β-strands.
Meanwhile, the catalytic core domain contains seven β-strands that form a Rossmann-
like fold from β7 to β13 and seven α-helices. This canonical topology appears widely in
nucleotide-binding enzymes and in class I MTases, which use dcSAM as a methyl moiety
donor [24]. The C-terminal domain includes three α-helices (α8–α9) that mainly contribute
toward dimer formation. The electrostatic surface representation of KlSpdS revealed a large
cavity in the catalytic core domain between the N- and C-terminal domains (Figure 1C);
the cavity was highly negatively charged, suggesting that positively charged dcSAM bind
to putrescine in this active site pocket.

2.2. Gate-Keeping Loop

To elucidate the conformational diversity of the gate-keeping loop, the KlSpdS struc-
ture was superimposed with several homologous SpdS structures (Figure 2, Table 1). While
the gate-keeping loop of H. sapiens SpdS (HsSpdS) sterically hindered the entrance of the
active site, that of KlSpdS had an open conformation (Figure 2A). These conformational
changes could be attributed to a short α-helix (α6) in the loop that forms on one side of the
putrescine-binding region and may facilitate the accurate localization of putrescine in the
active site. In KlSpdS, the α6 helix kinked outward by approximately 41.0◦ compared to
HsSpdS and by approximately 34.6◦ compared to A. thaliana SpdS (AtSpdS; Figure 2B). The
gate-keeping loop in Thermus thermophilus SpdS (TtSpdS) had a slightly different conforma-
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tion compared to that of HsSpdS and AtSpdS (Figure 2C) and the α6 helix kinked inward
by 31.1◦ compared to KlSpdS. Notably, the α6 helix of Thermotoga maritima SpdS (TmSpdS)
was shorter than that of KlSpdS, suggesting that its longer gate-keeping loop could be more
flexible (Figure 2D).

To assess conformational changes in the gate-keeping loop upon ligand binding, the
KlSpdS structure was superimposed with the available structures of dcSAM complexed
with HsSpdS, AtSpdS, P. falciparum SpdS (Pf SpdS), and TcSpdS (Supplemental Figure S2,
Table 1). The gate-keeping loop in the HsSpdS-dcSAM complex was not visible due
to disordered (Supplemental Figure S2A), indicating that dcSAM could open the active
site in HsSpdS by altering the conformation of the gate-keeping loop. Meanwhile, the
α6 helix conformation of the AtSpdS-dcSAM complex differed by approximately 35.2◦

compared to KlSpdS (Supplemental Figure S2B). The conformations of apo-AtSpdS and
the AtSpdS-dcSAM complex were highly similar, indicating that dcSAM binding has no
significant effect on AtSpdS conformation. The α6 helix conformations of Pf SpdS and
TcSpdS complexed with dcSAM also differed from those of KlSpdS by approximately 35◦

(Supplemental Figure S2C,D).
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Figure 1. Overall structure of spermidine synthase (SpdS) from Kluyveromyces lactis (KlSpdS). (A) 
The dimeric structure of KlSpdS is shown as a cartoon. Chain A is shown in lime green, and chain B 
is shown in pink. Different view of 90° rotation along the x-axis  is shown in right panel. (B) Mon-
omeric structure of chain B in KlSpdS. The N-terminal domain is colored green. The catalytic core 
domain is shown in orange. The C-terminal domain is shown in cyan. The active site of KlSpdS is 
highlighted in the red-dashed circle. The gate-keeping loop is highlighted in the blue-dashed circle. 
(C) Electrostatic surface model of the KlSpdS monomer. Red and blue represent negatively and pos-
itively charged surfaces, respectively. The active site of KlSpdS is highlighted in the yellow-dashed 
circle. 
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Figure 1. Overall structure of spermidine synthase (SpdS) from Kluyveromyces lactis (KlSpdS). (A) The
dimeric structure of KlSpdS is shown as a cartoon. Chain A is shown in lime green, and chain B is
shown in pink. Different view of 90◦ rotation along the x-axis is shown in right panel. (B) Monomeric
structure of chain B in KlSpdS. The N-terminal domain is colored green. The catalytic core domain is
shown in orange. The C-terminal domain is shown in cyan. The active site of KlSpdS is highlighted in
the red-dashed circle. The gate-keeping loop is highlighted in the blue-dashed circle. (C) Electrostatic
surface model of the KlSpdS monomer. Red and blue represent negatively and positively charged
surfaces, respectively. The active site of KlSpdS is highlighted in the yellow-dashed circle.
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colored orange. (A) Superposition of apo-KlSpdS with that of SpdS from Homo sapiens (HsSpdS; PDB 
code 2O0L). The HsSpdS monomer is shown in light blue. (B) Superposition of the apo-KlSpdS with 
that of SpdS from Arabidopsis thaliana (AtSpdS; PDB code 6O63). The AtSpdS monomer is shown in 
yellow. (C) Superposition of apo-KlSpdS with that of SpdS from Thermus thermophilus (TtSpdS; PDB 
code 1UIR). The TtSpdS monomer is shown in cyan. (D) Superposition of apo-KlSpdS with that of 
SpdS from Thermotoga maritima (TmSpdS; PDB code 1INL). The TmSpdS monomer is shown in lime 
green. The purple color indicates the gate-keeping loop of KlSpdS, wherease, the gate-keeping loops 
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Table 1. Structural similarity comparison for homologous structures of spermidine synthase among 
five species using Dali a. 

Species Z-Score 
RMS 

Deviation (Å) 
Identity 

(%) Cα 
PDB 
Code 

Homo sapiens 43.3 0.9 57 289 2O06 

Plasmodium falciparum 40.6 1.4 48 270 2HTE 

Arabidopsis thaliana 40.4 1.4 49 285 1XJ5 

Caenorhabditis elegans 40.1 1.1 56 276 2B2C 

Figure 2. Comparisons of the gate-keeping loop between the apo structure of spermidine synthase
from Kluyveromyces lactis (KlSpdS) and four other species. Each figure represents the superposition
of the monomers to compare the gate-keeping loop. In (A–D), the monomer of the apo-KlSpdS is
colored orange. (A) Superposition of apo-KlSpdS with that of SpdS from Homo sapiens (HsSpdS; PDB
code 2O0L). The HsSpdS monomer is shown in light blue. (B) Superposition of the apo-KlSpdS with
that of SpdS from Arabidopsis thaliana (AtSpdS; PDB code 6O63). The AtSpdS monomer is shown in
yellow. (C) Superposition of apo-KlSpdS with that of SpdS from Thermus thermophilus (TtSpdS; PDB
code 1UIR). The TtSpdS monomer is shown in cyan. (D) Superposition of apo-KlSpdS with that of
SpdS from Thermotoga maritima (TmSpdS; PDB code 1INL). The TmSpdS monomer is shown in lime
green. The purple color indicates the gate-keeping loop of KlSpdS, wherease, the gate-keeping loops
from compared structures were colored in blue.

Next, we investigated whether the gate-keeping loop conformation changed upon lig-
and binding in various species. No significant changes were observed in the gate-keeping
loop conformation with binding of ligands such as MTA, adoDATO, 4MCA, putrescine,
dcSAM, and spermidine in A. thaliana, T. thermophilus, T. maritima, or P. falciparum; however,
changes were observed for H. sapiens (Supplemental Figure S3). TtSpdS-MTA, TmSpdS-
adoDATA, and AtSpdS-4MCHA complexes shared similar gate-keeping loop conforma-
tions. Although the α6 helix induced fit upon ligand binding in TcSpdS, no conformational
changes in the gate-keeping loop were observed in the other four species (Supplemental
Figures S2 and S3). When we compared the structures of HsSpdS and Pf SpdS in complex
with putrescine, dcSAM, spermidine, and MTA, the gate-keeping loops exhibited almost
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the same conformation, except for those in the MTA complexes, which had a transition
angle of 9.6◦ (Supplemental Figure S4). This might be attributed to the residues joining
this region, which were nearly the same except for Ile201 in Pf SpdS instead of Met178 in
HsSpdS. However, since both amino acids have a non-polar character, the conformational
differences might not be substantial.

Table 1. Structural similarity comparison for homologous structures of spermidine synthase among
five species using Dali a.

Species Z-Score RMS
Deviation (Å)

Identity
(%) Cα

PDB
Code

Homo sapiens 43.3 0.9 57 289 2O06
Plasmodium falciparum 40.6 1.4 48 270 2HTE

Arabidopsis thaliana 40.4 1.4 49 285 1XJ5
Caenorhabditis elegans 40.1 1.1 56 276 2B2C

Trypanosoma cruzi 40.0 1.5 44 294 4YUV
a This server computes optimal and suboptimal structural alignments between two protein structures us-
ing the DaliLite-pairwise option. Available online: http://ekhidna.biocenter.helsinki.fi/dali/ (accessed on
5 September 2019).

2.3. Active Site

The catalytic residues Asp98, Asp167, and Asp 170 of KlSpdS were highly conserved
in other SpdS structures (Figure 3). Asp98 captures the aminopropyl moiety of dcSAM
and remains ready for the initiation of nucleophilic attack by putrescine. Asp167 plays
a crucial role in the deprotonation of putrescine, while Asp170 is required for accurate
putrescine binding. To examine the possible active site of KlSpdS, its structure was su-
perposed with those of HsSpdS, AtSpdS, Pf SpdS, and TcSpdS complexed with specific
ligands (Figure 3A–D). Although Asp98 and Asp167 had conformations similar to the
other structures, conformation of Asp170 was distinct, possibly due to changes caused by
ligand binding.
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(Figure 4D). In particular, Glu124 in KlSpdS corresponded to Asp118 in HsSpdS, both are 
negatively charged, suggesting that there would be no critical change in enzyme activity. 
Superpositions between the PfSpdS enzyme–inhibitor complex and apo-KlSpdS structures 
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Figure 3. Structural comparisons of the three key aspartic residues in the active site of spermidine
synthase (SpdS) from five different species. In (A–D), the Kluyveromyces lactis SpdS (KlSpdS) monomer
is shown in orange. (A) The Homo sapiens SpdS (HsSpdS) monomer is shown in light blue. (B) The
Arabidopsis thaliana SpdS (AtSpdS) monomer is shown in warm pink. (C) The Plasmodium falciparum
SpdS (Pf SpdS) monomer is shown in lime green. (D) The Trypanosoma cruzi SpdS (TcSpdS) monomer
is shown in yellow.

http://ekhidna.biocenter.helsinki.fi/dali/
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Overall, most ligand-interacting residues were similar in the structures of HsSpdS
and KlSpdS complexed with putrescine substrate, with the Tyr73, Asp167, and Ile240
residues in KlSpdS aligning especially well with the corresponding Tyr79, Asp173, and
Ile246 residues in HsSpdS (Figure 4A). Putrescine generated four hydrogen bonds with
the amino acids present in the active site, including three residues in the gate-keeping
loop. With spermidine, most residues were well matched except for Ser174, Ser175, Asp176,
and Try241 (Figure 4B), and it was stabilized by six of the seven possible hydrogen bonds
between the gate-keeping loop and the active site. With the cofactor dcSAM, most residues
aligned well except for Glu124, Pro180, and Leu184 (Figure 4C). Similarly, most residues
were matched when bound to the MTA byproduct, except for Glu124, Pro180, and Leu184
(Figure 4D). In particular, Glu124 in KlSpdS corresponded to Asp118 in HsSpdS, both are
negatively charged, suggesting that there would be no critical change in enzyme activity.
Superpositions between the Pf SpdS enzyme–inhibitor complex and apo-KlSpdS structures
(Figure 4E,F) revealed that the residues of Pf SpdS did not align well with those of KlSpdS in
SpdS–adoDATO complexes compared to HsSpdS. However, all residues in SpdS–4MCHA
complex corresponded for HsSpdS as well as Pf SpdS. Taken together, these findings suggest
that SpdS exhibits different inhibitory effects when complexed with adoDATO and 4MCHA.
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Figure 4. Superposition of the KlSpdS structure with SpdS-ligand complexes. (A) Superposition of
the structures of spermidine synthase (SpdS) from Kluyveromyces lactis (KlSpdS) and the Homo sapiens
(HsSpdS)–putrescine complex. The substrate putrescine is shown in yellow. The panel provides
a detailed view of the interaction between putrescine and KlSpdS, with overlaid HsSpdS. KlSpdS and
HsSpdS residues are shown in orange and light blue, respectively. (B) Superposition of the structures
of KlSpdS and the HsSpdS–spermidine complex. The product spermidine is shown in green. The
panel provides a detailed view of the interaction between spermidine and KlSpdS, with overlaid
HsSpdS. KlSpdS and HsSpdS residues are shown in orange and light blue, respectively. (C) Superposition
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of KlSpdS and the HsSpdS–dcSAM complex structures. The cofactor dcSAM is shown in magenta.
The panel provides a detailed view of the interaction between dcSAM and KlSpdS, with overlaid
HsSpdS. KlSpdS and HsSpdS residues are shown in orange and light blue, respectively. Abbreviations:
dcSAM, decarboxylated S-adenosylmethionine. (D) Superposition of KlSpdS and the HsSpdS–MTA
complex structures. The byproduct MTA is shown in cyan. The panel provides a detailed view of
the interaction between MTA and KlSpdS, with overlaid HsSpdS. KlSpdS and HsSpdS residues
are shown in orange and light blue, respectively. Abbreviations: MTA, methylthio-adenosine.
(E) Superposition of KlSpdS and the Pf SpdS–adoDATO complex structures. The inhibitor adoDATO
is shown in yellow. The panel provides a detailed view of the interaction between adoDATO and
KlSpdS, with overlaid Pf SpdS. KlSpdS and Pf SpdS residues are shown in orange and lime green,
respectively. Abbreviations: adoDATO, S-adenosyl-1,8-diamino-3-thiooctane. (F) Superposition of
KlSpdS and the Pf SpdS–4MCHA complex structures. The inhibitor 4MCHA is shown in magenta.
The panel provides a detailed view of the interaction between 4MCHA and KlSpdS, with overlaid
Pf SpdS. KlSpdS and Pf SpdS residues are shown in orange and lime green, respectively. Abbreviations:
4MCHA, trans-4-methylcyclohexylamine.

3. Discussion

Spermidine is produced from putrescine by SpdS. Although the molecular mechanism
underlying SpdS function is well-established, its structure-based evolutionary relationships
remain to be fully understood; moreover, very few structural studies have been conducted
on SpdS from fungal species. Here, we found that the first structure of fungal KlSpdS,
which was determined at 1.9 Å resolution, exhibited highly similar to that of HsSpdS,
suggesting that KlSpdS is phylogenetically closer to HsSpdS than SpdS from E. coli and
could therefore utilize a sequential mechanism rather than a ping-pong mechanism [19–23].
In KlSpdS, the carboxylate group of Asp167 plays a major role in substrate deprotonation
along with the aid of the backbone carbonyl of Ser168 and hydroxyl groups of conserved
residues Tyr73 and Tyr235 [1,29]. Meanwhile, the carboxylate group of Asp170 plays an
essential role in putrescine binding by anchoring the end of the diamine [1,27], whereas
the carboxylate group of Asp98 is involved in binding the N1 atom of spermidine to the
aminopropyl group of dcSAM [1,26]. Asp98 also promotes the initiation of nucleophilic
attack on dcSAM by anchoring the aminopropyl group and fixing it in an appropriate
position to initiate the enzymatic reaction [1,22].

In general, the gate-keeping loop plays a crucial role in the enzymatic reaction of SpdS
through three distinct modes of action [3,22,30]. Firstly, the loop covers the active site of
SpdS. Superposition of complexed HsSpdS and apo-KlSpdS revealed that the gate-keeping
loops have distinct conformations depending on ligand binding status. Secondly, gate-
keeping loops are important for substrate recognition in SpdS. For instance, the substrate
specificity of SpdS can be altered through site-directed mutations of the proline residue
in the gate-keeping loop (corresponding to Pro174 in KlSpdS) of E. coli [25]. Finally, the
gate-keeping loop stabilizes the active site by adopting a closed conformation. After the
substrate binds to the active site, the conformation of the gate-keeping loop is changed
through a series of enzymatic processes [1,24]. The gate-keeping loop was disordered in
the apo structures of CeSpdS and TcSpdS but was well-ordered in the structures of Pf SpdS
complexed with adoDATO, dcSAM, and dcSAM–4MCHA [7,27,29].

Taken together, the analyses of the crystal structure of KlSpdS performed in this study
provide insights into the structural diversity of SpdS. Despite these important findings,
further studies are required to investigate two key aspects related to KlSpdS. First, structural
and functional studies with various ligands are essential to reveal the reaction mechanism
of KlSpdS. In addition, studies of SpdS from other fungal species are required to understand
their molecular structure-based phylogenetic relationships with SpdS homologs.
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4. Materials and Methods
4.1. Preparation of KlSpdS Expression Constructs

The gene encoding KlSpdS (NCBI ID: XP_451945) was amplified from K. lactis genomic
DNA (Korean Collection for Type Cultures, Daejeon, Republic of Korea) using polymerase
chain reaction (PCR), as described previously [31]. All amplified fragments were digested
using NdeI and XhoI restriction enzymes (R006S and R007S, respectively; Enzynomics,
Republic of Korea) in a heating block at 37 ◦C for 4 h. The digested fragments were
ligated with the pET28a and pET26b vectors using T4 ligase (M0202S; Roche, Germany)
overnight at 18 ◦C to insert a hexahistidine (His6)-tag at either the N- or C-terminus of the
target protein. The resulting vectors were subsequently transformed into the E. coli strain
DH5α using kanamycin (AppliChem, Darmstadt, Germany) as a selection marker. The
transformants were confirmed by colony PCR. All oligonucleotide primers used in this
study were purchased from Cosmo Genetech (Seoul, Republic of Korea).

4.2. Purification of Recombinant Proteins

Plasmids encoding the KlSpdS protein were transformed into E. coli strain BL21 (DE3)
Star. Cells were grown at 37 ◦C in Luria–Bertani medium (Ambrothia, Republic of Korea)
containing 50 mg/L kanamycin (AppliChem) to an optical density at 600 nm (OD600) of ap-
proximately 0.6. Following induction with 0.3 mM isopropyl β-D-1-thiogalactopyranoside
(IPTG; Calbiochem, Germany), the cells were further grown for 16 h at 20 ◦C, harvested
by centrifugation at 3000 rpm at 4 ◦C for 20 min, and resuspended in a buffer containing
20 mM Tris (pH 8.0; Sigma–Aldrich, St. Louis, MO, USA), 250 mM NaCl (AppliChem), 5%
glycerol (Affymetrix, Santa Clara, CA, USA), 0.2% Triton X-100 (Sigma–Aldrich), 10 mM
β-mercaptoethanol (BioBasic, Markham, ON, Canada), and 0.2 mM phenylmethylsulfonyl
fluoride (Sigma–Aldrich). Next, cells were disrupted by ultrasonication (VCX-500/750,
Sonics, Newtown, CT, USA) with 3-s pulse-on and 3-s pulse-off cycles continuously for
15 min. Cell debris was removed by centrifugation at 13,000 rpm for 40 min, and the super-
natant was bound to Ni–NTA agarose (Qiagen, Hilden, Germany) at 7 ◦C for 90 min. After
washing with His-binding buffer (300 mM NaCl, 50 mM Tris, pH 8.0) containing 5 mM
imidazole (Sigma–Aldrich), bound proteins were eluted with His-elution buffer (200 mM
NaCl, 50 mM Tris, pH 8.0) containing 250 mM imidazole (Sigma–Aldrich). Purified proteins
were subjected to size-exclusion chromatography (SEC) using a HiPrep 16/60 Sephacryl
S-300 HR column (GE Healthcare, Chicago, IL, USA) and an eluent buffer containing
20 mM Tris (pH 7.5), 150 mM NaCl, and 2 mM dithiothreitol (DTT; Calbiochem). Following
SEC, proteins were stored at −80 ◦C until crystallization. Protein purity was assessed
by performing sodium dodecyl sulfate-polyacrylamide gel electrophoresis using a 15%
acrylamide gel, which produced a single band corresponding to the calculated molecular
weight of the target protein.

4.3. Crystallization and Improvements

All crystallization experiments were performed at 20 ◦C using the sitting-drop vapor
diffusion method in 96-well sitting-drop plates (Art Robbins Instruments, Sunnyvale, CA,
USA). Approximately 600 different conditions from sparse-matrix screening solution kits
were tested to identify the optimal crystallization conditions. The following kits were
used: PEG/Ion (HR2-126 and −098), Index (HR2-144), Salt Rx 1/2 (HR2-107 and -109), and
Crystal Screen 1/2 (HR2-110 and -112) from Hampton Research (Viejo, CA, USA), Wizard
1/2 (CS-311, Jena Bioscience, Germany), and SG1 Screen (MD1-88, Molecular Dimensions,
Rotherham, UK). KlSpdS crystals grew within 24 h in drops containing equal volumes
(1 µL) of protein sample (10 mg/mL in 150 mM NaCl, 2 mM DTT, and 20 mM Tris, pH 7.5)
and reservoir solution (9.2% v/v TacsimateTM pH 5.0, 16.5% w/v PEG 3350). Additional
screening was performed using additive (HR2-428, Hampton Research) and detergent
(HR2-406, Hampton Research) screening kits. The optimal crystallization conditions used
9.2% v/v TacsimateTM (pH 5.0), 16.5% (w/v) PEG 3350, and 2.5% (v/v) 1-butanol.
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4.4. Data Collection and Structure Determination

Prior to data collection, 30% glycerol was added to the reservoir solutions as a cry-
oprotectant, and crystals were flash-cooled in liquid nitrogen. All diffraction datasets
were collected at 100 K on a beamline 5C at the Pohang Accelerator Laboratory (PAL,
Republic of Korea) using a Quantum 270 CCD detector (USA). Data were processed using
the HKL–2000 software suite (HKL Research, Charlottesville, VA, USA).

Experimental electron density maps were obtained by molecular replacement methods
in Phenix software version 1.9 (Phenix Software International, Berkeley, CA, USA) and
interpreted using the WinCoot program with Homo sapiens SpdS (HsSpdS; PBD code,
2O06) as a search model [32,33]. The details of data collection and the statistics used in this
study are listed in Table 2.

Table 2. Data collection and refinement statics for KlSpdS.

Statistics KlSpdS

Data collection
Space group P212121

Cell dimensions (Å)
a, b, c (Å) 65.252, 98.180, 102.134
α, β, γ (◦) 90, 90, 90

Resolution range (Å) a 50.0–1.9
No. of reflections 676,985

No. of unique reflections 52,396
Rmerge

b (%) 13.5 (45.2)
I/σ (I) 33.0 (4.9)

Completeness (%) 100 (100)
Redundancy 12.9 (12.1)

CC1/2 0.996 (0.965)
Structure refinement

Resolution (Å) 48.0–1.9
No. of reflections 676,985 (52,396)

Rwork
c/Rfree 16.8/19.9

No. atoms
Protein 4639
Water 555

R.m.s. deviation
Bond lengths (Å) 0.007

Angles (◦) 0.818
Average B-factor (Å2) 23.7

Ramachandran plot (%)
Favored region 97.4

Outliers 0.0
PDB code 8IYI

a Numbers in parentheses are statistics from the highest resolution shell. b Rmerge = Σ |Iobs − Iavg|/Iobs, where
Iobs is the observed intensity of individual reflections and Iavg is the average over symmetry equivalents. c Rwork
= Σ ||Fo| − |Fc||/Σ |Fo|, where |Fo| and |Fc| are the observed and calculated structure factor amplitudes,
respectively. Rfree was calculated using 5% of the data.
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