Comparisons of Physicochemical Properties, Bacterial Diversities, Isoflavone Profiles and Antioxidant Activities on Household and Commercial doenjang
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of HDJs and CDJs
2.2. Comparisons of Bacterial Distribution on HDJs and CDJs
2.3. Comparison of Phenolic, Flavonoid, and Isoflavone Content on HDJs and CDJs
2.4. Comparison of Antioxidant Activities on HDJs and CDJs
2.5. Comparison of DNA Damage Protecting Activity on HDJs and CDJs
3. Materials and Methods
3.1. Medium and Chemical
3.2. Collection of Doenjang Samples
3.3. Determination of pH, Acidity, Salinity and Soluble Protein Content on Doenjang
3.4. Microbial Isolation and Identification
3.5. Preparation of Doenjang Extracts
3.6. Determeination of the TP and TF Contents of Doenjang Extracts
3.7. HPLC Analysis of the Isoflavone Content of Doenjang Extracts
3.8. Antioxidant Activities of Doenjang Extracts
3.8.1. DPPH Radical Scavenging Activity
3.8.2. ABTS Radical Scavenging Activity
3.8.3. Hydroxyl Radical Scavenging Activity
3.8.4. Ferric Reducing/Antioxidant Power
3.9. DNA Damage Protecting Activities of Doenjang Extracts
3.10. Statistical Analyses of Nutritional Compositions and Antioxidant Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lee, J.H.; Jeon, J.K.; Kim, S.G.; Kim, S.H.; Chun, T.; Imm, J.-Y. Comparative analyses of total phenolics, flavonoids, saponins and antioxidant activity in yellow soybeans and mung beans. Int. J. Food Sci. Technol. 2011, 46, 2513–2519. [Google Scholar] [CrossRef]
- Kang, J.-H.; Han, I.-H.; Sung, M.-K.; Yoo, H.; Kim, Y.-G.; Kim, J.-S.; Kawada, T.; Yu, R. Soybean saponin inhibits tumor cell metastasis by modulating expressions of MMP-2, MMP-9 and TIMP-2. Cancer Lett. 2008, 261, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Jung, Y.S.; Jang, D.; Cho, C.H.; Lee, S.-H.; Han, N.S.; Kim, D.-O. Antioxidant Capacity of 12 major soybean isoflavones and their bioavailability under simulated digestion and in human intestinal Caco-2 cells. Food Chem. 2022, 374, 131493. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, S.K.C. Trypsin inhibitor activity, phenolic content and antioxidant capacity of soymilk as affected by grinding temperatures, heating methods and soybean varieties. LWT Food Sci. Technol. 2022, 153, 112424. [Google Scholar] [CrossRef]
- Yin, Y.; Tian, X.; Yang, J.; Yang, Z.; Tao, J.; Fang, W. Melatonin mediates isoflavone accumulation in germinated soybeans (Glycine max L.) under ultraviolet-B stress. Plant Physiol. Biochem. 2022, 175, 23–32. [Google Scholar] [CrossRef]
- Cho, K.M.; Hong, S.Y.; Math, R.K.; Lee, J.H.; Kambiranda, D.M.; Kim, J.M.; Islam, S.A.; Yun, M.G.; Cho, J.J.; Lim, W.L.; et al. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 2009, 114, 413–419. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, S.R.; Lee, S.M.; Jeon, E.J.; Ryu, H.S.; Lee, C.H. Primary and secondary metabolite of profiling doenjang, a fermented soybean paste during industrial processing. Food Chem. 2014, 165, 157–166. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Ereifej, K.; Alli, I. Distribution, antioxidant and characterisation of phenolic compounds in soybeans, flaxseed and olives. Food Chem. 2013, 139, 93–99. [Google Scholar] [CrossRef]
- Dueñas, M.; Hernández, T.; Robredo, S.; Lamparski, G.; Estrella, I.; Muñoz, R. Bioactive phenolic compounds of soybean (Glycine max cv. Merit): Modifi cations by different microbiological fermentations. Pol. J. Food Nutr. Sci. 2012, 62, 241–250. [Google Scholar] [CrossRef]
- Nam, Y.-D.; Lee, S.-Y.; Lim, S.-I. Microbial community analysis of Korean soybean pastes by next-generation sequencing. Inter J. Food Mircobial. 2012, 155, 36–42. [Google Scholar] [CrossRef]
- Jeon, A.R.; Lee, J.H.; Mah, J.-H. Biogenic amine formation and bacterial contribution in Cheonggukjang, a Korean traditional fermented soybean food. LWT. Food Sci. Technol. 2018, 92, 282–289. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; Gkatzionis, K. Soy sauce fermentation: Microorganisms, aroma formation, and process modification. Food Res. Int. 2019, 120, 364–374. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Jeon, C.O. Microbial community dynamics during fermentation of doenjang-meju, traditional Korean fermented soybean. Int. J. Food Microbiol. 2014, 185, 112–120. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.H.; Kwon, S.W.; Lee, J.K.; Hong, S.B. Fungal diversity of rice straw for meju fermentation. J. Microbiol. Biotechnol. 2013, 28, 1654–1663. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.H.; Kwon, S.W.; Lee, J.K.; Hong, S.B. Mycoflora of soybeans used for meju fermentation. Mycobiology 2013, 41, 100–107. [Google Scholar] [CrossRef]
- Han, D.M.; Chun, B.H.; Kim, H.M.; Jeon, C.O. Characterization and correlation of microbial communities and metabolite and volatile compounds in doenjang fermentation. Food Res. Int. 2021, 148, 110645. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.H.; Kim, M.K. Physicochemical quality and sensory chracteristics of koji made with soybean, rice, and wheat for commercial doenjang production. Foods. 2020, 9, 975. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.-J.; Cho, I.H.; Song, C.K.; Shin, H.W.; Kim, Y.-S. Comparison of fermented soybean paste (Doenjang) prepared by different methods based on profiling of volatile compounds. J. Food Sci. 2011, 76, C368–C379. [Google Scholar] [CrossRef] [PubMed]
- Bechman, A.; Phillips, R.D.; Chen, J. Changes in selected physical property and enzyme activity of rice and barley koji during fermentation and storage. J. Food Sci. 2012, 77, M318–M322. [Google Scholar] [CrossRef]
- Lee, C.H.; Youn, Y.; Song, G.S.; Kim, Y.S. Immunostimulatory effects of traditional doenjang. J. Korean Soc. Food Sci. Nutr. 2011, 40, 1227–1234. [Google Scholar] [CrossRef]
- Shukla, S.; Park, J.; Kim, D.-H.; Hong, S.-Y.; Lee, J.S.; Kim, M. Total phenolic content, antioxidant, tyrosinase and α-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control. 2016, 59, 854–861. [Google Scholar] [CrossRef]
- Jung, W.Y.; Jung, J.Y.; Lee, H.J.; Jeon, C.O. Functional characterization of bacterial communities responsible for fermentation of Doenjang: A traditional korean fermented Soybean paste. Front. Microbiol. 2016, 7, 827. [Google Scholar] [CrossRef]
- Kim, M.K.; Chung, H.-J.; Bang, W.-S. Correlationg physiochemical quality characteristics to consumer hedonic perception of traditional Doenjang (fermented soybean paste) in Korea. J. Sens. Stud. 2018, 33, e12462. [Google Scholar] [CrossRef]
- Jeon, H.J.; Lee, S.H.; Kim, S.S.; Kim, Y.S. Quality characteristics of modified doenjang and traditional doenjang. J. Korean Soc. Food Sci. Nutr. 2016, 45, 1001–1009. [Google Scholar] [CrossRef]
- Kim, M.J.; Kwak, H.S.; Kim, S.S. Effects of salinity on bacterial communities, Maillard reactions, isoflavone composition, antioxidation and antiproliferation in Korean fermented soybean paste (doenjang). Food Chem. 2018, 245, 402–409. [Google Scholar] [CrossRef]
- Kim, M.J.; Kwak, H.S.; Jung, H.Y.; Kim, S.S. Microbial communities related to sensory attributes in Korean fermented soy bean paste (doenjang). Food Res. Inter. 2016, 89, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Byun, M.W.; Nam, T.G.; Lee, G.H. Physicochemical and sensory characteristics of doenjang made with various concentrations of salt Solution. J. Korean Soc. Food Sci. Nutr. 2015, 44, 1525–1530. [Google Scholar] [CrossRef]
- Mun, E.-G.; Park, J.E.; Cha, Y.-S. Effects of doenjang, a traditional Korean soybean paste, with high-salt diet on blood pressure in Sprague-dawley rats. Nutrients 2019, 11, 2745. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.S.; Park, J.E.; Oh, H.J.; Kim, J.H.; Oh, M.C.; Oh, C.K.; Oh, Y.J.; Lim, S.B. Isolation and Characteristics of Microorganisms Producing Extracellular Enzymes from Jeju Traditional Fermented Soybean Paste (Doenjang). J. Korean Soc. Food Sci. Nutr. 2010, 39, 47–53. [Google Scholar] [CrossRef]
- Chun, B.H.; Kim, K.H.; Jeong, S.E.; Jeon, C.O. The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste. Food Microbiol. 2020, 86, 103329. [Google Scholar] [CrossRef]
- Kim, H.R.; Kim, Y.H.; Park, S.C.; Kim, M.S.; Baik, K.S.; Cho, H.W.; Seong, C.N. Growth inhibition of Helicobacter pylori by ingestion of fermented soybean paste. J. Life Sci. 2007, 17, 1695–1700. [Google Scholar] [CrossRef]
- Onda, T.; Yanagida, F.; Uchimura, T.; Tsuji, M.; Ogino, S.; Shinohara, T.; Yokotsuka, K. Widespread distribution of the bacteriocin-producing lactic acid cocci in Miso-paste products. J. Appl. Microbiol. 2002, 92, 695–705. [Google Scholar] [CrossRef]
- Zhao, J.; Dai, X.; Liu, X.; Chen, H.; Tang, J.; Zhang, H.; Chen, W. Changes in microbial community during Chinese traditional soybean paste fermentation. Int. J. Food Sci. Technol. 2009, 44, 2526–2530. [Google Scholar] [CrossRef]
- Ahn, J.-B.; Park, J.-A.; Jo, H.; Woo, I.; Lee, S.-H.; Jang, K.-I. Quality characteristics and antioxidant activity of commercial doenjang and traditional doenjang in Korea. Korean J. Food Nutr. 2012, 25, 142–148. [Google Scholar] [CrossRef]
- Bowey, E.; Adlercreutz, H.; Rowland, I. Metabolism of isoflavones and lignans by the gut microflora a study in germ-free and human flora associated rats. Food Chem. Toxicol. 2003, 41, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.-L.; Huang, H.-Y.; Chou, C.-C. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 2006, 23, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Whang, L.-J.; Yin, L.-J.; Li, D.; Zou, L.; Saito, M.; Tatsumi, E.; Li, L.-T. Influences of processing and NaCl supplementation on isoflavone contents and composition during douchi manufacturing. Food Chem. 2007, 101, 1247–1253. [Google Scholar] [CrossRef]
- Kwak, C.S.; Son, D.; Chung, Y.-S.; Kwon, Y.H. Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages. Nutr. Res. Pract. 2015, 9, 569–578. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, Y.; Wu, H.; Wang, Z.; Dai, Y.; Zhou, J.; Liu, X.; Dong, M.; Xia, X. Improvement of the phenolic content, antioxidant activity, and nutritional quality of tofu fermented with Actinomucor elegans. LWT Food Sci. Technol. 2020, 133, 110087. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, B.; Hwang, C.E.; Haque, M.A.; Kim, S.C.; Lee, C.S.; Kang, S.S.; Cho, K.M.; Lee, D.H. Changes in conjugated linoleic acid and isoflavone contents from fermented soy milks using Lactobacillus Plantarum P1201 and screening for their digestive enzyme inhibition and antioxidant properties. J. Funct. Foods. 2018, 43, 17–28. [Google Scholar] [CrossRef]
- Park, J.M.; Lee, J.M.; Jun, W.J. Radical scavenging and anti-obesity effects of various extracts from Turmeric (Curcuma longa L.). J. Korean Soc. Food Sci. Nutr. 2013, 42, 1908–1914. [Google Scholar] [CrossRef]
- Kut, K.; Cieniek, B.; Stefaniuk, I.; Bartosz, G.; Sadowska-Bartosz, I. A modification of the ABTS• decolorization method and an insight into its mechanism. Processes 2022, 10, 1288. [Google Scholar] [CrossRef]
- Hwang, C.E.; Kim, S.C.; Kim, D.H.; Lee, H.Y.; Suh, H.K.; Cho, K.M.; Lee, J.H. Enhancement of isoflavone aglycone, amino acid, and CLA contents in fermented soybean yogurts using different strains: Screening of antioxidant and digestive enzyme inhibition properties. Food Chem. 2021, 340, 128199. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, C.E.; Son, K.S.; Cho, K.M. Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties. Food Chem. 2018, 272, 362–371. [Google Scholar] [CrossRef]
- Cho, K.M.; Lee, J.H.; Yun, H.D.; Ahn, B.Y.; Kim, H.; Seo, W.T. Changes of phytochemical constituents (isoflavone, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. J. Food Compos. Anal. 2011, 24, 402–410. [Google Scholar] [CrossRef]
- Yu, X.; Meenu, M.; Xu, B.; Yu, H. Impact of processing technologies on isoflavones, phenolic acids, and antioxidant capacities of soymilk prepared from 15 soybean varieties. Food Chem. 2021, 345, 128612. [Google Scholar] [CrossRef]
- Boukhris, M.; Hadrich, F.; Chtourou, H.; Dhouib, A.; Bouaziz, M.; Saydi, S. Chemical composition biological activities and DNA damage protective effect of pelargonium graveolens L’Her. essential oil at different phenological stages. Ind. Crops Prod. 2015, 74, 600–606. [Google Scholar] [CrossRef]
- Gao, C.Y.; Tian, C.R.; Zhou, R.; Zhang, R.G.; Lu, Y.H. Phenolic composition, DNA damage protective activity and hepatoprotective effect of free phenolic extract from Sphallerocarpus gracilis seeds. Int. Immunopharmacol. 2014, 20, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Akhter, F.; Hashim, A.; Khan, M.S.; Ahmad, S.; Iqabal, D.; Srivastava, A.K.; Siddiqui, M.H. Antioxidant, α-amylase inhibitory and oxidative DNA damage protective property of Boerhaavia diffusa (Linn.) root. S. Afr. J. Bot. 2013, 88, 265–272. [Google Scholar] [CrossRef]
- Hsu, C.S.; Li, Y. Aspirin potently inhibits oxidative DNA strand breaks: Implications for cancer chemoprevention. Biochem. Biophys. Res. Commun. 2002, 293, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Wang, Y.; Song, Y.H.; Uddin, S.; Li, S.P.; Ban, Y.J.; Park, K.H. Antioxidant activities of phenolic metabolites from Flemingia philippinensis Merr. Et rolfe and their application to DNA damage protection. Molecules 2018, 23, 816. [Google Scholar] [CrossRef]
- Marazza, J.A.; Nazareno, M.A.; Giori, G.S.D.; Garro, M.S. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J. funct. Foods. 2012, 4, 594–601. [Google Scholar] [CrossRef]
- Min, H.-O.; Park, I.-M.; Song, H.-S. Effect of extraction method on anserine, protein, and iron contents of salmon (Oncorhynchus keta) extracts. J. Korean Soc. Food Sci. Nutr. 2017, 46, 220–228. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, C.E.; Cho, E.J.; Song, Y.H.; Kim, S.C.; Cho, K.M. Improvement of nutritional components and in vitro antioxidative properties of soy-powder yogurt using Lactobacillus plantarum. J Food Drug Anal. 2018, 26, 1054–1065. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, S.C.; Lee, H.Y.; Cho, D.Y.; Jung, J.G.; Kang, D.W.; Kang, S.S.; Cho, K.M. Changes in nutritional compositions of processed mountain-cultivated ginseng sprouts (Panax ginseng) and screening for their antioxidant and anti-inflammatory properties. J. Funct. Foods 2021, 86, 104668. [Google Scholar] [CrossRef]
- Adjimani, J.P.; Asare, P. Antioxidant and free radical scavenging activity of iron chelators. Toxicol. Rep. 2015, 2, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhang, J.; Zhang, H.; Duan, Y.; Ma, H. Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates. Food Chem. 2019, 299, 125165. [Google Scholar] [CrossRef]
Samples 1 | pH | Acidity (%, as Lactic Acid) | Salinity (%) | Soluble Protein Contents (mg/g) |
---|---|---|---|---|
1HDJ | 5.71 ± 0.29a 2 | 1.41 ± 0.04f | 9.00 ± 0.54d | 37.54 ± 1.13b |
2HDJ | 5.69 ± 0.28a | 1.36 ± 0.05f | 10.20 ± 0.61c | 35.37 ± 1.05b |
3HDJ | 5.31 ± 0.27b | 1.86 ± 0.06d | 8.20 ± 0.49e | 25.69 ± 0.75d |
4HDJ | 5.94 ± 0.30a | 3.03 ± 0.09a | 10.00 ± 0.60c | 28.79 ± 0.80c |
1CDJ | 5.37 ± 0.27b | 2.21 ± 0.07c | 14.20 ± 0.71a | 27.73 ± 0.83c |
2CDJ | 5.64 ± 0.25ab | 2.87 ± 0.09b | 12.80 ± 0.58b | 20.53 ± 0.60e |
3CDJ | 5.64 ± 0.34ab | 1.61 ± 0.06e | 12.80 ± 0.77b | 20.84 ± 0.62e |
4CDJ | 5.14 ± 0.26c | 1.59 ± 0.05e | 14.60 ± 0.88a | 50.83 ± 1.52a |
Isolates | Nearest Relative (Accession No.) | Similarity 1 (%) | Log cfu/g | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1HDJ | 2 2HDJ | 3HDJ | 4HDJ | 1CDJ | 2CDJ | 3CDJ | 4CDJ | |||
DJ01 | Bacillus amyloliquefaciens CC178 (CP006845) | 99–100 | 10.01 | |||||||
DJ02 | Bacillus amyloliquefaciens HPCAQB14 (KF861603) | 99 | 9.36 | 5.52 | 8.94 | |||||
DJ03 | Bacillus amyloliquefaciens LFB112 (CP006952) | 100 | 4.78 | |||||||
DJ04 | Bacillus amyloliquefaciens SE-01 (AB201121) | 99 | 4.04 | |||||||
DJ05 | Bacillus amyloliquefaciens SQR9 (CP006890) | 99 | 7.0 | |||||||
DJ06 | Bacillus amyloliquefaciens subsp. Plantarum CAU B946 (HE617159) | 99 | 6.0 | |||||||
DJ07 | Bacillus amyloliquefaciens subsp. Plantarum M20J (AB735995) | 99 | 5.0 | |||||||
DJ08 | Bacillus amyloliquefaciens subsp. Plantarum NAU-B3 (HG514499) | 99 | 8.39 | |||||||
DJ09 | Bacillus amyloliquefaciens subsp. Plantarum FZB42 (CP000560) | 99 | 5.30 | |||||||
DJ10 | Bacillus amyloliquefaciens subsp. Plantarum TrigoCor1448 (CP007244) | 99 | 6.0 | |||||||
DJ11 | Bacillus amyloliquefaciens TUL308 (JF412546) | 99 | 7.61 | 8.05 | 5.73 | 8.0 | 5.89 | 4.93 | 4.93 | 5.30 |
DJ12 | Bacillus atrophaeus 1942 (NR_075016) | 99 | 4.48 | |||||||
DJ13 | Bacillus licheniformis BCRC 15413 (DQ993676) | 99 | 4.90 | |||||||
DJ14 | Bacillus licheniformis BPRIST039 (JF700489) | 99 | 8.0 | 6.0 | 5.85 | 5.0 | ||||
DJ15 | Bacillus licheniformis G7A (GU086446) | 99 | 8.30 | |||||||
DJ16 | Bacillus licheniformis MS5-14 (EU718490) | 99 | 5.0 | 8.0 | ||||||
DJ17 | Bacillus licheniformis TSM2 (JX025165) | 99 | 9.36 | |||||||
DJ18 | Bacillus sonorensis BCRC 17532 (DQ993679) | 99 | 5.0 | |||||||
DJ19 | Bacillus sonorensis L62 (HM191249) | 99 | 4.0 | |||||||
DJ20 | Bacillus sp. 6063 (JX566648) | 99 | 5.0 | |||||||
DJ21 | Bacillus sp. bD3(2011) (JF772468) | 99 | 8.0 | 8.0 | ||||||
DJ22 | Bacillus sp. BM2 (FJ528074) | 99–100 | 7.60 | 8.0 | 5.72 | 4.70 | 4.11 | |||
DJ23 | Bacillus sp. DM-1 (DQ539620) | 99 | 6.30 | 8.02 | ||||||
DJ24 | Bacillus sp. L010 (KC153301) | 99 | 5.0 | 5.0 | 4.00 | 4.78 | 6.58 | |||
DJ25 | Bacillus sp. Q-12 (AB199317) | 99 | 6.0 | 8.02 | 5.85 | 6.57 | ||||
DJ26 | Bacillus stratosphericus JN179 (KF687090) | 99 | 4.78 | |||||||
DJ27 | Bacillus subtilis (AB065370) | 99 | 5.0 | 4.60 | 5.03 | |||||
DJ28 | Bacillus subtilis CSY191 (HQ328857) | 99 | 5.30 | 9.34 | ||||||
DJ29 | Bacillus subtilis Czk1(BRZ1) (GQ395245) | 99 | 5.11 | |||||||
DJ30 | Bacillus subtilis ET (HQ266669) | 99 | 7.0 | 4.85 | 5.30 | |||||
DJ31 | Bacillus subtilis IHB B 1516 (KF475836) | 99 | 7.0 | |||||||
DJ32 | Bacillus subtilis LB-01 (AB201120) | 99 | 4.0 | 5.04 | 4.78 | 5.30 | ||||
DJ33 | Bacillus subtilis pb28 (HM047562) | 99 | 4.48 | |||||||
DJ34 | Bacillus subtilis PY79 (CP006881) | 99 | 8.09 | |||||||
DJ35 | Bacillus subtilis subsp. Subtilis 168 (NR_102783) | 99 | 7.41 | 4.30 | ||||||
DJ36 | Bacillus subtilis ZJ06 (EU266071) | 99 | 9.68 | |||||||
DJ37 | Bacillus subtilis ZJ-1 (KC146707) | 99–100 | 6.34 | 8.30 | 5.72 | 8.74 | 4.81 | 5.0 | 6.11 | |
DJ38 | Bacillus subtilis ZLY (JX402129) | 99 | 6.30 | 4.48 | 4.70 | 3.90 | 6.26 | |||
DJ39 | Bacillus subtilis ZT-1-1 (GQ199598) | 99 | 4.0 | |||||||
DJ40 | Bacillus thuringiensis JN268 (KF150502) | 100 | 7.08 | |||||||
DJ41 | Bacillus velezensis BCRC 17467 (EF433407) | 99 | 4.30 | |||||||
DJ42 | Paenibacillus graminis (AB428571) | 98 | 5.0 | |||||||
DJ43 | Paenibacillus sp. IHB B 2283 (HM233974) | 99 | 5.0 |
Contents 1 | Samples | |||||||
---|---|---|---|---|---|---|---|---|
1HDJ | 2HDJ | 3HDJ | 4HDJ | 1CDJ | 2CDJ | 3CDJ | 4CDJ | |
Glycosides | ||||||||
Daidzin | 43.62 ± 2.62f | 73.39 ± 4.40d | nd 2 | 38.78 ± 1.75g | 209.62 ± 12.58c | 338.48 ± 20.31a | 265.53 ± 13.28b | 62.08 ± 3.11e |
Glycitin | 44.42 ± 2.67d | 54.58 ± 3.27c | nd | 28.05 ± 1.26f | 78.71 ± 4.72b | 100.24 ± 6.01a | 45.28 ± 2.26d | 42.68 ± 2.13e |
Genistin | 29.08 ± 1.74f | 36.53 ± 2.19e | nd | 14.14 ± 0.64g | 162.01 ± 9.72c | 368.93 ± 22.14a | 289.13 ± 14.46b | 45.71 ± 2.29d |
Total | 117.12 | 164.50 | nd | 80.97 | 450.34 | 807.65 | 599.94 | 150.47 |
Malonylglycosides | ||||||||
Daidzin | 3.72 ± 0.22g | 6.75 ± 0.41f | nd | 13.51 ± 0.61d | 32.38 ± 1.94b | 43.61 ±2.62a | 28.30 ±1.42c | 8.31 ±0.42e |
Glycitin | 25.16 ± 1.51b | 24.83 ± 1.49b | nd | 19.60 ± 0.88c | 24.22 ± 1.45b | 27.84 ±1.67a | 24.64 ±1.23b | 24.06 ±1.20c |
Genistin | 25.23 ± 1.51f | 49.39 ± 2.96d | nd | nd | 84.43 ± 5.07a | 70.46 ±4.23b | 68.00 ±3.40c | 30.55 ±1.53e |
Total | 54.11 | 80.97 | nd | 33.11 | 141.03 | 141.91 | 120.94 | 62.92 |
Acetylglycosides | ||||||||
Daidzin | nd | nd | nd | nd | 24.99 ± 1.50a | 9.61 ± 0.58c | 5.60 ± 0.28d | 10.48 ± 0.52b |
Glycitin | 3.76 ± 0.23a | nd | nd | nd | 1.86 ± 0.11b | 1.32 ± 0.08c | 0.91 ± 0.05d | nd |
Genistin | nd | nd | nd | nd | 0.93 ± 0.06a | 0.66 ± 0.04b | 0.46 ± 0.02c | nd |
Total | 3.76 | nd | nd | nd | 27.78 | 11.59 | 6.97 | 10.48 |
Aglycones | ||||||||
Daidzein | 686.58 ± 41.19a | 548.20 ± 32.89b | 200.50 ± 9.02c | 467.55 ± 21.04b | 123.42 ± 7.41d | 52.22 ± 3.13e | 124.90 ± 6.25d | 485.39 ± 24.27b |
Glycitein | 98.44 ± 5.91b | 162.60 ± 9.76a | 72.55 ± 3.26c | 47.08 ± 2.12d | 19.67 ± 1.18g | 23.70 ± 1.42f | 42.45 ± 2.12e | 102.31 ±5.12b |
Genistein | 500.79 ± 30.05a | 357.95 ± 21.48c | 209.75 ± 9.44e | 270.67 ± 12.18d | 123.34 ± 7.40f | 47.53 ± 2.85h | 98.64 ± 4.93g | 400.90 ± 20.05b |
Total | 1285.8 | 1068.75 | 482.80 | 785.30 | 266.43 | 123.45 | 265.99 | 988.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.Y.; Cho, D.Y.; Jung, J.G.; Kim, M.J.; Jeong, J.B.; Lee, J.H.; Lee, G.Y.; Jang, M.Y.; Lee, J.H.; Haque, M.A.; et al. Comparisons of Physicochemical Properties, Bacterial Diversities, Isoflavone Profiles and Antioxidant Activities on Household and Commercial doenjang. Molecules 2023, 28, 3516. https://doi.org/10.3390/molecules28083516
Lee HY, Cho DY, Jung JG, Kim MJ, Jeong JB, Lee JH, Lee GY, Jang MY, Lee JH, Haque MA, et al. Comparisons of Physicochemical Properties, Bacterial Diversities, Isoflavone Profiles and Antioxidant Activities on Household and Commercial doenjang. Molecules. 2023; 28(8):3516. https://doi.org/10.3390/molecules28083516
Chicago/Turabian StyleLee, Hee Yul, Du Yong Cho, Jea Gack Jung, Min Ju Kim, Jong Bin Jeong, Ji Ho Lee, Ga Young Lee, Mu Yeun Jang, Jin Hwan Lee, Md Azizul Haque, and et al. 2023. "Comparisons of Physicochemical Properties, Bacterial Diversities, Isoflavone Profiles and Antioxidant Activities on Household and Commercial doenjang" Molecules 28, no. 8: 3516. https://doi.org/10.3390/molecules28083516
APA StyleLee, H. Y., Cho, D. Y., Jung, J. G., Kim, M. J., Jeong, J. B., Lee, J. H., Lee, G. Y., Jang, M. Y., Lee, J. H., Haque, M. A., & Cho, K. M. (2023). Comparisons of Physicochemical Properties, Bacterial Diversities, Isoflavone Profiles and Antioxidant Activities on Household and Commercial doenjang. Molecules, 28(8), 3516. https://doi.org/10.3390/molecules28083516