Bioactive Compounds and Antioxidant Activity in the Fruit of Rosehip (Rosa canina L. and Rosa rubiginosa L.)
Abstract
:1. Introduction
2. Results
2.1. Protein and Nutrient Composition
2.2. Profiles and Concentrations of Phenolic Compounds and Ascorbic Acid in Rosehip
2.3. Colour Parameters
2.4. Antioxidant Activity in Rosehip Fruits
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Protein and Mineral Determinations
4.3. Determination of Phenolic Compounds Using HPLC
4.4. Determination of Organic Acids
4.5. Ascorbic Acid Content
4.6. Colour Parameters
4.7. Determination of Antioxidant Activity
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ruiz, A.; Bustamante, L.; Vergara, C.; Von Baer, D.; Hermosín-Gutiérrez, I.; Obando, L.; Mardones, C. Hydroxycinnamic Acids and Flavonols in Native Edible Berries of South Patagonia. Food Chem. 2015, 167, 84–90. [Google Scholar] [CrossRef]
- Salo, H.M.; Nguyen, N.; Alakärppä, E.; Klavins, L.; Hykkerud, A.L.; Karppinen, K.; Jaakola, L.; Klavins, M.; Häggman, H. Authentication of Berries and Berry-Based Food Products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5197–5225. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Rodríguez, A.; Stucken, K. Antioxidant, Functional Properties and Health-Promoting Potential of Native South American Berries: A Review. J. Sci. Food Agric. 2021, 101, 364–378. [Google Scholar] [CrossRef]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef]
- Fuentes, L.; Figueroa, C.R.; Valdenegro, M.; Vinet, R. Patagonian Berries: Healthy Potential and the Path to Becoming Functional Foods. Foods 2019, 8, 289. [Google Scholar] [CrossRef]
- Poblete, P. Instituto Forestal 2022 Productos Forestales No Madereros. 2022. Available online: https://bibliotecadigital.infor.cl/bitstream/handle/20.500.12220/31364/31364.pdf?sequence=1&isAllowed=y (accessed on 13 April 2023).
- Brasovan, A. Ans magnesium content in brier (Rosa canina L.) fruits at the “campul lui neag” sterile coal dump (Hunedoara County, Romania). An. Univ. Din Oradea Fasc. Biol. 2011, 18, 5–9. [Google Scholar]
- Ilyasoǧlu, H. Characterization of Rosehip (Rosa canina L.) Seed and Seed Oil. Int. J. Food Prop. 2014, 17, 1591–1598. [Google Scholar] [CrossRef]
- Demir, F.; Özcan, M. Chemical and Technological Properties of Rose (Rosa canina L.) Fruits Grown Wild in Turkey. J. Food Eng. 2001, 47, 333–336. [Google Scholar] [CrossRef]
- Soare, R.; Bonea, D.; Iancu, P.; Niculescu, M. Biochemical and Technological Properties of Rosa canina L. Fruits from Spontaneous Flora of Oltenia, Romania. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2015, 72, 182–186. [Google Scholar] [CrossRef]
- Fan, C.; Pacier, C.; Martirosyan, D.M. Rose Hip (Rosa canina L): A Functional Food Perspective. Funct. Foods Health Dis. 2014, 4, 493–509. [Google Scholar] [CrossRef]
- Ercisli, S. Chemical Composition of Fruits in Some Rose (Rosa spp.) Species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Cunja, V.; Mikulic-Petkovsek, M.; Weber, N.; Jakopic, J.; Zupan, A.; Veberic, R.; Stampar, F.; Schmitzer, V. Fresh from the Ornamental Garden: Hipsof Selected Rose Cultivars Rich in Phytonutrients. J. Food Sci. 2016, 81, C369–C379. [Google Scholar] [CrossRef]
- Kerasioti, E.; Apostolou, A.; Kafantaris, I.; Chronis, K.; Kokka, E.; Dimitriadou, C.; Tzanetou, E.N.; Priftis, A.; Koulocheri, S.D.; Haroutounian, S.A.; et al. Polyphenolic Composition of Rosa canina, Rosa sempervivens and Pyrocantha coccinea Extracts and Assessment of Their Antioxidant Activity in Human Endothelial Cells. Antioxidants 2019, 8, 92. [Google Scholar] [CrossRef]
- Koczka, N.; Stefanovits-Bányai, É.; Ombódi, A. Total Polyphenol Content and Antioxidant Capacity of Rosehips of Some Rosa Species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef]
- Fetni, S.; Bertella, N.; Ouahab, A. LC–DAD/ESI–MS/MS Characterization of Phenolic Constituents in Rosa canina L. and Its Protective Effect in Cells. Biomed. Chromatogr. 2020, 34, e4961. [Google Scholar] [CrossRef]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of Volatiles, Phenolic Compounds and Antioxidant Activities of Rose Hip (Rosa L.) Fruits in Turkey. LWT-Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Patel, S. Rose Hips as Complementary and Alternative Medicine: Overview of the Present Status and Prospects. Med. J. Nutr. Metab. 2013, 6, 89–97. [Google Scholar] [CrossRef]
- Roman, I.; Stǎnilǎ, A.; Stǎnilǎ, S. Bioactive Compounds and Antioxidant Activity of Rosa canina L. Biotypes from Spontaneous Flora of Transylvania. Chem. Cent. J. 2013, 7, 73. [Google Scholar] [CrossRef]
- Fascella, G.; D’Angiolillo, F.; Mammano, M.M.; Amenta, M.; Romeo, F.V.; Rapisarda, P.; Ballistreri, G. Bioactive Compounds and Antioxidant Activity of Four Rose Hip Species from Spontaneous Sicilian Flora. Food Chem. 2019, 289, 56–64. [Google Scholar] [CrossRef]
- Fetni, S.; Bertella, N.; Ouahab, A.; Martinez Zapater, J.M.; De Pascual-Teresa Fernandez, S. Composition and Biological Activity of the Algerian Plant Rosa canina L. by HPLC-UV-MS. Arab. J. Chem. 2020, 13, 1105–1119. [Google Scholar] [CrossRef]
- Cunja, V.; Mikulic-Petkovsek, M.; Zupan, A.; Stampar, F.; Schmitzer, V. Frost Decreases Content of Sugars, Ascorbic Acid and Some Quercetin Glycosides but Stimulates Selected Carotenes in Rosa canina Hips. J. Plant Physiol. 2015, 178, 55–63. [Google Scholar] [CrossRef]
- Elmastaş, M.; Demir, A.; Genç, N.; Dölek, Ü.; Güneş, M. Changes in Flavonoid and Phenolic Acid Contents in Some Rosa Species during Ripening. Food Chem. 2017, 235, 154–159. [Google Scholar] [CrossRef]
- Abedin, M.J.; Abdullah, A.T.M.; Satter, M.A.; Farzana, T. Physical, Functional, Nutritional and Antioxidant Properties of Foxtail millet in Bangladesh. Heliyon 2022, 8, e11186. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Snyder, D.M. Raspberries and Human Health: A Review. J. Agric. Food Chem. 2010, 58, 3871–3883. [Google Scholar] [CrossRef]
- Karlsons, A.; Osvalde, A.; Čekstere, G.; Ponnale, J. Research on the Mineral Composition of Cultivated and Wild Blueberries and Cranberries. Agron. Res. 2018, 16, 454–463. [Google Scholar]
- Stănilă, A.; Diaconeasa, Z.; Roman, I.; Sima, N.; Măniuţiu, D.; Roman, A.; Sima, R. Extraction and Characterization of Phenolic Compounds from Rose Hip (Rosa canina L.) Using Liquid Chromatography Coupled with Electrospray Ionization-Mass Spectrometry. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 349–354. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Dueñas, M.; Carvalho, A.M.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Characterisation of Phenolic Compounds in Wild Fruits from Northeastern Portugal. Food Chem. 2013, 141, 3721–3730. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef]
- Walker, R.P.; Famiani, F. Organic Acids in Fruits: Metabolism, Functions and Contents. Hortic. Rev. (Am. Soc. Hortic. Sci) 2018, 45, 371–430. [Google Scholar]
- Murathan, Z.T.; Zarifikhosroshahi, M.; Kafkas, E.; Sevindik, E. Characterization of Bioactive Compounds in Rosehip Species from East Anatolia Region of Turkey. Ital. J. Food Sci. 2016, 28, 314–325. [Google Scholar]
- Rebelo, M.J.; Rego, R.; Ferreira, M.; Oliveira, M.C. Comparative Study of the Antioxidant Capacity and Polyphenol Content of Douro Wines by Chemical and Electrochemical Methods. Food Chem. 2013, 141, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Niero, G.; Penasa, M.; Costa, A.; Currò, S.; Visentin, G.; Cassandro, M.; De Marchi, M. Total Antioxidant Activity of Bovine Milk: Phenotypic Variation and Predictive Ability of Mid-Infrared Spectroscopy. Int. Dairy J. 2019, 89, 105–110. [Google Scholar] [CrossRef]
- Bhave, A.; Schulzova, V.; Chmelarova, H.; Mrnka, L.; Hajslova, J. Assessment of Rosehips Based on the Content of Their Biologically Active Compounds. J. Food Drug Anal. 2017, 25, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Al-Yafeai, A.; Bellstedt, P.; Böhm, V. Bioactive Compounds and Antioxidant Capacity of Rosa rugosa Depending on Degree of Ripeness. Antioxidants 2018, 7, 134. [Google Scholar] [CrossRef]
- Fatin Najwa, R.; Azrina, A. Comparison of Vitamin C Content in Citrus Fruits by Titration and High Performance Liquid Chromatography (HPLC) Methods. Int. Food Res. J. 2017, 24, 726–733. [Google Scholar]
- De Souza, V.R.; Pereira, P.A.P.; Da Silva, T.L.T.; De Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the Bioactive Compounds, Antioxidant Activity and Chemical Composition of Brazilian Blackberry, Red Raspberry, Strawberry, Blueberry and Sweet Cherry Fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef]
- Augusto, T.R.; Scheuermann Salinas, E.S.; Alencar, S.M.; D’Arce, M.A.B.R.; de Camargo, A.C.; de Souza Vieira, T.M.F. Phenolic Compounds and Antioxidant Activity of Hydroalcoholic Extractsof Wild and Cultivated Murtilla (Ugni Molinae Turcz.). Food Sci. Technol. 2014, 34, 667–673. [Google Scholar] [CrossRef]
- Nuñez, Y.; Pérez, M.; Uribe, E.; Vega-Gálvez, A.; Di Scala, K. Osmotic Dehydration under High Hydrostatic Pressure: Effects on Antioxidant Activity, Total Phenolics Compounds, Vitamin C and Colour of Strawberry (Fragaria vesca). LWT-Food Sci. Technol. 2013, 52, 151–156. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Gurak, P.D.; Ferreira Marczak, L.D.; Tessaro, I.C. Tracking Bioactive Compounds with Colour Changes in Foods—A Review. Dye. Pigment. 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Andersson, S.C.; Rumpunen, K.; Johansson, E.; Olsson, M.E. Carotenoid Content and Composition in Rose Hips (Rosa spp.) during Ripening, Determination of Suitable Maturity Marker and Implications for Health Promoting Food Products. Food Chem. 2011, 128, 689–696. [Google Scholar] [CrossRef]
- Dzhanfezova, T.; Barba-Espín, G.; Müller, R.; Joernsgaard, B.; Hegelund, J.N.; Madsen, B.; Larsen, D.H.; Martínez Vega, M.; Toldam-Andersen, T.B. Anthocyanin Profile, Antioxidant Activity and Total Phenolic Content of a Strawberry (Fragaria × ananassa Duch) Genetic Resource Collection. Food Biosci. 2020, 36, 100620. [Google Scholar] [CrossRef]
- Wenzig, E.M.; Widowitz, U.; Kunert, O.; Chrubasik, S.; Bucar, F.; Knauder, E.; Bauer, R. Phytochemical Composition and in Vitro Pharmacological Activity of Two Rose Hip (Rosa canina L.) Preparations. Phytomedicine 2008, 15, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Mihailović, N.R.; Mihailović, V.B.; Ćirić, A.R.; Srećković, N.Z.; Cvijović, M.R.; Joksović, L.G. Analysis of Wild Raspberries (Rubus idaeus L.): Optimization of the Ultrasonic-Assisted Extraction of Phenolics and a New Insight in Phenolics Bioaccessibility. Plant Foods Hum. Nutr. 2019, 74, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; Von Baer, D. Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile. J. Agric. Food Chem. 2010, 58, 6081–6089. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, L.Z.; Cong, Q.; Wang, W.; Qi, X.L.; Peng, Y.; Song, S.J. Bioactive Lignans and Flavones with in Vitro Antioxidant and Neuroprotective Properties from Rubus idaeus Rhizome. J. Funct. Foods 2017, 32, 160–169. [Google Scholar] [CrossRef]
- Oyarzún, P.; Cornejo, P.; Gómez-Alonso, S.; Ruiz, A. Influence of Profiles and Concentrations of Phenolic Compounds in the Coloration and Antioxidant Properties of Gaultheria poeppigii Fruits from Southern Chile. Plant Foods Hum. Nutr. 2020, 75, 532–539. [Google Scholar] [CrossRef]
- Tai, Z.; Zhang, F.; Cai, L.; Shi, J.; Cao, Q.; Ding, Z. Flavonol Glycosides of Pseudodrynaria Coronans and Their Antioxidant Activity. Chem. Nat. Compd. 2012, 48, 221–224. [Google Scholar] [CrossRef]
- Winther, K.; Apel, K.; Thamsborg, G. A Powder Made from Seeds and Shells of a Rose-Hip Subspecies (Rosa canina) Reduces Symptoms of Knee and Hip Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Scand. J. Rheumatol. 2005, 34, 302–308. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; García Asuero, A.; Martín, J. An Annotation on the Kjeldahl Method. An. De La Real Acad. Nac. De Farm. 2019, 85, 14–19. [Google Scholar]
- Kazaz, S.; Baydar, H.; Erbas, S. Variations in Chemical Compositions of Rosa Damascena Mill, and Rosa canina L. Fruits. Czech J. Food Sci. 2009, 27, 178–184. [Google Scholar] [CrossRef]
- Parada, J.; Valenzuela, T.; Gómez, F.; Tereucán, G.; García, S.; Cornejo, P.; Winterhalter, P.; Ruiz, A. Effect of Fertilization and Arbuscular Mycorrhizal Fungal Inoculation on Antioxidant Profiles and Activities in Fragaria ananassa Fruit. J. Sci. Food Agric. 2019, 99, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Sanhueza, M.; Gómez, F.; Tereucán, G.; Valenzuela, T.; García, S.; Cornejo, P.; Hermosín-Gutiérrez, I. Changes in the Content of Anthocyanins, Flavonols, and Antioxidant Activity in Fragaria ananassa Var. Camarosa Fruits under Traditional and Organic Fertilization. J. Sci. Food Agric. 2019, 99, 2404–2410. [Google Scholar] [PubMed]
- Prez-Magario, S.; Gonzalez-SanJose, M.L. Prediction of Red and Rosé Wine CIELab Parameters from Simple Absorbance Measurements. J. Sci. Food Agric. 2002, 82, 1319–1324. [Google Scholar] [CrossRef]
- Ou, B.; Chang, T.; Huang, D.; Prior, R.L. Determination of Total Antioxidant Capacity by Oxygen Radical Absorbance Capacity (ORAC) Using Fluorescein as the Fluorescence Probe: First Action 2012.23. J. AOAC Int. 2013, 96, 1372–1376. [Google Scholar] [CrossRef]
Location | Proteins (mg g−1) | Ca (mg g−1) | Mg (mg g−1) | P (mg g−1) | K (mg g−1) |
---|---|---|---|---|---|
Carahue | 0.70 ± 0.21 a | 18.13 ± 0.25 a | 0.78 ± 0.05 a | 0.90 ± 0.04 f | 4.55 ± 0.07 g |
Gorbea | 1.01 ± 0.20 a | 4.87 ± 0.08 b | 0.79 ± 0.23 a | 0.81± 0.02 f | 6.97 ± 0.28 c |
Icalma | 1.10 ± 0.33 a | 2.43 ± 0.01 f | 0.97 ± 0.35 a | 1.53 ± 0.15 e | 4.46 ± 0.10 g |
Imperial | 0.77 ± 0.15 a | 2.93 ± 0.03 e | 0.81 ± 0.05 a | 2.11 ± 0.06 d | 4.92 ± 0.05 f |
Loncoche | 0.69 ± 0.07 a | 2.99 ± 0.03 e | 0.75 ± 0.16 a | 0.82 ± 0.04 f | 2.93 ± 0.06 h |
Lonquimay | 0.97 ± 0.20 a | 3.06 ± 0.03 e | 0.92 ± 0.12 a | 6.04 ± 0.27 a | 8.09 ± 0.08 b |
Melipeuco | 0.99 ± 0.11 a | 3.68 ± 0.001 d | 1.45 ± 0.43 a | 4.60 ± 0.07 b | 8.75 ± 0.12 a |
Osorno | 0.94 ± 0.27 a | 1.95 ± 0.00 g | 0.75 ± 0.04 a | 4.17 ± 0.08 c | 6.51 ± 0.11 d |
Pitrufquén | 1.08 ± 0.19 a | 4.02 ± 0.01 c | 0.77 ± 0.53 a | 1.56 ± 0.03 e | 4.76 ± 0.17 g |
Villarica | 1.08 ± 0.10 a | 2.46 ± 0.03 f | 0.76 ± 0.02 a | 1.97 ± 0.11 d | 6.02 ± 0.08 e |
Peak Number | tR (min) | Abbreviation | Tentative Identification | [M]+ | [M-H]− | Product Ions | ٨max (nm) |
---|---|---|---|---|---|---|---|
1 | 5.1 | CAT1 | Catechin | - | 289.1 | - | 279 |
2 | 10.1 | ANT1 | Cyanidin-3-glucoside | 449.1 | - | 287.1 | 516 |
3 | 15.3 | HCAD1 | Galloylquinic acid | - | 343.1 | 191.0; 205.0; 111.0 | 280 |
4 | 16.9 | FLAV1 | n.i | - | 449.1 | 269.1; 152.0 | 289 |
5 | 17.5 | FLAV2 | n.i | - | 433.1 | 271.1 | 278 |
6 | 18.5 | FLAV3 | n.i | - | 615.1 | 465.10; 301.0 | 355 |
7 | 19.0 | FLAV4 | Quercetin-hexoside | - | 461.1 | 300.0 | 353 |
8 | 19.8 | FLAV6 | Quercetin-glucuronide | - | 477.1 | 300.0 | 353 |
9 | 20.9 | FLAV7 | Quercetin-rhamnoside | - | 447.1 | 300.0 | 353 |
Location | Colour Intensity | Tonality | % Yellow | % Red | % Blue | a | B | C | L | h |
---|---|---|---|---|---|---|---|---|---|---|
Rosa rubiginosa L. | ||||||||||
Carahue | 0.72 ± 0.10 b | 1.47 ± 0.20 c | 51.27 ± 5.43 cd | 34.90 ± 1.07 b | 13.83 ± 4.58 bcd | −4410.03 ± 510.28 de | 16.63 ± 4.36 ab | 3.44 ± 2.12 b | 81.78 ± 2.36 b | 62.59 ± 12.00 b |
Gorbea | 0.57 ± 0.06 b | 1.27 ± 0.17 c | 53.49 ± 3.72 cd | 42.49 ± 3.13 a | 4.02 ± 02.03 cde | −3655.55 ± 123.05 bcd | 15.54 ± 1.31 b | 10.91 ± 2.00 a | 83.95 ± 1.60 b | 52.84 ± 5.85 b |
Imperial | 0.76 ± 0.7 b | 1.60 ± 0.17 bc | 46.47 ± 2.12 de | 29.12 ± 1.94 c | 24.41 ± 1.04 ab | −4277.55 ± 541.50 de | 12.26 ± 3.11 b | −5.90 ± 1.98 c | 82.21 ± 1.15 b | 56.92 ± 11.08 b |
Loncoche | 0.97 ± 0.01 a | 1.28 ± 0.08 c | 42.45 ± 1.19 de | 33.15 ± 1.25 bc | 24.40 ± 0.73 ab | −5006.74 ± 208.24 e | 10.64 ± 1.70 b | −5.44 ± 1.33 c | 76.93 ± 0.09 c | 50.92 ± 6.09 b |
Lonquimay | 0.73 ± 0.08 b | 1.41 ± 0.09 c | 46.65 ± 0.86 de | 33.30 ± 2.55 bc | 20.06 ± 3.16 abc | −4122.90 ± 423.66 bcd | 12.23 ± 1.31 b | −0.82 ± 3.35 bc | 81.97 ± 1.95 b | 52.39 ± 3.07 b |
Osorno | 0.58 ± 0.12 b | 1.57 ± 0. 24 bc | 54.71 ± 6.28 cd | 35.06 ± 1.33 b | 10.22 ± 5.00 cde | −3787.05 ± 105.49 bcd | 16.02 ± 2.55 b | 4.95 ± 1.28 ab | 84.77 ± 1.74 b | 59.64 ± 7.14 b |
Pitrufquen | 0.75 ± 0.03 b | 0.96 ± 0.11 c | 34.34 ± 1.30 de | 35.92 ± 2.62 b | 29.74 ± 1.45 a | −3119.37 ± 133.29 abc | −0.57 ± 1.15 c | −4.96 ± 2.01 c | 81.69 ± 1.03 b | 15.46 ± 5.37 c |
Villarrica | 0.61 ± 0.12 b | 2.15 ± 0.25 b | 62.28 ± 5.89 bc | 28.99 ± 0.70 c | 8.73 ± 5.23 cde | −4521.25 ± 535.90 de | 22.91 ± 1.34 a | 2.89 ± 1.88 b | 84.73 ± 2.49 b | 83.21 ± 4.54 a |
Rosa canina L. | ||||||||||
Melipeuco | 0.34 ± 0.03 c | 3.97 ± 0.49 a | 71.78 ± 7.28 ab | 18.18 ± 2.29 d | 10.04 ± 8.36 cde | −2893.11 ± 206.27 ab | 16.53 ± 0.80 b | −0.21 ± 3.26 bc | 91.44 ± 0.87 a | 66.33 ± 1.98 ab |
Icalma | 0.26 ± 0.4 c | 3.66 ± 0.08 a | 78.90 ± 2.20 a | 21.57 ± 1.09 d | −0.47 ± 3.29 e | −2485.68 ± 321.96 a | 15.71 ± 1.75 b | 3.40 ± 0.74 b | 92.58 ± 0.76 a | 60.70 ± 6.09 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña, F.; Valencia, S.; Tereucán, G.; Nahuelcura, J.; Jiménez-Aspee, F.; Cornejo, P.; Ruiz, A. Bioactive Compounds and Antioxidant Activity in the Fruit of Rosehip (Rosa canina L. and Rosa rubiginosa L.). Molecules 2023, 28, 3544. https://doi.org/10.3390/molecules28083544
Peña F, Valencia S, Tereucán G, Nahuelcura J, Jiménez-Aspee F, Cornejo P, Ruiz A. Bioactive Compounds and Antioxidant Activity in the Fruit of Rosehip (Rosa canina L. and Rosa rubiginosa L.). Molecules. 2023; 28(8):3544. https://doi.org/10.3390/molecules28083544
Chicago/Turabian StylePeña, Fabiola, Sebastián Valencia, Gonzalo Tereucán, Javiera Nahuelcura, Felipe Jiménez-Aspee, Pablo Cornejo, and Antonieta Ruiz. 2023. "Bioactive Compounds and Antioxidant Activity in the Fruit of Rosehip (Rosa canina L. and Rosa rubiginosa L.)" Molecules 28, no. 8: 3544. https://doi.org/10.3390/molecules28083544
APA StylePeña, F., Valencia, S., Tereucán, G., Nahuelcura, J., Jiménez-Aspee, F., Cornejo, P., & Ruiz, A. (2023). Bioactive Compounds and Antioxidant Activity in the Fruit of Rosehip (Rosa canina L. and Rosa rubiginosa L.). Molecules, 28(8), 3544. https://doi.org/10.3390/molecules28083544