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Abstract: Metal–organic framework (MOF) materials possess a large specific surface area, high
porosity, and atomically dispersed metal active sites, which confer excellent catalytic performance
as peroxide (peroxodisulfate (PDS), peroxomonosulfate (PMS), and hydrogen peroxide (H2O2))
activation catalysts. However, the limited electron transfer characteristics and chemical stability of
traditional monometallic MOFs restrict their catalytic performance and large-scale application in
advanced oxidation reactions. Furthermore, the single-metal active site and uniform charge density
distribution of monometallic MOFs result in a fixed activation reaction path of peroxide in the Fenton-
like reaction process. To address these limitations, bimetallic MOFs have been developed to improve
catalytic activity, stability, and reaction controllability in peroxide activation reactions. Compared
with monometallic MOFs, bimetallic MOFs enhance the active site of the material, promote internal
electron transfer, and even alter the activation path through the synergistic effect of bimetals. In
this review, we systematically summarize the preparation methods of bimetallic MOFs and the
mechanism of activating different peroxide systems. Moreover, we discuss the reaction factors that
affect the process of peroxide activation. This report aims to expand the understanding of bimetallic
MOF synthesis and their catalytic mechanisms in advanced oxidation processes.

Keywords: bimetallic MOFs; advanced oxidation process; catalyst; degradation

1. Introduction

Emerging organic contaminants (EOCs), including persistent organic pollutants, phar-
maceuticals, personal care products (PPCPs), and endocrine disruptors (EDCs), are a group
of compounds that are characterized by their persistence, bioaccumulation potential, and
endocrine-disrupting properties [1]. EOCs typically enter the environment through human
excretion or disposal processes, posing a continuous ecological risk to aquatic organisms
and humans alike. Therefore, the removal of EOCs from water has become a major concern
among scientists [2–4].

The complex composition of EOCs in the aquatic environment coupled with their
resistance to biodegradation renders conventional physicochemical methods ineffective.
In light of this, advanced oxidation processes (AOPs) have gained widespread attention
as an alternative strategy. AOPs are known for their high oxidation efficiency and lack of
secondary pollutant generation, making them an attractive option for the removal of EOCs
from water [5,6].
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AOPs are a cost-effective technology used to rapidly degrade non-biodegradable
substances in water [7,8]. AOPs involve various oxidation mechanisms, including pho-
tocatalytic oxidation, electrocatalytic oxidation, and Fenton-like oxidation, which have
been widely utilized and shown to effectively remove non-biodegradable substances from
water [9,10]. The AOPs involves the generation of reactive oxygen species such as •OH,
SO4

•−, 1O2, and others, which can be utilized to treat wastewater. Free radicals pos-
sess a high redox potential and non-selective oxidation, allowing them to easily oxidize
other molecules while reducing themselves. These reactive oxygen species are crucial
in initiating AOPs because they convert complex toxic pollutants into simple, non-toxic
substances [11,12]. Among them, SO4

•− is the most reactive and has been observed to
attack a wide range of organic contaminants. In aqueous solutions, SO4

•− has a redox
potential of 2.5–3.1 V, a broad pH range adaptation, and a long half-life [13,14]. The activa-
tion of peroxide is of great significance, and numerous scholars have conducted in-depth
research on catalysts.

MOFs are highly regarded peroxide catalysts that consist of metal ions self-assembled
with organic ligands through coordination bonds [15,16]. Their tunable energy band
structure, large specific surface area, high porosity, and intrinsic catalytic activity are of the
reasons for their significant research interest in adsorption and catalysis [17]. Furthermore,
their modification ability after synthesis and structural properties support the vast research
efforts in this field, which may lead to various commercial applications. However, MOFs
have limitations in the catalytic process such as low electron conductivity, a single type
of unsaturated metal site, and easy inactivation during the reaction [18]. Compared to
other inorganic catalysts, MOFs can be designed and microfabricated at the atomic level,
allowing their structures and functions to be adjusted via methods such as doped metals,
modified ligands, and loaded carbon-based materials [19,20]. Among them, the bimetallic
synergy produced by MOF-doped metals is considered to be one of the most effective
strategies to achieve enhanced catalytic activity and/or expand the reaction range [21].
Novel composite materials with bimetallic MOFs have gained considerable attention in
heterogeneous catalysis. This approach preserves the MOF’s skeleton while enhancing
cycling stability and interfacial electron transfer efficiency [22].

Although single-metal MOFs offer a wide range of structural compatibilities, the
incorporation of transition metals (Fe, Co, and Ni) into MOFs as bimetallic composites
can reduce cost and further improve catalytic activity [23,24]. Bimetallic MOFs can be
categorized into two types of spatial arrangements: different metals forming different
secondary-building units (SBUs) or different metals fixed in the same SBUs. The latter
exhibits higher catalytic activity due to its compact structure, better stability, and elec-
tron transfer efficiency [25]. The combination of two different metal cations can enhance
conductivity and enable oxidation reactions between different metal sites in the MOF’s
structure, leading to increased catalytic efficiency. This controllable integration of functional
components can construct a multifunctional complex with advanced properties, enhancing
activity for redox catalytic reactions, supercapacitors, and other reactions [26,27]. While
the development of bimetallic MOFs is still in its infancy, an increasing number of studies
demonstrate their great potential in various practical applications [28].

This review systematically introduces the preparation methods of bimetallic MOF
composites, the synergy between bimetallic sites of bimetallic MOFs, and their application
prospects in emerging fields to demonstrate their structural advantages. Finally, the paper
provides an outlook on the challenges and future prospects of the synthesis and application
of bimetallic MOFs to provide insights for the rational design of hybrid MOFs with complex
structures and fine functions.

2. Preparation of Bimetallic MOFs

Due to the inherent advantages of bimetallic MOFs, considerable efforts have been
made to synthesize such materials. Generally, methods for constructing bimetallic MOFs
can be broadly classified into two categories (Figure 1). The first involves direct synthesis of
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bimetallic MOFs using techniques such as hydrothermal/solvothermal [29] and microwave-
assisted methods [30] or preparation of core–shell bimetallic MOFs by controlling the
nucleation and growth kinetics of guest and host MOFs. The second category comprises
a stepwise synthesis method in which monometallic host MOFs are first synthesized and
then doped with metals using ion exchange or seed induction to form bimetallic MOFs.
The composition and structure of bimetallic MOFs are determined by parameters such as
the crystal structure of the MOFs, the size of the doped metal ions, the lattice matching
of the MOFs, and the chemical stability of the MOFs. The mechanisms involved in these
representations are discussed in detail below through typical examples. Detailed strategies
for synthesizing bimetallic MOF hybrids are discussed in the following sections.
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2.1. One-Step Synthesis

The one-step synthesis method is a commonly employed approach for synthesizing
bimetallic MOFs. However, due to the differing binding kinetics of the two metal ions
to the ligand, it can be challenging to predict the resulting topology of the metal–ligand
framework via this method. To construct solid-solution bimetallic MOFs with desired
properties, precise control of the reaction conditions is crucial. For instance, the molar ratio
of the two metal sources, reaction time, solubility of metal ions, and pH of the reactant
solution all have significant impacts on the structure and morphology of the resulting
bimetallic MOFs [31]. The synthesis of bimetallic MOFs typically involves the reaction
between ligands and two metal ions with nearly identical electronic configurations and
charge densities. Following extensive exploration by numerous researchers, this method
has become well established, resulting in the successful synthesis of a diverse array of
bimetallic MOFs.

2.1.1. Hydrothermal/Solvothermal Method

Hydrothermal/solvothermal synthesis is a commonly used method for preparing
MOFs. This approach involves the dissolution of organic ligands and metal complexes
in water or other organic solvents followed by the reaction of the mixture under high-
temperature and high-pressure conditions [32,33]. Significant progress has been made in the
synthesis of bimetallic MOFs through the efforts of numerous scientific research groups. For
example, Co2+ and Zn2+ ions were dissolved in methanol solution with 2-methylimidazole
to synthesize Cox·Zn1−x (MeIm)2 [34]. This method offers high crystallinity and controllable
crystal size, enabling the synthesis of well-oriented and perfect crystals. Additionally, a
variety of organic functional groups and metal complexes can be introduced to prepare
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customized MOFs [35]. Wang et al. incorporated a series of transition metals (M = Co,
Ni, and Zn) into Fe-BPTC to form three different bimetallic MOFs: Fe2Co-BPTC, Fe2Zn-
BPTC, and Fe2Ni-BPTC [36]. Other examples include the solvothermal synthesis of Ce/Zr
UiO-66 by mixing cerium (III) chloride and zirconium chloride [37] and the hydrothermal
synthesis of Ni/Co-MOF by loading Ni2+, Co2+, and 1,4-phthalic acid organic ligands into a
polytetrafluoroethylene-lined stainless steel autoclave [38]. Wang et al. doped Ni-MOF with
Fe3+ to form FeNi-MOFs, which were analyzed spectroscopically to reveal the successful
replacement of part of the Ni with Fe3+ to form two types of SBUs that were uniformly
distributed in MOF crystals [39]. Similarly, Li et al. synthesized Ti-In-MOF in one step using
the hydrothermal method (Figure 2a), while Han et al. prepared La-Zr bimetallic MOFs
adsorbents by placing La and Zr salt precursors and 2-aminoterephthalic acid ligands into
an autoclave (Figure 2b) [40] These bimetallic MOFs exhibit excellent adsorption properties
for As(V) or Cr(VI) in strongly acidic solutions with a maximum adsorption capacity for
Cr(VI) of up to 222.5 mg/g. This method integrates the advantages of two metals to achieve
intensified synergism of adsorption and photocatalytic degradation with shorter reaction
times and the promotion of high-dimensional MOF structures compared to synthesis at
room temperature. However, this approach generates a large amount of solvent waste and
is potentially hazardous when handling metal salts in the presence of organic liquids [41].
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2.1.2. Microwave-Assisted Method

In the past, conventional heating was the primary energy source for MOF synthesis.
However, microwave-assisted and sonochemical heating methods are now being increas-
ingly used to provide the necessary energy for the reaction. Microwave-assisted synthesis
employs electric or magnetic fields to induce high-speed collisions between charged parti-
cles, leading to the production of high-purity crystals [44,45]. As illustrated in Figure 2c,
Chen et al. used the microwave method to synthesize a bimetallic solution with Co and Ni
ions in the same SBUs. Sonochemistry enables rapid reaction times, production of crystals
with uniform particle morphology, and isolation of products with minimal or no secondary
products [42]. Some researchers have utilized fast, low-cost, and direct ultrasonic-assisted
synthesis to prepare porous bimetallic Co/ZIF-8, which effectively promotes nucleation
and limits particle size to the nanoscale region (Figure 2d) [43]. However, these methods
have certain limitations, including the formation of crystal particles that are too small for
single-shot X-ray analysis [44]. Additionally, the cost and yield of these methods are not
always proportional, and the ability to control reaction conditions by varying the irradiation
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power, reaction time, and temperature is limited by the possibility of different instruments
providing non-identical conditions, ultimately hindering reproducibility.

2.1.3. Nucleation Dynamics Control Method

The current technique involves mixing the ligands and metals of two MOFs with dif-
ferent nucleation rates and constructing a core–shell structure by controlling the nucleation
and growth rates of the two MOFs, which can synthesize core–shell bimetallic MOFs in
one simple step [46,47]. The key to success is the difference in the growth rates of the two
metal–ligands, and the structure and composition of the final product is also linked to
the growth rate of the two components. Under the same reaction conditions, seeds with
fast nucleation velocity grow as guest MOFs and are enveloped with guest MOFs with
a slow nucleation speed, leading to core–shell bimetallic MOFs [48–50]. Nevertheless, it
is challenging to create core–shell structures using a one-step synthesis method, and the
synthesis process necessitates precise control of the procedure.

Yang et al. employed a one-pot synthesis method to add two linkers with high-
connectivity (TCPP, H4TCPP = tetrakis (4-carboxyphenyl) porphyrin) and low-connectivity
connectors (BPDC, BPDC = biphenyl-4,4′-dicarboxylate) to the solvent to create two crys-
tal nucleation rates with different environments (Figure 3a). Under kinetic control, a
hybrid core–shell MOF (PCN-222@Zr-BPDC) with mismatched lattices was successfully
synthesized [47]. The mole percentages of the two metals impacted the nucleation kinetics
of the MOF’s growth. ZIF-8 and ZIF-67 possess different reaction rates, leading to an
uneven distribution of elements in the nanocrystals. Co20Zn80-ZIF grows into a core–shell
structure (Figure 3b). As the proportion of Co increases, the mixed metal system gradually
shifts from typical two-step growth kinetics to a trend of Co-dominated one-step growth
kinetics, resulting in the growth of Co50Zn50-ZIF and Co80Zn20-ZIF into solid-solution
nanostructures [50]. Another example is the utilization of one-step hydrothermal synthesis by
adding Co2+, Ni2+, H3BTC, and PVP to the high-pressure reactor at the same time and accu-
rately controlling deionized water:DMF (N,N-dimethylformamide):methanol = 1:1:1, leading
to the successful synthesis of Ni/Co-MOF with an egg yolk shell structure (Figure 3c) [51].
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2.2. Stepwise Synthesis Method

Designing multiple operation steps in a sequential manner is a complex yet effective
method for synthesizing bimetallic MOFs with a desired structure. By using this method,
metal doping can be achieved through post-synthesis ion exchange without sacrificing the
crystallinity of the MOFs. In addition, seed-mediated methods can be employed to prepare
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core–shell bimetallic structures, which can significantly alter the physical and chemical
properties of the MOF framework.

2.2.1. Ion Exchange Method

MOFs can be synthesized using metal ion exchange, which involves doping metals
into the MOF framework by exploiting the different affinities of metal ions and ligands.
However, during the exchange of ligands or metal ions, it is essential to carefully select
suitable ligand–metal combinations to prevent framework collapse. This method exhibits a
certain degree of randomness and cannot accurately predict the coordination environment
of the metal center. Additionally, the efficiency of doping metal ions to replace the original
metal center is sometimes low because metal ions with different valence states and ionic
radii tend to adopt different coordination numbers and environments. Improper metal node
replacement may damage the intrinsic structure of the MOF and even cause it to rupture [28].
The speed and extent of the exchange process are influenced by the coordination number
of the metal–ligand, the radius of the metal ion, and the solvent [52]. Generally, MOFs
with high coordination numbers in SBUs can be synthesized using the cation exchange
method [53].

For example, Cheng et al. synthesized CuCo-MOFs using the ion exchange method. As
shown in Figure 4, they first obtained tannic acid (TA) chelated cobalt complex nanoboxes
(TA-Co NBs) from initial ZIF-67 nanoparticles by using a chemical etching process. Subse-
quently, the obtained TA-Co NBs were transformed into Cu-modified TA-Co NBs (TA-CoCu
NBs) in a cation exchange process using a Cu2+ ion solution in which some of the Co sites
of TA-Co NBs were replaced by Cu atoms. Finally, TA-CoCu NBs were transformed into
CoCu-MOF NBs through a ligand exchange process. During this process, the TA linkers
of TA-CoCu NBs were gradually replaced by 2,3,6,7,10,11-hexahydroxytriphenyl (HHTP)
organic ligands, possibly due to the stronger chelating ability of HHTP ligands compared
to TA molecules [54].
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2.2.2. Seed-Induced Growth Method

The stepwise synthesis process involves depositing crystal materials on a specific
crystal plane of a substrate with the same orientation and similar lattice spacing [55]. The
substrate is first synthesized as the host MOFs followed by the epitaxial growth of guest
MOFs on the interface with matching plane direction and lattice distance to obtain the
bimetallic MOFs. The successful epitaxial growth of core–shell structures depends on the
selection of appropriate host and guest MOFs [56], enabling relatively controllable prepara-
tion of mixed-metal MOFs [57]. The stepwise synthesis method enriches the composition
of MOFs (such as ligands and/or metal centers) as well as their structural diversity (such
as pores, surface properties, and functions) [58–60].

For instance, Qi et al. synthesized Ni-MOF via the hydrothermal method and then
doped Sn to Ni-MOFs using the ion exchange method to form Sn/Ni-MOF core–shell
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structures (Figure 5a). This method enabled precise control of the doping metal content [61].
Zn/Co bimetallic MOFs were prepared via epitaxial growth of ZIF-8 and ZIF-67 with
similar unit cell parameters (Figure 5b) [62]. Some researchers used the seed-mediated
method to grow the ZIF-8@ZIF-67 core-shell structure on GO. In this method, ZIF-8 seeds
were first grown in situ on GO flakes followed by the deposition of ZIF-67 crystals on the
surface of ZIF-8 seeds, resulting in the formation of the core–shell structure of ZIF-8@ZIF-67
(Figure 5c) [63]. Tang et al. also employed the seed-mediated growth method to deposit
ZIF-67 on the ZIF-8 crystal plane, ultimately forming the core–shell MOF (ZIF-8@ZIF-67)
crystal with ZIF-8 as the core and ZIF-67 as the shell (Figure 5d) [64].
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The various synthesis conditions employed in the preparation of bimetallic MOFs
have a significant impact on the crystal nucleation and growth states, thereby influencing
the morphology and topology of the resulting products. Furthermore, the preparation
method has a substantial influence on the species of reactive oxygen species, surface oxygen
vacancies, surface chemical composition, and state [65]. These physical and chemical prop-
erties in turn affect the catalytic performance of the catalyst. Additionally, it is important
to note that different synthesis methods can lead to significant differences in the specific
surface area and pore volume of the same material [66].

3. Fenton-like Reaction of Bimetallic MOFs

Compared to monometallic MOFs, bimetallic MOFs exhibit unique synergistic effects
between two distinct metal elements, leading to higher stability and catalytic efficiency. The
Fenton-like reaction of bimetallic MOFs and persulfate-based advanced oxidation processes
have found widespread application in water treatment to degrade emerging pollutants [67].
In their research, He et al. [10] suggested that the energy efficiency of a synergistic catalytic
system is higher than that of a single system. The addition of catalysts to a synergistic
catalytic system can leverage the activation properties of the catalysts to effectively convert
peroxides into free radicals, which can lead to efficient pollutant degradation and improved
energy efficiency. Bimetallic MOFs have been identified as highly effective catalysts for
peroxides due to their unique structural and chemical properties. The most commonly used
peroxides in this degradation system are PDS, PMS, and H2O2, whose molecular structures
are shown in Figure 6a. Table 1 provides a summary of the reaction mechanisms involved
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in the activation of three distinct peroxides by bimetallic MOFs. Bimetallic MOFs activate
these three oxidants to generate various reactive oxygen species (ROS), which attack and
degrade pollutants into smaller molecules (Figure 6b). The following section provides
a detailed explanation of how bimetallic MOFs synergistically enhance the activation of
different oxidants and degrade various emerging pollutants.
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Table 1. Activation of MOF materials by different peroxides.

Type of Catalyst Synthesis Method Peroxides Mechanism Performance Cycle Times Reference

MIL-101 (Fe, Co) Hydrothermal H2O2

C-O-Fe/Co bonds and Fe-O-Co
bonds facilitate electron transfer;
π-π interaction between CIP and

MIL-101 (Fe, Co)

30 min, 97.8% (CIP = 20 mg/L,
catalyst = 0.2 g/L, H2O2 = 5 mM) —— 68

CUMS/MIL-101 (Fe, Cu) Hydrothermal H2O2
π–Cation interactions; favorable

reaction between Cu(I) and Fe(III)
30 min, 100% (CIP = 20 mg/L,

catalyst = 0.1g/L, H2O2 = 3 mM) —— 69

MCuFe MOF Hydrothermal H2O2
Holes and electrons can be heated

into “hot electrons” and “hot holes”

40 min, 95% (MB =50 mg/L,
catalyst = 0.05 g/L,

H2O2 = 5 mM)
—— 70

FeCu (BDC-Br) Hydrothermal H2O2

Fe-Cu electron transfer process
promotes the decomposition

of H2O2

60 min, nearly 100%
(phenol =100 mg/L,

catalyst = 0.1 g/L, H2O2 = 8 mM)
4 71

FeCo-BDC Hydrothermal PMS
Redox cycle between Co3+/Co2+

and Fe3+/Fe2+ promotes
PMS activation

5 min, 99.1% (RhB = 20 mg/L,
catalyst = 20 mg/L,

PMS = 0.25 mM)
—— 72

Fe-Co MOFs Nucleation
dynamics control PMS

Synergy of cobalt and iron active
sites promotes redox cycling

of Co2+/Co3+

30 min, 90.3% (2-cp = 100 mg/L,
catalyst = 0.1g/L,
PMS = 0.3 g/L)

5 73

CuCo-MOF Hydrothermal PMS
Synergistic effect of Cu and Co
facilitates electron transfer from

electron-rich regions to metal sites

25 min, 100% (NIM = 20 mg/L,
catalyst = 0.2 g/L, PMS = 3 mM) —— 74

MIL-88B (Fe/Co) Hydrothermal PDS
Co2+ can accelerate electron

transfer and promote the cycle of
Fe3+ and Fe2+

30 min, 99.85% (MB = 0.1 mM,
catalysts = 0.5 g/L,

PDS = 10 mM)
4 75

FeCo/N-MOF Hydrothermal PDS

Interaction of Fe(II) and Co(III)
promotes the cycling of

Co(II)/Co(III) and Fe(II)/Fe(III);
doped N helps to generate 1O2

3 h, 98.60% (TC = 50 mg/L,
catalyst = 0.2 g/L,
PDS = 5 mmol/L)

—— 76

3.1. Bimetallic MOF for H2O2 Activation

H2O2 is a commonly used oxidant in wastewater treatment [68]. H2O2 can synergisti-
cally produce more •OH with the catalyst, thus promoting the degradation of antibiotics [9].
The activation of H2O2 by MOFs as a heterogeneous catalyst is referred to as Fenton-like
oxidation in the field of wastewater treatment [69,70].
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Pan et al. [9] investigated the activation of H2O2, which led to the production of
non-selective hydroxyl radicals as well as 1O2 resulting from the oxidation of O3 in the
system. Their experiments confirmed the presence of synergistic interactions among •OH,
1O2, and •O2

− within the system. However, excessive amounts of H2O2 can lead to self-
decomposition and consumption of •OH, which can ultimately hinder the degradation of
antibiotics. He et al. prepared a bimetallic MOF by introducing Co(II) into MIL-101 (Fe)
via a hydrothermal method. The CIP removal rate of MIL-101 (Fe, Co) (97.8%) was found
to be higher than the sum of MIL-101 (Fe) (55.2%) and MOF (Co) (14.3%). To investigate
the synergistic effect between Fe and Co sites in MIL-101 (Fe, Co), the authors analyzed
the material from multiple perspectives. As shown in Figure 7a,b, doping cobalt ions
in MIL-101 (Fe) can reduce the corresponding activation energy barriers of H2O2 on the
surface of the material from 0.55 eV to 0.40 eV, indicating that MIL-101 (Fe, Co) has a
stronger activation effect on H2O2 molecules. Figure 7c illustrates the activation of H2O2
by MIL (Fe, Co). In MIL (Fe, Co) materials, Fe/Co is connected to the benzene ring in the
organic ligand via the C-O-Fe/Co bond, which not only facilitates electron transfer in the
coordination system but also increases the reactive active sites. During the degradation
process, the benzene ring connected by MIL (Fe, Co) forms a Π–Π conjugation with the
benzene ring in ciprofloxacin (CIP), promoting the adsorption of CIP by MIL (Fe, Co) and
electron transfer to oxidize and decompose CIP. The electrons will be transferred from the
electron-deficient center around the benzene ring to the electron-rich center around the
metal for the reduction of Co(III). This step solves the key rate-limiting problem in the
Fenton system and explains why the catalytic degradation efficiency of MIL (Fe, Co) for
CIP is higher than that of MIL (Fe) [71].
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In the CUMSs/MIL-101 (Fe, Cu) system, the coordinatively unsaturated metal sites
(CUMSs) containing Fe(II)/Fe(III) with a mixed valence have a mesoporous structure
with abundant open active sites. Additionally, Cu(II)/Cu(I) CUMSs can accelerate the
valence cycle of the metal center, reduce the activation energy barriers of H2O2 on the
catalyst surface (0.42 eV for CUMSs/MIL-101 (Fe) and 0.27 eV for CUMSs/MIL-101 (Fe, Cu)
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(Figure 7d,e), and further improve the catalytic activity and H2O2 utilization efficiency [72].
The mechanism of the CUMSs/MIL-101 (Fe, Cu)/H2O2 degradation of CIP is shown
in Figure 7f.

Figure 8a shows the construction of CuFe2O4@MIL-100 (Fe, Cu) with a core–shell
structure by Shi et al. using an in situ derivatization strategy. When stimulated by visible
light, MCuFe-MOF generates photogenerated electrons and holes, which can decompose
H2O2 into ·OH to degrade pollutants. Figure 8b shows the catalytic performance test
results, which indicate that the catalyst not only reduces the amount of H2O2 needed in the
reaction process but also enhances structural stability by reducing FeIII through electron
transfer. The MCuFe-MOF/ H2O2 system continuously generates ·OH through the redox
interaction between ≡FeII/≡FeIII and ≡CuII/≡CuI, thereby ensuring the progress of the
degradation reaction (Figure 8c). The core nanoparticles’ photothermal effect generates
“hot electrons,” which can accelerate the separation of photogenerated electron–hole pairs.
The MCuFe MOF heterojunction accelerates the cycling of ≡FeII/≡FeIII and CuII/≡CuI in
the photo-Fenton reaction system, ensuring the rapid regeneration of≡FeII and the efficient
production of ·OH. This strategy avoids leaching of metal ions by common catalysts under
tightly controlled pH (2.8–3.5) by broadening the optimal pH range [73].
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Figure 8. (a) Schematic diagram of MCuFe-MOF synthesis; (b) recycling and ion leaching of MCuFe-
MOF; (c) Fenton reaction mechanism of MCuFe MOF glazing under visible light irradiation. Adapted
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nism of FeCu (BDC-Br-1). Adapted with permission from Ref. [74], 2023, Elsevier.

Feng et al. doped Cu2+ into Fe-BOD using the solvothermal method. The doping of
Cu does not affect the original surface morphology but collapses the nanopores, changing
the pore structure from micropores to mesopores. In this Fenton-like system, the Fe sites of
FeCu (BDC-Br-1) tightly combine with H2O2 for electron transfer, generating ROS species
(HO• and HO2•) in the Fe(III)/Fe(II) redox cycle reaction (Figure 8d). Within this reaction
system, the four different free radicals contribute to the degradation of phenol in the
following order: electron < 1O2 < O2

– < HO•. These findings suggest that HO• is the most
prominent and important active species for this reaction. Analysis of the quasi-reduction
potential shows that the reduction of Fe(III) by Cu(I) is thermodynamically favorable.
Equations (1)–(3) demonstrate that the presence of Cu promotes the Fe(III)/Fe(II) redox
cycle [74].

≡ FeIII + e− →≡ FeII (1)

≡ CuII + e− →≡ CuI (2)

≡ CuI+ ≡ FeIII →≡ CuII+ ≡ FeII (3)
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3.2. Bimetallic MOF for PMS Activation

The superior performance of PMS-AOPs in wastewater treatment has garnered con-
siderable attention. This promising wastewater treatment method involves PMS activation
by suitable MOFs to produce various reactive oxidizing substances that can attack a range
of refractory organic pollutants [75].

In a study by Wang et al., as depicted in Figure 9a, 1,4-benzenedicarboxylic acid
was selected as a ligand, and triethylamine (TEA) was used as a shape control agent to
synthesize a two-dimensional FeCo-BDC nanosheet. Catalytic experiments demonstrated
that the catalytic activity of bimetallic MOFs was superior to that of Fe-BDC and Co-BDC
nanosheets. Doping Co-BDC with iron led to the occupation of guest ions within the
internal space of MOFs, resulting in a slight reduction in specific surface area. Additionally,
electron transfer between the bimetals effectively accelerated the redox process of Co/Fe,
thereby promoting the formation of ROS. Finally, the main reactive oxygen species O2

•−

and 1O2 decomposed dye molecules [76].
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In another study, Gu et al. utilized a step-by-step synthesis method to prepare Fe
and Co core–shell structure bimetallic MOFs (M/Z2) with MIL (Fe) as the core and a
layer of ZIF-67 uniformly grown on the surface as the shell. This structural bimetallic
MOF could effectively activate PMS in a short time to degrade high concentrations of
2-chlorophenol and several antibiotics. In core–shell bimetallic MOFs, MIL(Fe) acted as
the core structure, providing high-performance Fe US, which enhanced the capture of
pollutants by M/Z2. The primary mechanism of action involved the acceleration of the
redox cycle of Co(II)/Co(III) by improving the internal electron transfer ability, further
enhancing the excellent PMS activation ability of core–shell bimetallic MOF (Figure 9b).
Both SO4

•− and •OH generated during the decomposition of PMS exhibit promotion
effects on the degradation of 2-chlorophenol (2-cp). Benzoquinone intermediates such as
2-chloro-1,4-benzoquinone can activate PMS to 1O2, which plays a significant role in the
degradation of 2-cp [77].

Several researchers have investigated the use of Co-doped Cu-MOFs for the degrada-
tion of nimesulide (NIM) in wastewater treatment and found that the degradation efficiency
of CuCo-MOF was 7.3 and 2.4 times higher than that of Cu-MOF and Co-MOF, respectively
(Figure 10a) [78]. The synthesis process of CuCo-MOF is shown schematically in Figure 8c.
In situ characterization revealed that the pore structure of CuCo-MOF remained largely
unchanged and had a similar specific surface area to Co-MOF. However, Co2+ doping
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greatly promoted electron transfer within MOFs and increased the number of active sites.
X-ray photoelectron spectroscopy (XPS) demonstrated that the Cu 2p+++

3/2 peak of CuCo-
MOF shifted to a lower binding energy than that of Cu-MOF (Figure 10b). This may be
due to the addition of Co promoting electron migration from the ligand to the Cu site via
cation–π interactions, which increases the electron density of the metal site. Electrochemical
impedance spectroscopy (EIS) (Figure 10c) also confirmed that the addition of Co to Cu-
MOF crystals promoted interfacial electron transfer, demonstrating the synergistic effect of
Co-Cu in promoting PMS activation. Finally, Figure 10d illustrates the adsorption energy
of PMS on metal sites with different structures, with Co sites in CuCo-MOF displaying the
strongest adsorption energy for PMS.
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Zhang et al. [79] synthesized MIL-125(Ti) -NH2-Sal-Fe, a highly efficient photocatalytic
material with strong photocatalytic activity. The photocatalytic mechanism is illustrated
in Figure 11. Under illumination, the ligand-to-metal charge transfer process leads to
the generation of photogenerated electrons and holes, which form Ti3+ and Fe2+. As an
electron acceptor, PMS captures photoinduced electrons and produces SO4

•−. In addi-
tion, dissolved oxygen in solution can also receive light-induced electrons to generate
•O2

−. Most of the SO4
•− generated by Fe2+ through PMS activation reacts with H2O to

generate •OH. Therefore, in this photocatalytic system, three types of reactive oxygen
species—SO4

•−, •OH, and •O2
−—act together on target compounds.

3.3. Bimetallic MOF for PDS Activation

PDS exhibits structural dissimilarities from PMS, resulting in different activation path-
ways and non-radical reactions. The symmetric molecular structure of PDS (−O3SO-OSO3

−)
renders it less nucleophilic for the attack of electron-rich organic pollutants compared to
PMS (−O3SO-OH) [80].
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Figure 12 illustrates that the morphology of the Co-doped material transitions from rod
to sphere as the doping amount of Co2+ increases. When the Fe:Co ratio is 3:1, a spherical
morphology emerges, as evidenced by the red circle highlighted in Figure. 12d. When
assessing the impact of different ratios of Fe/Co on the catalytic activity of the material, a
Fe/Co ratio of 1:1 was found to yield the strongest catalytic performance [81].
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Sun et al. [82] synthesized MIL-88B (Fe/Co) using a hydrothermal method and mixed
Co at various molar ratios for comparison. They discovered that Co doping affects the
crystal surface morphology, with MIL-88B (Fe) transforming from its original spindle-like
morphology to an irregular crystal morphology. Through methylene blue (MB) degradation
tests, it was observed that Co2+ doping significantly enhanced the activation ability of PDS,
particularly during the degradation period of 0–3 min. The incorporation of low-valence
(Co2+) and high-valence (Fe3+) metals promoted electron transfer between the active site
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metals and amplified the activation ability of PDS, leading to an increase in the degradation
efficiency (Figure 13a).
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Zhang et al. [83] utilized PDS as an oxidant to evaluate the catalytic activity of FeCo/N-
MOFs synthesized via a one-pot method. The FeCo/N-MOF/PS oxidation system achieved
a high tetracycline (TC) removal rate (99.35%). SEM characterization of the materials re-
vealed significant differences in the morphological structures of Co/N-MOF and FeCo/N-
MOF. Figure 13b displays hexagonal spindle-shaped crystals with smooth surfaces, while
Fe/N-MOF and Co/N-MOF exhibit octahedral crystals and flower-like structures, respec-
tively (Figure 13c,d). This suggests that the competitive coordination between cobalt and
iron sites and organic ligands modifies the structure of FeCo/N-MOF.

When oxidizing MOF with PMS, the composition and properties of the MOF may
undergo changes. Some studies have shown that oxidizing PMS can convert some of
the organic molecules on the surface of the MOF into functional groups such as carboxyl
and hydroxyl groups, leading to the formation of some oxidation products on the MOF
surface [84]. These oxidation products may alter the surface charge and hydrophilic
properties of the MOF, affecting its adsorption and catalytic performance [85]. Furthermore,
the oxidation process of PMS may lead to local damage to the MOF framework or alter the
internal spatial structure of the MOF, which can affect its physical and chemical properties.
When a MOF activates peroxide, the metal valence state inside the MOF can potentially
change, depending on the type of metal ions present in the MOF and the reaction conditions.
In general, peroxide can act as an oxidant and can transfer oxygen atoms to the metal ions
in the MOF, leading to a change in their oxidation state.
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4. Influence of Reaction Parameters on the Degradation Process
4.1. Effect of Bimetallic Stoichiometric Ratio

The stoichiometric ratio can significantly influence the adsorption and catalysis of
materials by affecting their specific surface area and reactive sites. Excessive doping of metal
ions can negatively impact the formation of porous structures. Several materials, including
UTSA-16 [86], Ni-MOF-5 [87], MIL-101 (Cr, Mg) [88], MOF-5 [89] and HKUST-1 [90], have
been reported to exhibit reduced particle surface area due to excessive metal doping.
Moreover, the ratio of solute to solvent during the preparation process also significantly
affects particle morphology. Yang Jimin et al. used a one-step synthesis method to dope
Ni into MOF-5 and found that the volume ratio of C2H5OH: DMF could adjust the crystal
size and shape by affecting the deprotonation rate of H2BDC and the growth rate of the
n (100) and n (111) crystal planes. When the volume ratio of C2H5OH:DMF increased,
the deprotonation rate of H2BDC slowed down, leading to a delay in the nucleation
rate, which resulted in larger particles. According to the Bravais–Friedel–Donnay–Harker
theory [91], the crystal structure is determined by the slower-growing crystal planes. When
the volume ratio of C2H5OH:DMF is between 0 and 3:7, n (100) reacts slowly, and the
crystal morphology is cubic. As the volume ratio of C2H5OH:DMF increases, the growth
rate of the n (111) crystal plane approaches that of n (100), and the crystal shape becomes
truncated octahedral [87].

4.2. Effect of pH Value of Reaction Solution

The pH of the reaction solution exerts a significant influence on multiple reaction
activities such as oxidant decomposition and free radical generation, thereby affecting
the degradation of pollutants [92]. For instance, PMS has pKa1 = 0.4 and pKa2 = 9.3.
When the pH is below 9.3, the major form of PMS is HSO5

−, which can be effectively
activated to generate various ROS [93]. However, when the pH is too low, the excess H+

ions in the solution form stable hydrogen bonds with the O-O bonds in PMS, making it
challenging to degrade PMS and reducing the production of active free radicals. Similarly,
when the pH is above 9.3, the interaction between HSO5

− and hydroxide diminishes
or transforms into SO5

2−, which has lower activity, thereby significantly reducing the
degradation effect [94]. Thus, extremely acidic and alkaline solutions are not conducive to
pollutant degradation [95–97]. However, in a recent study by Debashis Roy [98], MIL-53
(Fe/Co)/CeO generated singlet oxygen and superoxide radicals in highly alkaline solutions
that could attack unsaturated e-rich compounds (such as phenols, amines, and sulfides)
and were not affected by anions in water, leading to a considerable enhancement of the
overall degradation efficiency.

Fe-Mo@N-BC investigated by Yao et al. exhibited the highest catalytic activity for
PMS under weak acidic conditions. As the pH increased from 2.74 to 10.17, the removal
efficiency of pollutants gradually decreased from 100% to 61.1% [99]. The zeta potential
measurement revealed that the surface of Fe-Mo@N-BC was negatively charged when the
pH in the system was >3.05. This effect of electrostatic repulsion impeded the movement of
PMS toward the material surface, thereby reducing the removal rate of Orange II.

4.3. Influence of Inorganic Anions

The catalytic performance of bimetallic MOF/PS systems in actual water bodies can
be influenced by common water components such as Cl−, SO4

2−, NO3
−, HCO3

−, CO3
2−,

and other anions [100]. Changes in the solution pH, ROS trapping, and neutralization of
electrostatic forces between reactants can affect pollutant degradation and reduce catalyst
performance [101,102]. Each anion has a unique chemical reactivity in the reaction system,
leading to different effects on pollutant removal [103,104]. Xiao et al. observed that anions
could interact with sulfate radicals and hydroxyl radicals to form species with low oxygen
activity. Additionally, they increased the pH of the reaction solution, which inhibited the
degradation of metronidazole (MNZ) [105] The degree of inhibition of these anions on the
degradation of MNZ followed this order: HCO3

− > Cl− > HPO4
2−. Yao et al. reported that
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HCO3
− increased the pH of the reaction system and inhibited the degradation of Orange

II [99]. Cl− in natural water bodies can remove sulfate and hydroxyl radicals to form
chlorine free radicals with low activity. Moreover, HCO3

− and CO3
2− generate HCO3

−

and CO3
2− species with low oxidative properties, while H2PO2

− can bind to the active
sites on Fe-Mo@N-BC and hinder the activation of PMS.

5. Regeneration and Stability of Bimetallic MOFs

During the activation of PMS, heterogeneous metal-based catalysts may undergo
deactivation, leading to a decrease in catalytic activity over time. The formation of various
intermediate products during the reaction can reduce catalyst activity and slow the rate
of degradation. Moreover, leaching of metal ions is a common issue with metal-based
catalysts, which can lead to secondary pollution of water bodies and a reduction in catalyst
activity [106,107]. Material stability is crucial for the recovery and reuse of heterogeneous
catalysts in the solution. Therefore, improving material stability is significant in heteroge-
neous catalysts.

Research has indicated that doping metals into MOFs can effectively enhance material
stability [108]. For instance, ZIF-67 is known to be unstable in water, but after Yao et al.
doped Zn into ZIF-67, the resulting ZnCo co-doped ZIF particles (with Co content of
25%, 50%, and 75%, respectively) maintained stable crystallinity and structure after 24 h
in water. The presence of Zn(II) in the framework significantly improved the chemical
stability of co-doped ZIF materials [43]. Additionally, Xiao et al. prepared bimetallic N-rich
biochar Fe-Ce@N-BC and studied the leaching of iron in the Fe-Ce@N-BC/PMS system
using ICP-MS. They found that Fe-Ce@N-BC doped with Ce had lower iron ion leaching
compared to Fe@N-BC [99,105].

Some concerns about the environmental impact of MOFs include their potential
toxicity to biological organisms, their potential to release metal ions or organic ligands
into the environment, and their potential to adsorb or release pollutants. Ji et al. [109]
found that some MOFs can adsorb pollutants in water, such as heavy metals and organic
pollutants, which could be a potentially useful application in water treatment. However,
some MOFs can release metal ions into water, which may be harmful to aquatic organisms
and human health. Timothy et al. [110] use MOFs for carbon capture and storage, which
may help reduce greenhouse gas emissions. Some MOFs may release carbon dioxide into
the environment if not stored or disposed of properly. One potential impact of MOFs
on soil is that they could help remediate polluted soils by adsorbing or sequestering
pollutants. For example, MOFs have been used to remove heavy metals and organic
pollutants from polluted soils, which can help reduce the impact of these pollutants on the
environment [111]. However, MOFs can inhibit the growth of soil microorganisms, thereby
negatively affecting soil health and ecosystem function.

Overall, the environmental impact of MOFs remains an area of active research, and
more work is needed to understand their potential risks and benefits. While some MOFs
may have promising applications in environmental remediation and mitigation, caution
should be exercised to ensure their safe and responsible use, minimizing their impact on
soil, water, and air.

6. Conclusions

This review provided a summary of the preparation methods of bimetallic MOFs, the
process of their efficient activation of oxidants for removing organic pollutants, and the
effects of reaction parameters on the degradation process. Through a systematic comparison
of the structural characteristics and application processes of various bimetallic MOFs, it
became clear that the development trend of bimetallic MOFs catalysts is to achieve efficient
design and preparation of catalysts with high activation performance, continuous stability,
controllable cost, and easy synthesis to enable effective degradation of organic pollutants.

In conclusion, bimetallic MOFs have exhibited significant potential for the degradation
of pollutants by activating peroxides. However, there is a need for further research to
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investigate the underlying mechanisms of peroxide activation. Additionally, limitations
in the recycling and reusability of bimetallic MOFs restrict their practical implementation
on a larger scale. In the future, our research on bimetallic MOFs needs to focus on the
following aspects:

1. The problem of metal ion leaching in bimetallic MOFs needs to be addressed to
prevent a decrease in catalyst activity. Thus, it is essential to explore the stable
material structure of bimetallic MOFs.

2. The recycling of bimetallic MOFs remains a major challenge. While most bimetallic
MOFs achieve a high pollutant removal rate, their small particle size makes it difficult
to recycle them, and the structure of the material itself leads to easy loss and other
issues. Therefore, future research must focus on achieving high activation performance
and easy and efficient recycling of bimetallic MOFs.

3. Presently, the range of available bimetallic MOFs is restricted, and there are numerous
unexplored combinations of metal ions remaining to be utilized in their synthesis.
The development of novel materials is imperative to expand this repertoire.

4. The activation mechanism of peroxide by bimetallic MOFs is intricate, and the precise
control of its pathway presents a notable challenge. Consequently, further investiga-
tions into the underlying reaction mechanisms are necessary for future progress in
this area.
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