Experimental and Simulation Studies on Hematite Interaction with Na-Metasilicate Pentahydrate
Abstract
:1. Introduction
2. Results
2.1. Rheology
2.2. Quantum Calculations
2.3. Adsorption Simulation
2.4. Surface Charge and Sodium Density
3. Materials and Methods
3.1. Materials
3.2. Rheological Tests
4. Computer Simulation
4.1. Force Field
4.2. System Assembly
4.3. Simulation Details
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Anderson, C. USGS Minerals Yearbook—Metals and Minerals|U.S. Geological Survey. Available online: https://www.usgs.gov/centers/national-minerals-information-center/minerals-yearbook-metals-and-minerals (accessed on 19 December 2022).
- Beuria, P.C.; Biswal, S.K.; Mishra, B.K.; Roy, G.G. Study on kinetics of thermal decomposition of low LOI goethetic hematite iron ore. Int. J. Min. Sci. Technol. 2017, 27, 1031–1036. [Google Scholar] [CrossRef]
- Mahanta, J.; Mishra, S.; Baliarsingh, M.; Beuria, P.C. Mineralogical Study of Low and Lean Grade Iron Ore Fines during Slow and Rapid Reduction Roasting. J. Geol. Soc. India 2022, 98, 1159–1165. [Google Scholar] [CrossRef]
- Mishra, S.; Baliarsingh, M.; Mahanta, J.; Chandra Beuria, P. Batch scale study on magnetizing roasting of low-grade iron ore tailings using fluidized bed roaster. Mater. Today Proc. 2022, 62, 5856–5860. [Google Scholar] [CrossRef]
- Jena, M.K.; Mahanta, J.; Mahapatra, M.M.; Baliarsingh, M.; Mishra, S. Recovery of Iron Values from Blast Furnace Gas Cleaning Process Sludge by Medium Intensity Magnetic Separation Method. In Recent Advances in Mechanical Engineering: Select Proceedings of ICRAMERD 2021; Lecture Notes in Mechanical Engineering; Springer Nature: Singapore, 2022; pp. 449–454. [Google Scholar] [CrossRef]
- Ihle, C.F.; Kracht, W. The relevance of water recirculation in large scale mineral processing plants with a remote water supply. J. Clean. Prod. 2018, 177, 34–51. [Google Scholar] [CrossRef]
- Gill, C.B. Dewatering. In Materials Beneficiation; Springer: Berlin/Heidelberg, Germany, 1991; pp. 105–127. [Google Scholar] [CrossRef]
- Dash, M.; Dwari, R.K.; Biswal, S.K.; Reddy, P.S.R.; Chattopadhyay, P.; Mishra, B.K. Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings. Chem. Eng. J. 2011, 173, 318–325. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, H.; Tang, X.; Sun, Y.; Wu, Y.; Zheng, X.; Sun, Q. Evaluation a self-assembled anionic polyacrylamide flocculant for the treatment of hematite wastewater: Role of microblock structure. J. Taiwan Inst. Chem. Eng. 2019, 95, 11–20. [Google Scholar] [CrossRef]
- Witham, M.I.; Grabsch, A.F.; Owen, A.T.; Fawell, P.D. The effect of cations on the activity of anionic polyacrylamide flocculant solutions. Int. J. Miner. Process. 2012, 114–117, 51–62. [Google Scholar] [CrossRef]
- Zhou, L.; Han, Y.; Li, W.; Zhu, Y. Study on polymer-bridging flocculation performance of ultrafine specular hematite ore and its high gradient magnetic separation behavior: Description of floc microstructure and flocculation mechanism. Sep. Purif. Technol. 2021, 276, 119304. [Google Scholar] [CrossRef]
- Arjmand, R.; Massinaei, M.; Behnamfard, A. Improving flocculation and dewatering performance of iron tailings thickeners. J. Water Process Eng. 2019, 31, 100873. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J.A. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–498. [Google Scholar]
- Arol, A.I.; Iwasaki, I. Effect of sodium silicate on flocculation of hematite with starch in the presence of calcium. Sep. Sci. Technol. 2003, 38, 647–659. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lobland, H.E.; Pal, S.; Singh, R.P. Polymeric Flocculants for Wastewater and Industrial Effluent Treatment. J. Mater. Educ. Pal Singh J. Mater. Educ. 2009, 31, 3–4. [Google Scholar]
- Dubey, A.; Patra, A.S.; Sarkar, A.N.; Basu, A.; Tripathy, S.K.; Mukherjee, A.K.; Bhatnagar, A. Synthesis of a copolymeric system and its flocculation performance for iron ore tailings. Miner. Eng. 2021, 165, 106848. [Google Scholar] [CrossRef]
- Addai-Mensah, J.; Ralston, J. Interfacial chemistry and particle interactions and their impact upon the dewatering behaviour of iron oxide dispersions. Hydrometallurgy 2004, 74, 221–231. [Google Scholar] [CrossRef]
- McGuire, M.J.; Addai-Mensah, J.; Bremmell, K.E. The effect of polymer structure type, pH and shear on the interfacial chemistry, rheology and dewaterability of model iron oxide dispersions. Colloids Surf. A Physicochem. Eng. Asp. 2006, 275, 153–160. [Google Scholar] [CrossRef]
- Krishna, R.S.; Quezada, G.R.; Sahu, J.K.; Sadangi, J.K. Rheological characterization and performance of flocculants in iron ore tailings management. Mater. Today Proc. 2021, 43, 2888–2894. [Google Scholar] [CrossRef]
- Yue, T.; Wu, X.; Chen, X.; Liu, T. A study on the flocculation and sedimentation of iron tailings slurry based on the regulating behavior of Fe3+. Minerals 2018, 8, 421. [Google Scholar] [CrossRef]
- Ma, M. The significance of dosing sequence in the flocculation of hematite. Chem. Eng. Sci. 2012, 73, 51–54. [Google Scholar] [CrossRef]
- Quezada, G.R.; Krishna, R.; Mishra, S.; Jeldres, R. Molecular dynamics studies of hematite surfaces with PAM, HPAM and metasilicate. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1248, 012007. [Google Scholar] [CrossRef]
- Quezada, G.R.; Jeldres, M.; Toro, N.; Robles, P.; Toledo, P.G.; Jeldres, R.I. Understanding the flocculation mechanism of quartz and kaolinite with polyacrylamide in seawater: A molecular dynamics approach. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125576. [Google Scholar] [CrossRef]
- Quezada, G.R.; Rozas, R.E.; Toledo, P.G. Molecular Dynamics Simulations of Quartz (101)-Water and Corundum (001)-Water Interfaces: Effect of Surface Charge and Ions on Cation Adsorption, Water Orientation, and Surface Charge Reversal. J. Phys. Chem. C 2017, 121, 25271–25282. [Google Scholar] [CrossRef]
- Huang, W.; Geng, X.; Li, J.; Zhou, C.; Liu, Z. Molecular Dynamics Study on the Adsorption and Modification Mechanism of Polymeric Sand-Fixing Agent. Polymers 2022, 14, 3365. [Google Scholar] [CrossRef] [PubMed]
- Kolman, K.; Abbas, Z. Molecular dynamics exploration for the adsorption of benzoic acid derivatives on charged silica surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123635. [Google Scholar] [CrossRef]
- Gurina, D.; Surov, O.; Voronova, M.; Zakharov, A.; Kiselev, M. Water effects on molecular adsorption of poly(N-vinyl-2-pyrrolidone) on cellulose nanocrystals surfaces: Molecular dynamics simulations. Materials 2019, 12, 2155. [Google Scholar] [CrossRef] [PubMed]
- Gurina, D.; Surov, O.; Voronova, M.; Zakharov, A. Molecular dynamics simulation of polyacrylamide adsorption on cellulose nanocrystals. Nanomaterials 2020, 10, 1256. [Google Scholar] [CrossRef]
- Tong, Z.; Lin, X.; Zeng, Q.; Jia, Z.; Fan, J. Study of synergistic effect mechanism of compound polymer inhibitors adsorption on the surface of beta-dicalcium silicate based on molecular dynamics simulation. J. Mol. Liq. 2020, 314, 113665. [Google Scholar] [CrossRef]
- Dey, S.; Patra, A.S.; Patra, P.; Saha, B.; Mukherjee, A.K.; Pal, S. Macromolecular selective flocculant derived from functionalized starch towards beneficiation of low-quality iron ore: Atomistic simulations and experimental studies. Mater. Today Commun. 2022, 32, 103810. [Google Scholar] [CrossRef]
- García, K.; Quezada, G.; Arumí, J.; Urrutia, R.; Toledo, P. Adsorption of Phosphate Ions on the Basal and Edge Surfaces of Kaolinite in Low Salt Aqueous Solutions Using Molecular Dynamics Simulations. J. Phys. Chem. C 2021, 125, 21179–21190. [Google Scholar] [CrossRef]
- Quezada, G.R.; Saavedra, J.H.; Rozas, R.E.; Toledo, P.G. Molecular dynamics simulations of the conformation and diffusion of partially hydrolyzed polyacrylamide in highly saline solutions. Chem. Eng. Sci. 2020, 214, 115366. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.J.; Kalinichev, A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Pouvreau, M.; Greathouse, J.A.; Cygan, R.T.; Kalinichev, A.G. Structure of Hydrated Gibbsite and Brucite Edge Surfaces: DFT Results and Further Development of the ClayFF Classical Force Field with Metal-O-H Angle Bending Terms. J. Phys. Chem. C 2017, 121, 14757–14771. [Google Scholar] [CrossRef]
- Maple, J.R.; Hwang, M.-J.; Stockfisch, T.P.; Dinur, U.; Waldman, M.; Ewig, C.S.; Hagler, A.T. Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J. Comput. Chem. 1994, 15, 162–182. [Google Scholar] [CrossRef]
- Li, P.; Song, L.F.; Merz, K.M. Systematic parameterization of monovalent ions employing the nonbonded model. J. Chem. Theory Comput. 2015, 11, 1645–1657. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Miyamoto, S.; Kollman, P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. [Google Scholar] [CrossRef]
- Kinnaman, L.J.; Roller, R.M.; Miller, C.S. Comparing Classical Water Models Using Molecular Dynamics To Find Bulk Properties. J. Chem. Educ. 2018, 95, 888–894. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Verlet, L. Computer “experiments” on classical fluids I. Thermodynamical properties Lennard-Jones. Mol. Phys. Rev. 1967, 159, 98–103. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Quast, K. Some Surface Characteristics of Six Hematite Ores from the Middleback Range Area, South Australia. Int. J. Min. Eng. Miner. Process. 2012, 1, 73–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quezada, G.R.; Toro, N.; Krishna, R.S.; Mishra, S.; Robles, P.; Salazar, I.; Mathe, E.; Jeldres, R.I. Experimental and Simulation Studies on Hematite Interaction with Na-Metasilicate Pentahydrate. Molecules 2023, 28, 3629. https://doi.org/10.3390/molecules28083629
Quezada GR, Toro N, Krishna RS, Mishra S, Robles P, Salazar I, Mathe E, Jeldres RI. Experimental and Simulation Studies on Hematite Interaction with Na-Metasilicate Pentahydrate. Molecules. 2023; 28(8):3629. https://doi.org/10.3390/molecules28083629
Chicago/Turabian StyleQuezada, Gonzalo R., Norman Toro, R. S. Krishna, Subhabrata Mishra, Pedro Robles, Ivan Salazar, Enoque Mathe, and Ricardo I. Jeldres. 2023. "Experimental and Simulation Studies on Hematite Interaction with Na-Metasilicate Pentahydrate" Molecules 28, no. 8: 3629. https://doi.org/10.3390/molecules28083629
APA StyleQuezada, G. R., Toro, N., Krishna, R. S., Mishra, S., Robles, P., Salazar, I., Mathe, E., & Jeldres, R. I. (2023). Experimental and Simulation Studies on Hematite Interaction with Na-Metasilicate Pentahydrate. Molecules, 28(8), 3629. https://doi.org/10.3390/molecules28083629