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Abstract: Herein, a novel optical chemosensor, (CM1 = 2, 6-di((E)-benzylidene)-4-methylcyclohexan-
1-one), was designed/synthesized and characterized by 1H-NMR and FT-IR spectroscopy. The
experimental observations indicated that CM1 is an efficient and selective chemosensor towards
Cd2+, even in the presence of other metal ions, such as Mn2+, Cu2+, Co2+, Ce3+, K+, Hg2+,, and Zn2+

in the aqueous medium. The newly synthesized chemosensor, CM1, showed a significant change in
the fluorescence emission spectrum upon coordination with Cd2+. The formation of the Cd2+ complex
with CM1 was confirmed from the fluorometric response. The 1:2 combination of Cd2+ with CM1
was found optimum for the desired optical properties, which was confirmed through fluorescent
titration, Job’s plot, and DFT calculation. Moreover, CM1 showed high sensitivity towards Cd2+

with a very low detection limit (19.25 nM). Additionally, the CM1 was recovered and recycled by the
addition of EDTA solution that combines with Cd2+ ion and, hence, frees up the chemosensor.

Keywords: chemosensor; curcumin; heavy metals; aqueous medium; high sensitivity

1. Introduction

Cadmium (Cd2+) is one of the most hazardous and carcinogenic heavy metals, and
it is widely employed in various industrial applications, such as the fabrication of metal
alloys, batteries, electroplating films, and nuclear reactor control rods [1]. The effect of
Cd2+ pollution should not be underestimated [2]. As a heavy metal ion with a biological
half-life of 20 to 30 years, Cd2+ accumulates in the human body through contaminated
water, air, soil, or other sources, leading to a variety of disorders of the kidney, liver, heart,
lung, or other organs. Even if the accumulated Cd2+ content in the body is very low, it
can still result in several health problems, including potentially fatal diseases, such as
diabetes, cancer, and chondropathy [3]. Currently, there are several efficient methods
to detect Cd2+: atomic absorption spectrometry (AAS) [4], inductively coupled plasma
mass spectrometry (ICP-MS) [5], atomic fluorescence spectrophotometry (AFS) [6], the
electrochemical method [7,8], and the fluorescence probe method [9–11]. Compared to
the fluorescent probe technique, AAS, AFS, and ICP-MS need complex and expensive
instruments, complicated sample preparation, and the electrochemical method, which has
the disadvantage of poor selectivity.

The main advantage of the fluorescent probe technique is its high sensitivity, visibility,
and rapid response. In addition, simple operation, low cost, and a wide linear range
for heavy metal ions are also clear advantages. Therefore, the development of highly
selective colorimetric/fluorescent chemosensors for the detection of harmful metal ions
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from environmental samples has received considerable interest due to their high sensitivity,
selectivity, quick detection time, and cost-effectiveness [12–14]. In recent years, a large
number of fluorescent probes with diverse scaffolds, such as quinoline, rhodamine, pyrene,
boron-dipyrromethene (BODIPY), and anthraquinone, etc. have been developed with
sensitivity, selectivity, and real-time detection of Cd2+ [12,15–20,20]. However, only a
few examples of chemosensors have been reported where a considerable fluorescence
enhancement is observed upon Cd2+ ion binding in aqueous medium [21–23]. The major
difficulty in detecting Cd2+ is due to the relatively similar binding characteristics of Cd2+

with Zn2+ and Hg2+ cations, as they are in the same periodic table group. It is challenging
to develop a probe for Cd2+ that does not exhibit the interference of Zn2+ and Hg2+ cations.
Although a large number of fluorescent sensors have already been reported with success
to differentiate Cd2+ from Zn2+ and Hg2+ cations, the majority of them have low water
solubility with a lack of sensitivity and selectivity [24–28]. Therefore, designing and
developing fluorescent probes with high water solubility and selectivity is a great challenge
for the researcher. Herein, we report the design and synthesis of a water-soluble and simple
fluorescent turn-on chemosensor comprising a CM1 fluorophore, selectively detecting Cd2+

over other relevant metal ions in aqueous samples. Due to possessing the best coordination
sites, it was capable of forming stable complexes with Cd2+ ions. The CM1 showed a fast
response, high sensitivity, and excellent selectivity for Cd2+ ion detection in an aqueous
medium. The sensing mechanism of CM1 was based on competitive binding with Cd2+

ions among different metal ions. Ethylenediaminetetraacetic acid (EDTA) was used as a
chelating agent in reversibility studies.

2. Results and Discussion
2.1. Spectroscopic Studies

The UV-Vis absorption spectra were investigated, and maximum absorption wave-
length of CM1 appeared at 390 nm, which was attributed to the π–π* transition (Figure 3A).
Similarly, fluorescence investigation of chemosensor CM1 was also carried out. When
the chemosensor was excited at 390 nm, it gave an emission spectrum of low intensity at
610 nm, which could be attributed to the delocalization of oxygen lone pair electrons to-
wards the aromatic ring, thus causing the quenching of fluorescence via the photoinduced
electron transfer (PET) phenomenon (Figure 3B). The IR spectrum of the chemosensor
CM1 is depicted in (Figure S1). The IR spectrum gave the characteristic carbonyl (C=O)
peak at 1710 cm−1, while the appearance of peaks at 1628–1646 cm−1 and 3000–2960 cm−1,
respectively, corresponded to a C=C aromatic and C-H stretching.

2.2. UV–Visible and Fluorescence Study

The selective chemosensing ability of CM1 towards Cd2+ was investigated through a
detailed optical study. The UV–Vis absorption spectra of the CM1 and CM1-Cd2+ complex
are shown in (Figure 1). The chemosensor CM1 gave maximum absorbance at 390 nm
due to π–π* transition. Upon the addition of Cd2+, enhancement was observed at the
absorption intensity at 390 nm. Similarly, the CM1 fluorescence spectrum and its response
to various metal ions was monitored through its excitation at a maximum wavelength
(390 nm) in the aqueous medium. The addition of CM1 to metal ions, such as Cd2+, Mn2+,
Cu2+, Co2+, Ce3+, K+, Hg2+, and Zn2+, showed very low enhancement in the fluorescence
intensity, but maximum enhancement was observed for Cd2+ (Figure 2). This enhance-
ment in fluorescence intensity was probably due to large rigidity in conjugation and better
coplanarity upon complexation with the Cd2+ ion. In the case of other metal ions, the same
phenomenon could not take place, thus inhibiting a significant enhancement in fluores-
cence intensity [29–31]. Potassium (K) and cerium (Ce) also showed a low fluorescence
enhancement, and it may be possible that factors beyond the MLCT and LMCT effects,
such as the shape and size of the metal ion, and its ability to accommodate the ligand, could
be contributing to this similarity.
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Figure 1. Absorption study of CM1 (10 µM) and CM1 complex with Cd2+ (18 µM).
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Figure 2. Initial fluorescence study CM1 (10 µM) and metal ions (200 µM), at λex = 390 nm and
λem= 610 nm.

2.3. Stokes Shift

The reason for the observed large Stokes shifts was intra-molecular charge-transfer
excitation of an electron from the HOMO to the LUMO of the chromophore, accompanied by
elongation of the bond and considerable solvent reorganization due to hydrogen bonding
to the solvent. The chemosensor CM1 showed a prominent Stokes shift, and it can be used
for practical application for the detection of Cd2+ [32].
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Figure 3. (A) UV-Visible absorption spectrum of chemosensor CM1. (B) Fluorescence emission
spectrum of the chemosensor CM1 when excited at 390 nm.

2.4. Detection Limit and Quantum Yield

The LOD for the current chemosensor CM1 was calculated to be 19.25 nM, as shown
in Figure 5 [33]. The predictable mechanism of complex formation is given in Scheme 1.
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Scheme 1. With a Cd2+ ion.

The quantum yield calculated using Equation (2) for the current chemosensor CM1
for Cd2+ detection was found to be 74%. Rhodamin 6G was chosen as the standard for
quantum yield calculation because it is readily available and easily dissolvable in acetoni-
trile. Additionally, Rhodamone 6G has previously served as a standard for fluorescent
chemosensors over a wide range of 340–540 [34].

2.5. Reuseability Study

The reuseability of the chemosensor CM1 in the detection of Cd2+ ion is important for
its practical applications. To check the reuseability of chemosensor CM1, a reversibility test
was carried out using EDTA as chelating agent in aqueous medium at room temperature.
The CM1 can be freed and regenerated by the addition of EDTA to the Cd2+-CM1 complex
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solution, which was observed through diminished fluorescence intensity. The enhanced
fluorescence intensity was resumed by the addition of Cd2+ solution, which again combined
with the CM1 chemosensor. These results are a reflection of CM1 as a reusable chemosensor
in the presence of an EDTA solution (Figure 4). The results indicated that the same
chemosensor, CM1, could be used for Cd2+ detection up to five times, with consistent
and satisfactory outcomes.
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Figure 4. Reusablity study of CM1 (10 µM) with Cd2+ (18 µM) and EDTA (18 µM).
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Figure 5. Calibration curve from fluorescence titration of Cd2+ (1–10 µM) range and CM1 (10 µM) at
λex = 390 nm and λem = 610 nm.

2.6. Effect of pH

The dependence of pH variation on the fluorescence intensity of free CM1 and its
Cd2+ complex was investigated in the pH range of 2.0–12.0 (Figure 6). The pH of the test
solution was adjusted with the help of a universal buffer. In case of a free chemosensor,
fluorescence intensity remained constant from 2–12 pH, with weak fluorescence intensity.
The low fluorescence intensity of CM1 could be due to the photoinduced electron transfer
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(PET) phenomenon. However, for the Cd2+ (18 µM) complex with CM1, the fluorescence
intensity gradually increased with pH. Comparatively low fluorescence intensity of the
Cd2+ complex at lower pH was observed due to the protonation of carbonyl oxygen, which
blocked the complexing ability of CM1. The maximum fluorescence intensity for the Cd2+

complex was obtained at pH 7 due to the restriction of PET. The fluorescence intensity
decreased again with pH increase beyond 8 due to possible formation of sparingly soluble
hydroxides complex. These results indicate that chemosensor CM1 can be efficiently
employed for Cd2+ detection at pH 7 [28].

The decreased fluorescence of the mixture of ligand and Cd2+ at both pH 3 and
pH 12, as well as the lower fluorescence of the free ligand in the presence of excess cadmium,
may be attributed to the formation of a non-fluorescent complex between the ligand and
the metal ion. This complex may possess different structural and electronic properties
compared to the free ligand, leading to a reduction in its fluorescence intensity. Additionally,
factors, such as quenching, energy transfer, or changes in the solvent environment, may
also play a role in the observed decrease in fluorescence. The decreased fluorescence of
the mixture of ligand and Cd2+ at both pH 3 and pH 12, as well as the lower fluorescence
of the free ligand in the presence of excess cadmium, may be attributed to the formation
of a non-fluorescent complex between the ligand and the metal ion. This complex may
possess different structural and electronic properties compared to the free ligand, leading
to a reduction in its fluorescence intensity. Additionally, factors, such as quenching, energy
transfer, or changes in the solvent environment, may also play a role in the observed
decrease in fluorescence.
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Figure 6. Effect of pH on fluorescence intensity of CM1 and CM1 (10 µM) with Cd2+ (18 µM) at
λex = 390 nm and λem = 610 nm.

2.7. Anti-Interference Studies

Anti-interference or competitive studies were carried out to verify the selectivity and
specificity of the CM1 for Cd2+ in the presence of other metal cations, such as Mn2+, Cu2+,
Co2+, Ce3+, K+, Hg2+, and Zn2+. The results (Figure 7) showed that these interfering metal
ions do not affect the fluorescence intensity of chemosensor CM1-Cd2+ complex even in the
presence of higher concentration of interfering ions. Thus, this indicated that chemosensor
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CM1 can be useful as a highly selective fluorescence-on sensor for trace determination of
Cd2+ ions in different water samples [35–37].
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Figure 7. Interference study of CM1 (10 µM) and Cd2+ (18 µM) and interfering metal ions (200 µM)
at λex = 390 nm and λem = 610 nm.

2.8. Natural Water Samples Analysis by Spiking

Chemosensor CM1 was applied for the selective detection of Cd2+ in lake water, tap
water, and river water. Because, in these water samples, no Cd2+ was present, therefore
a cadmium (2–10 µM) concentration range was added, and its fluorescence intensity was
recorded at optimized parameters. From the calibration curve, respective Cd2+ concen-
trations were determined, and then % recovery was calculated. The results are shown in
Table 1. Accordingly, these results demonstrated an excellent recovery of Cd2+ from these
studied water samples. Thus, here we present a highly sensitive, selective, and cost-effective
method for determination of Cd2+ in an aqueous medium with good % recovery [38].

Table 1. Natural water samples spiking analysis using CM1 (10 µM) and Cd2+ ion (2–10 µM) range.

Type of Water Sample Amount of Cd2+ Added (µM) Amount of Cd2+ Found (µM) % Recovery

Tap water

2 2.7 94
4 4.6 96
6 5.4 96
8 7.5 97

10 9.6 96

River water

2 4.8 95
4 2.6 96
6 4.5 97
8 7.4 97

10 9.4 96

Lake water

2 2.6 95
4 3.4 95
6 5.3 96
8 7.6 97

10 9.3 97



Molecules 2023, 28, 3635 8 of 15

2.9. DFT Studies

The detection of Cd2+ with the help of chemosensor CM1 was validated through
computational investigation concerning the stability, orbital overlapping of Cd2+ and CM1,
bond angles, bond lengths, and optimized geometry of the resulting cadmium complex.
The optimized geometry of the CM1 and its cadmium complex are shown in Figure 8. The
CM1 acted as a monodentate ligand attached through an oxygen atom to the Cd2+ ion,
forming a stable distorted tetrahedral geometry.
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The observed bond length, bond angles, metal–ligand interaction energy, charges
on oxygen and cadmium, and highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) energies of the cadmium complex are listed in
Table 2. The observed Cd-O bond lengths with CM1 were 2.24 Å and Cd-O bond lengths
with a water value of 2.35 Å. The shorter Cd-O bond lengths with CM1, as compared
to water oxygen, was due to the extensive delocalization of electrons on chemosensor
CM1 aromatic rings that made their donor oxygen atom more electron-rich and, hence,
caused strong interaction with an electron-deficient metal center. The observed OCM-1Cd-
OCM-1 and OCM-1-Cd-Owater bond angles were 103.08 and 99.24◦, respectively, suggesting
a distorted tetrahedral complex. The tetrahedral geometry of the complex could also be
explained based on orbital hybridization and their involvement in bond formation, since,
in Cd2+, all the d orbitals are filled (d10 system). Therefore, no orbital in the “d” subshell
was available for overlapping with chemosensor CM1 filled orbital. Hence, the outer
s and p subshells underwent sp3 hybridization and, consequently, formed tetrahedral
structures. However, the small deviation from the regular tetrahedral structure was due
to the bulky nature of the chemosensor CM1. The stability of the resulting Cd2+ complex
was computationally calculated to be −14.35 eV, and the negative sign indicated the
thermodynamic stability of the complex. It is worth noting that MLCT and LMCT effects,
while useful for explaining metal–ligand interactions, are not the only contributing factors.
Factors, such as the electronic configuration of the metal ion and the ligand, steric effects,
and solvent effects, can also play a role in complexation.



Molecules 2023, 28, 3635 9 of 15

Table 2. Binding energies of CM1 and its Cd2+ complex.

Bond
Length Bond Angles Metal CM1

Interaction Energy
HOMO
Energy

LUMO
Energy

Band
Gap Charges on CM1 Charges after

Complexation

2.35 Å
(Cd-Owater)

103.08◦

(OCM-1Cd-OCM-1) −14.3559 eV −10.37eV −8.63 eV 1.74 Owater = −0.309 Owater = −0.208

OCM−1 = −0.235 OCM-1 = −0.215
2.24 Å

Cd-OCM-1

99.24◦

(OCM-1-Cd-Owater)
Cd = 0.6352

The interaction between Cd2+ and chemosensor CM1 in the synthesized cadmium
complex was also verified from the electron density difference (EDD) analysis. The EDD
contour map shown in (Figure 9) indicated the concentration of a large electron cloud
along the cadmium–chemosensor CM1 axis. The HOMO and LUMO band gap gave
information about the charge transfer interaction in a molecule. The electron transfer
was efficient from the HOMO to LUMO, as the energy gap between these two orbitals
became small. The negative value of HOMO and LUMO orbitals depicted in (Table 2)
indicated the thermodynamic stability of the complex. The HOMO contained mostly
the electron clouds on chemosensor CM1, while the Cd2+ ion contained a small electron
density in LUMO, suggesting the transfer of an electron from chemosensor CM1 to the
cadmium ion upon complex formation. The smaller band gap (1.74) value suggested the
utilization of the complex in semiconductor materials [39]. The formation of the cadmium
complex was also supported by the extent of electron density transfer from both the oxygen
atom of chemosensor CM1 and water attached to Cd+2. As is obvious from Table 2, the
formation of the complex caused a reduction in the electron density on the donor atoms of
CM1, suggesting the formation of the complex. The absorption and fluorescence analysis
showed that almost every metal atom was capable of forming a complex with the ligand.
However, the highest enhancement was observed in the case of cadmium, indicating a
high selectivity for this particular metal ion. Thus, we proceeded to investigate only the
complexation reaction between the ligand and cadmium through DFT calculations. Our
experimental results were supported by the DFT calculations, which confirmed the stability
of the complex.
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2.10. Comparison with REPORTED Chemosensors

The sensitivity of CM1 was compared with previously reported chemosensors for
the determination of Cd2+ ions. The result demonstrated that chemosensor CM1 showed
excellent sensitivity, as compared to the reported chemosensors (Table 3). The literature
study also showed the lower limit of detection for chemosensor CM1, as compared to most
of the recently reported similar work, indicating its superiority in terms of selectivity and
practical applicability.
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Table 3. Comparison of sensitivity (LOD) of CM1 with other reported chemosensors.

Chemosensors Analytes LOD
(nM) pH Detection Matrixes References

5-(4-Aminophenyl)-10,15,20-
triphenylporphyrin Cd2+ 73 6–8.5 Aqueous media [40]

Conjugated Polydiacetylenes Cd2+ 185 7.4 Aqueous media [41]
(E)-4-hydroxy-3-(3-(4-

methoxyphenyl)acryloyl)-2H-
chromen-2-one

Cd2+ 58.4 7.0 Mixed aqueous–organic
media [28]

4-((pyridin-2-
ylmethyl)carbamoyl)phenyl

pentacosa-10,12-diynoate
Cd2+ 2000 NA Aqueous media [42]

Bis((indol-3-
yl)methylene)oxalohydrazonamide

Hg2+, Cu2+,
Cd2+ 110 NA Aqueous media [43]

ZnS quantum dots Cd2+ 37.8 5.6 to 11.5 Aqueous media [44]
Zn-based azine-functionalized

TMU-16 MOF Cd2+, Fe3+ 500 NA Aqueous media [45]

aptasensor Cd2+ 340 7.0 Aqueous media [46]
AIE fluorescent probe Cd2+ 500 8.0 Aqueous media [47]

2,6-di((E)-benzylidene)-4-
methylcyclohexan-1-one Cd2+ 19.25 7.0 Aqueous media Present work

3. Materials and Methods

The chemicals and solvents used in the present study were analytical grade and uti-
lized without further purification; the water employed in the experiment was double
distilled. The metal salts of NiSO4·6H2O, Ca(OH)2·4H2O, Mn(OH3)2·4H2O, ZnSO4·6H2O,
Cd(SO4)2·3H2O, Cu(SO4)2·5H2O), Co(OH3)·6H2O, CrCl36H2O, KNO3, Hg(NO3)2, Pb(NO3)2,
and Ce(NO3)3·6H2O were purchased from BDH chemical, England. As Ca(OH)2 was easily
available in our laboratory, we utilized it as a source of calcium. Similarly, nitrate and
sulphate salts of other metals were used. Sodium hydroxide, 4-methyl cyclohexanone,
benzaldehyde, methanol, and acetonitrile were purchased from Sigma Aldrich and Merck.
The UV-Visible spectra were obtained using a double-beam UV/VIS spectrophotometer
(Shimadzu, Japan) model 1601. The fluorescent measurement was obtained through spec-
trophotofluorometer model no RF5301 PC (Shimadzu, Japan), containing a Xenon lamp as a
source of excitation. The infra-red spectra were obtained through FT-IR spectrophotometer
model 1601 (Shimadzu, Japan). The 1H NMR spectra were obtained on Prestige 21 (Shi-
madzu, Japan) using a Bruker Advance 400 MHz spectrometer. The spectrum was obtained
in CDCl3 solution using tetramethyl silane (TMS) as an internal standard.

3.1. Synthesis of Chemosensor CM1

The chemosensor CM1/[(2,6-di((E)-benzylidene)-4-methylcyclohexan-1-one)] was syn-
thesized as shown in (Scheme 2) [48–50]. Ethanolic solution of benzaldehyde (1.06 g,
10 mmole) and 4-methyl cyclohexanone (0.49 g, 5 mmole) were mixed with continuous
addition of sodium hydroxide (40%). The resulting mixture was refluxed for 4 h. The
mixture was cooled to room temperature and evaporated to afford the desired product,
CM1, as a yellow-colored solid. The crude products were purified by recrystallization from
ethanol. Melting point (M. P): 159 ◦C. Yield: 78%. IR (KBr, cm−1): 1710 cm−1 (C=O stretch-
ing), 1628–1646 cm−1 (C=C stretching), 3000–2960 cm−1 (C-H stretching) [51], 1H-NMR
(300 MHz, ppm): δ 7.82 (bs, 2H, CH=C6H5), 7.34–7.50 (m, 10H, ArH), 3.07 (dd, JAB = 15.9,
J = 3.6 Hz, 2H, CH2), 2.53 (m, 2H, 2CH2), 1.89 (m, 1H, CH), 1.08 (d, 3H J = 6.6 Hz, 3H,
CHCH3) [52].
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3.2. Solutions Preparation for Spectroscopic Measurements

Stock solution of chemosensor CM1 in acetonitrile, and metal solutions using respec-
tive salts were prepared in distilled water. Stock solutions of metal (0.1 mM) were prepared
in 100 mL solvent/water. Then working solutions were prepared by taking 5 mL from this
stock metal solution and diluting it to 100 mL. Each time, a fresh working solutions of both
chemosensor CM1 and metal ion was prepared.

3.3. General UV–Vis and Fluorescence Spectra Measurements

A stock solution of CM1 (4 mM) was prepared in acetonitrile. Similarly, the same
concentration solutions of the corresponding salts of copper, cerium, cadmium, zinc, mer-
cury, cobalt, and manganese were prepared in double-distilled water. The tested solutions
were prepared by mixing 50 µL stock solution of CM1 with the appropriate amount of each
metal ion in a tube. Absorption spectra were taken from the 250–500 nm range. Based on
UV-Vis analysis, the fluorescent measurements were set at 390 nm. Each spectrum was
taken three times, and their mean value was considered as final data. The chemosensing
utility of CM1 for Cd2+ in the presence of other metal ions was also investigated in natural
water samples.

3.4. Excitation and Emission Spectra of Chemosensor CM1

Upon exciting chemosensor CM1 at λex = 390 nm, its fluorescence emission spectrum
was recorded in the range of 230–800 nm. A weak fluorescence emission spectrum was
observed at λem = 610 nm. Thus, at these wavelengths of excitation and emission, further
fluorometric analyses were carried out.

3.5. Limit of Detection and Quantum Yield Calculation

The limit of detection (LOD) was calculated to be 19.25 nM from the calibration curve
using Equation (1).

LOD =
3δ

S
(1)

In Equation (1) “δ” represents the standard deviation, and “S” is the slope of the
fluorescence intensity vs. sample concentration curve.

Rhodamine 6G dye was used as a standard possessing a quantum yield (ϕ) 95 % for
enumerating the quantum yield of the chemosensor CM1 because Rhodamine 6G dye is
readily available and easily dissolvable in acetonitrile. Additionally, Rhodamone 6G can
be used as a standard for fluorescent chemosensors over a wide range of 340–540 [34,53].
For the experiment, Rhodamine 6G solution was prepared, and its spectroscopic analysis
(UV-visible and fluorescence) were performed. The quantum yield was determined with
the help of Equation (2).

ϕC =ϕR

(
IC

IR

)(
η2

c

η2
R

)(
AR

Ac

)
(2)

where “C” and “R” represent chemosensor CM1 and dye, respectively. “I” represents the
integrated fluorescence intensity, “η” corresponds to the refractive index of the solvent, and
“A” corresponds to absorbance.

The values of absorbance in the equation were determined and used. For Equation (2),
ϕR = 0.95, IR = 620, ηR = 1.33, AR =0.209, IC = 40, ηC = 1.34, and AC = 1.5.



Molecules 2023, 28, 3635 12 of 15

3.6. Spiked Water Samples Analysis

Natural water samples were collected from River Swat at Chakdara point, Malakand
Lake at Dargai, and from the University of Malakand campus, respectively. Since no
cadmium was found in these samples, the applicability of the new chemosensor CM1
was determined by the spiking technique. A known amount of Cd2+ was added to each
water sample, and the fluorescence intensity of spiked water samples was recorded. The
selected water samples were spiked with different concentrations of Cd2+ (5–10) µM in
the presence of chemosensor CM1 (10 µM). The fluorescence response was measured at
specific wavelengths of excitation and emission. For verification of the test results, each
spectral analysis was carried out three times.

3.7. Theoretical Calculation

The density functional theory (DFT) calculations were employed utilizing DMol3
simulation code [54,55] The geometry and energy of the synthesized chemosensor CM1
were optimized through Perdew Burke Ernzerhoffuncational (PBE) in the domain of gen-
eralized gradient approximation (GGA) [56,57]. The double numerical plus polarization
(DNP) (Liu and Rodriguez 2005) was used for the adjustment of the basis set for all types
of computation. Hessian calculations showed the absence of any imaginary frequency that
reflects the stability of the relaxed structure. The thermal smearing parameters and basis
set cut-off were adjusted, respectively, to 0.005 au and 4.6 Å. Grimme’s scheme DFT-D2
empirical dispersion correction was employed for van der Waals intermolecular interac-
tions [58,59]. Convergence tolerance of 10−5 Ha for energy, 0.001 H/Å for force, and 0.005 Å
for displacement were set during the geometries’ relaxation. The adsorption energies (Eint)
of complexes were evaluated using the following equation.

Eint = Ecomplex − (ECMI + ECd(II)) (3)

where, Ecomplex, Elignd, and ECd(II) are the total-electronic energies of the Cd(II)-CM1 (com-
plex), CM1 and Cd(II) ion), respectively.

4. Conclusions

In summary, we have presented, here, the design and development of a novel optical
chemosensor based on a curcumin derivative CMI, which can detect Cd2+ over other
competitive metal ions in an aqueous medium. CMI exhibited good photostability and
enhanced fluorescence in an aqueous medium upon the formation of the Cd2+ complex due
to the presence of a carbonyl oxygen group. The interaction ratio between chemosensor
CMI and Cd2+ ion was determined by fluorescence titration, Job’s plot, and computational
studies, and it was found to be 2:1. The competitive binding experiment revealed no
interference from the other metal ions (Mn2+, Ni2+, Cu2+, Co2+, Ce3+, K+, Hg2+, and Zn2+),
thus showing selectivity of CM1 towards Cd2+. Moreover, CM1 showed high sensitivity at
physiological pH, with low detection limits (19.25 nM). The CM1-based chemosensor can
be recycled and reused multiple times with the addition of an EDTA solution. This sensing
approach certainly provides a basis that can be used for the design of various curcumin-
based optical chemosensors to monitor other environmentally concerned hazardous heavy
metal ions in aqueous medium.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28083635/s1, Figure S1 [60,61]: FT-IR spectrum of chemosensor
CM1; Figure S2: 1H-NMR spectrum of the chemosensor CM1; Figure S3: Job’s plot analysis of CM1
shows 2:1 binding ratio between chemosensor CM1 and Cd2+.
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