Base-Promoted Intramolecular Addition of Vinyl Cyclopropanecarboxamides to Access Conformationally Restricted Aza[3.1.0]bicycles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reaction Optimization
2.2. Substrate Scope
3. Materials and Methods
3.1. General Remarks
3.2. Typical Experimental Procedure for 2 (2a as an Example)
3.3. Characterization of Products
- 1-(4-Chlorophenyl)-4-methyl-3-(p-tolyl)-3-azabicyclo[3.1.0]hexan-2-one (2a). White solid. (Yield: 82%). Mp = 74–76 °C. dr ≈ 1:1. 1H NMR (600 MHz, CDCl3) δ 7.44–7.40 (m, 4H, Ar-H), 7.34–7.30 (m, 4H, Ar-H), 7.29 (dt, J = 9.0, 2.4 Hz, 2H, Ar-H), 7.17 (t, J = 7.2 Hz, 4H, Ar-H), 7.12 (d, J = 8.4 Hz, 2H, Ar-H), 4.53 (p, J = 6.0 Hz, 1H, N-CH), 4.20 (q, J = 6.4 Hz, 1H, N-CH), 2.38–2.35 (m, 2H, CH), 2.33 (s, 3H, Ar-CH3), 2.33 (s, 3H, Ar-CH3), 2.04 (dd, J = 7.8, 4.8 Hz, 1H, CH), 1.51 (dd, J = 7.8, 4.8 Hz, 1H, CH2), 1.39 (dd, J = 7.8, 4.8 Hz, 1H, CH2), 1.36 (d, J = 6.0 Hz, 3H, CH3), 1.31 (t, J = 4.5 Hz, 1H, CH2), 1.26 (t, J = 4.5 Hz, 1H, CH2), 1.19 (d, J = 6.0 Hz, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 173.5 (C=O), 172.4 (C=O), 135.8, 135.3, 135.1, 135.0, 134.9, 134.1, 133.1, 132.8, 130.1, 129.8, 129.61, 129.58, 128.6, 128.5, 124.6, 123.5, 56.4 (C-N), 53.1 (C-N), 34.4 (C), 33.4 (C), 26.9 (CH), 26.6 (CH), 21.5 (Ar-CH3), 21.0 (Ar-CH3), 20.9 (CH3), 20.1 (CH3), 16.9 (CH2), 16.8 (CH2). HRMS (ESI) (m/z) calculated for C19H18ClNO [M + Na]+: 334.0969, found: 334.0968. IR v/cm−1 (KBr) 1678, 1512, 1496, 1391, 1396, 1292, 1182, 1086, 1012, 839, 756, 718, 521.
- 3-(4-(Tert-butyl)phenyl)-1-(4-chlorophenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2b). White solid. (Yield: 81%). Mp = 119–121 °C. dr ≈ 5:3. 1H NMR (600 MHz, CDCl3) δ 7.42 (dd, J = 8.4, 3.6 Hz, 3.3H, Ar-H), 7.39 (s, 0.6H, Ar-H), 7.37 (s, 4.3H, Ar-H), 7.33 (d, J = 8.4 Hz, 2H, Ar-H), 7.29 (d, J = 8.4 Hz, 1.2H, Ar-H), 7.15 (d, J = 8.4 Hz, 1.2H, Ar-H), 4.55 (p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.23 (q, J = 6.0 Hz, 1H, major, N-CH), 2.36 (dt, J = 7.8, 4.8 Hz, 0.6H, minor, CH), 2.04 (dd, J = 7.8, 4.2 Hz, 1H, major, CH), 1.51 (dd, J = 7.8, 4.8 Hz, 1H, major, CH2), 1.41 (dd, J = 7.8, 4.8 Hz, 0.8H, minor, CH2), 1.38 (d, J = 6.6 Hz, 3H, major, CH3), 1.32 (d, J = 4.8 Hz, 1H, minor, CH2), 1.31 (s, 14H, (CH3)3), 1.25 (t, J = 4.5 Hz, 1.3H, major, CH2), 1.21 (d, J = 6.0 Hz, 2H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.5 (minor, C=O), 172.4 (major, C=O), 148.8 (minor), 148.3 (major), 135.1 (major), 135.01 (major), 134.98 (minor), 134.0 (minor), 133.1 (major), 132.8 (minor), 130.1 (major), 129.7 (minor), 128.6 (major), 128.5 (minor), 125.9 (major), 125.8 (minor), 124.1 (minor), 122.9 (major), 56.2 (major, C-N), 53.0 (minor, C-N), 34.51 (minor, Ar-(CH3)3), 34.46 (major, Ar-(CH3)3), 34.4 (major, C), 33.4 (minor, C), 31.3 ((CH3)3), 27.1 (minor, CH), 26.5 (major, CH), 21.6 (major, CH3), 20.1 (minor, CH3), 17.0 (major, CH2), 16.8 (minor, CH2). HRMS (ESI) (m/z) calculated for C22H24ClNO [M + Na]+: 376.1439, found: 376.1431. IR v/cm−1 (KBr) 1675, 1515, 1493, 1374, 1291, 1266, 1188, 1103, 1067, 1011, 834, 796, 728, 550.
- 1-(4-Chlorophenyl)-3-(4-methoxyphenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2c). White solid. (Yield: 85%). Mp = 98–100 °C. dr ≈ 1:1. 1H NMR (400 MHz, CDCl3) δ 7.45–7.40 (m, 4H, Ar-H), 7.35–7.27 (m, 6H, Ar-H), 7.15–7.10 (m, 2H, Ar-H), 6.93–6.87 (m, 4H, Ar-H), 4.48 (p, J = 6.0 Hz, 1H, N-CH), 4.12 (q, J = 6.0 Hz, 1H, N-CH), 3.80 (s, 6H, Ar-OCH3), 2.39–2.32 (m, 1H, CH), 2.04 (dd, J = 7.6, 4.4 Hz, 1H, CH), 1.51 (dd, J = 7.6, 4.4 Hz, 1H, CH2), 1.38 (dd, J = 7.8, 5.0 Hz, 1H, CH2), 1.34 (d, J = 6.0 Hz, 3H, CH3), 1.30 (t, J = 4.8 Hz, 1H, CH2), 1.27 (t, J = 4.6 Hz, 1H, CH2), 1.17 (d, J = 6.4 Hz, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 173.5 (C=O), 172.4 (C=O), 157.7, 157.5, 135.04, 134.97, 133.1, 132.8, 130.4, 130.1, 129.7, 129.6, 128.6, 128.5, 126.4, 125.6, 114.3, 114.3, 56.8 (Ar-OCH3), 55.5 (C-N), 53.5 (Ar-OCH3), 34.2 (C), 33.4 (C), 26.8 (CH), 26.7 (CH), 21.5 (CH3), 20.2 (CH3), 17.0 (CH2), 16.9 (CH2). HRMS (ESI) (m/z) calculated for C19H18ClNO2 [M + Na]+: 350.0918, found: 350.0912. IR v/cm−1 (KBr) 1674, 1512, 1497, 1375, 1300, 1181, 1110, 1088, 1030, 832, 755, 716, 537.
- 1-(4-Chlorophenyl)-3-(3-methoxyphenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2d). White solid. (Yield: 51%). Mp = 78–80 °C. dr ≈ 5:3. 1H NMR (400 MHz, CDCl3) δ 7.44–7.39 (m, 3H, Ar-H), 7.35–7.27 (m, 3.7H, Ar-H), 7.26–7.22 (m, 1.8H, Ar-H), 6.96 (dd, J = 8.0, 1.2 Hz, 1H, major, Ar-H), 6.85 (t, J = 2.2 Hz, 0.6H, minor, Ar-H), 6.80 (dd, J = 8.0, 1.2 Hz, 0.6H, minor, Ar-H), 6.78–6.70 (m, 1.5H, Ar-H), 4.56 (p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.27 (q, J = 6.4 Hz, 1H, major, N-CH), 3.80 (s, 4.5H, Ar-OCH3), 2.38 (dt, J = 7.9, 5.0 Hz, 0.6H, minor, CH), 2.06 (dd, J = 8.0, 4.4 Hz, 1H, major, CH), 1.51 (dd, J = 7.6, 4.8 Hz, 1H, major, CH2), 1.44–1.38 (m, 3.7H), 1.32 (t, J = 4.8 Hz, 1H, major, CH2), 1.26 (t, J = 4.4 Hz, 1.8H, CH2), 1.23 (d, J = 6.4 Hz, 2H, minor, CH3). 13C NMR (101 MHz, CDCl3) δ 173.5 (minor, C=O), 172.6 (major, C=O), 160.13 (major), 160.07 (minor), 139.2 (major), 138.0 (minor), 134.82 (minor), 134.81 (major), 133.2 (major), 132.9 (minor), 130.3 (major), 129.9 (minor), 129.60 (major), 129.55 (minor), 128.6 (major), 128.5 (minor), 116.5 (minor), 114.6 (major), 111.7 (minor), 111.1 (major), 110.6 (minor), 108.8 (major), 56.1 (minor, Ar-OCH3), 55.4 (major, C-N), 53.1 (major, Ar-OCH3), 34.8 (minor, C), 33.6 (major, C), 26.9 (minor, CH), 26.3 (major, CH), 21.5 (major, CH3), 20.0 (minor, CH3), 16.9 (major, CH2), 16.7 (minor, CH2). HRMS (ESI) (m/z) calculated for C19H18ClNO2 [M + Na]+: 350.0918, found: 350.0914. IR v/cm−1 (KBr) 1681,1602, 1579, 1490, 1456, 1373, 1293, 1173, 1087, 1068, 1037, 848, 756, 570.
- 1-(4-Chlorophenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2e). White solid. (Yield: 64%). Mp = 88–90 °C. dr ≈ 5:3. 1H NMR (400 MHz, CDCl3) δ 7.49–7.45 (m, 2H, Ar-H), 7.43 (d, J = 8.4 Hz, 3H, Ar-H), 7.40–7.37 (m, 1.3H, Ar-H), 7.35 (d, J = 9.2 Hz, 2.8H, Ar-H), 7.33–7.28 (m, 2H, Ar-H), 7.25–7.21 (m, 1.3H, Ar-H), 7.18 (t, J = 7.4 Hz, 1.3H, Ar-H), 4.59 (p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.27 (q, J = 6.4 Hz, 1H, major, N-CH), 2.42–2.35 (m, 0.6H, minor, CH), 2.06 (dd, J = 7.6, 4.4 Hz, 1H, major, CH), 1.52 (dd, J = 7.6, 4.8 Hz, 1H, major, CH2), 1.43–1.40 (m, 0.5H, minor, CH2), 1.38 (d, J = 6.0 Hz, 3H, major, CH3), 1.33 (t, J = 4.8 Hz, 0.7H, minor, CH2), 1.27 (t, J = 4.6 Hz, 1.5H, major, CH2), 1.21 (d, J = 6.0 Hz, 2H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.5 (minor, C=O), 172.5 (major, C=O), 137.8 (major), 136.8 (minor), 134.9 (major), 134.8 (minor), 133.2 (major), 132.9 (minor), 130.1 (major), 129.8 (minor), 129.0 (major), 128.9 (minor), 128.6 (major), 128.5 (minor), 125.9 (minor), 125.4 (minor), 124.5 (major), 123.2 (major), 56.1 (major, C-N), 53.0 (minor, C-N), 34.6 (major, C), 33.5 (minor, C), 26.9 (minor, CH), 26.5 (major, CH), 21.5 (major, CH3), 20.1 (minor, CH3), 16.9 (major, CH2), 16.8 (minor, CH2). HRMS (ESI) (m/z) calculated for C18H16ClNO [M + Na]+: 320.0813, found: 320.0807. IR v/cm−1 (KBr) 1680, 1595, 1491, 1374, 1294, 1178, 1102, 1065, 1039, 838, 753, 719, 528.
- 1-(4-Chlorophenyl)-3-(4-fluorophenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2f). White solid. (Yield: 61%). Mp = 82–84 °C. dr ≈ 3:2. 1H NMR (400 MHz, CDCl3) δ 7.44–7.36 (m, 5.3H, Ar-H), 7.35–7.31 (m, 2H, Ar-H), 7.31–7.28 (m, 2H, Ar-H), 7.22–7.16 (m, 1.3H, Ar-H), 7.11–7.02 (m, 3.2H, Ar-H), 4.52 (p, J = 6.0 Hz, 0.7H, minor, N-CH), 4.19 (q, J = 6.4 Hz, 1H, major, N-CH), 2.39 (dt, J = 8.0, 4.8 Hz, 0.7H, minor, CH), 2.07 (dd, J = 7.6, 4.4 Hz, 1H, major, CH), 1.53 (dd, J = 7.6, 4.8 Hz, 1H, major, CH2), 1.41 (dd, J = 7.6, 4.8 Hz, 1H, major, CH2), 1.36 (d, J = 6.0 Hz, 3H, major, CH3), 1.31 (t, J = 4.8 Hz, 0.8H, minor, CH2), 1.27 (t, J = 4.8 Hz, 2H, CH2), 1.20 (d, J = 6.4 Hz, 2H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.6 (minor, C=O), 172.5 (major, C=O), 160.5 (d, J = 246.1 Hz, minor, C-F), 160.2 (d, J = 244.6 Hz, major, C-F), 134.7 (major), 134.6 (minor), 133.6 (d, J = 3.0 Hz, major), 133.3 (major), 133.0 (minor), 132.7 (d, J = 2.7 Hz, minor), 130.1 (major), 129.8 (minor), 128.6 (major), 128.5 (minor), 126.4 (d, J = 4.5 Hz, minor), 125.4 (d, J = 7.6Hz, major), 115.9 (d, J = 4.5 Hz, minor), 115.8 (d, J = 6.0 Hz, major), 56.5 (major, N-CH), 53.3 (minor, N-CH), 34.3 (major, C), 33.4 (minor, C), 26.8 (minor, CH), 26.5 (major, CH), 21.4 (major, CH3), 20.1 (minor, CH3), 16.9 (major, CH2), 16.8 (minor, CH2). 19F NMR (565 MHz, CDCl3) δ −115.8 (minor), −116.4 (major). HRMS (ESI) (m/z) calculated for C18H15ClFNO [M + Na]+: 338.0718, found: 338.0716. IR v/cm−1 (KBr) 1682, 1505, 1378, 1180, 1101, 1064, 1014, 833, 718, 533.
- 1-(4-Chlorophenyl)-3-(3-fluorophenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2g). White solid. (Yield: 40%). Mp = 82–84 °C. dr ≈ 2:1. 1H NMR (400 MHz, CDCl3) δ 7.43–7.38 (m, 3.8H, Ar-H), 7.36–7.34 (m, 1.5H, Ar-H), 7.33–7.31 (m, 1.7H, Ar-H), 7.30 (d, J = 1.6 Hz, 0.5H, Ar-H), 7.29 (d, J = 3.6 Hz, 0.5H, Ar-H), 7.27–7.26 (m, 0.6H, Ar-H), 7.25–7.23 (m, 0.4H, Ar-H), 7.03 (dd, J = 8.8, 1.2 Hz, 1H, Ar-H), 6.93–6.83 (m, 1.4H, Ar-H), 4.57 (p, J = 6.0 Hz, 0.5H, minor, N-CH), 4.28 (q, J = 6.4 Hz, 1H, major, N-CH), 2.45–2.38 (m, 0.4H, minor, CH), 2.07 (dd, J = 8.0, 4.4 Hz, 1H, major, CH), 1.53 (dd, J = 7.6, 4.8 Hz, 1H, major, CH2), 1.45–1.39 (m, 3.5H), 1.32 (t, J = 4.6 Hz, 0.6H, minor, CH2), 1.28–1.22 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 173.5 (minor, C=O), 172.6 (major, C=O), 163.0 (d, J = 246.1 Hz, major, C-F), 162.9 (d, J = 246.1 Hz, minor, C-F), 139.6 (d, J = 10.6 Hz, major), 138.4 (d, J = 10.6 Hz, minor), 134.5 (d, J = 3.0 Hz, major), 133.4 (major), 133.1 (minor), 130.2 (minor), 130.1 (d, J = 9.1 Hz, major), 130.0 (d, J = 9.1 Hz, minor), 129.9 (major), 128.7 (major), 128.5 (minor), 119.6 (d, J = 3.0 Hz, minor), 117.4 (d, J = 3.0 Hz, major), 112.6 (d, J = 6.0 Hz, minor), 111.8 (d, J = 21.1 Hz, major), 111.5, 109.8 (d, J = 25.7 Hz, major), 55.9 (major, N-CH), 52.9 (minor, N-CH), 34.8 (major, C), 33.6 (minor, C), 26.9 (minor, CH), 26.3 (major, CH), 21.3 (major, CH3), 20.0 (minor, CH3), 16.9 (major, CH2), 16.7 (minor, CH2). 19F NMR (565 MHz, CDCl3) δ -111.3 (major), -111.8 (minor). HRMS (ESI) (m/z) calculated for C18H15ClFNO [M + Na]+: 338.0718, found: 338.0712. IR v/cm−1 (KBr) 1682, 1588, 1491, 1452, 1368, 1296, 1185, 1087, 1064, 1014, 856, 754, 719, 591, 482.
- 3-Butyl-1-(4-chlorophenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2i). yellow oil. (Yield: 85%) °C. dr ≈ 5:4. 1H NMR (600 MHz, CDCl3) δ 7.35 (dd, J = 10.8, 8.4 Hz, 3H, Ar-H), 7.28 (d, J = 7.8 Hz, 3H, Ar-H), 3.98 (p, J = 6.0 Hz, 1H, minor, N-CH), 3.61–3.55 (m, 1.5H, minor), 3.54–3.48 (m, 1H, major, N-CH), 2.90–2.83 (m, 1.6H, major), 2.21–2.16 (m, 1H, major, CH), 1.86 (dd, J = 7.8, 4.2 Hz, 1H, minor, CH), 1.52–1.45 (m, 1.5H, major), 1.45–1.42 (m, 1H, minor), 1.41 (dd, J = 7.8, 4.8 Hz, 1.6H, major), 1.32 (d, J = 6.0 Hz, 2.7H, minor, CH3), 1.31–1.29 (m, 2H), 1.28–1.26 (m, 1.3H), 1.25 (d, J = 6.6 Hz, 3H, major, CH3), 1.08 (t, J = 4.8 Hz, 1H, major, CH2), 0.99 (t, J = 4.2 Hz, 0.8H, minor, CH2), 0.95–0.90 (m, 5H). 13C NMR (151 MHz, CDCl3) δ 173.9 (major, C=O), 173.2 (minor, C=O), 135.4 (minor), 135.3 (major), 132.8 (minor), 132.7 (major), 129.9 (minor), 129.7 (major), 128.5 (major), 128.4 (minor), 53.8 (minor, N-CH), 51.3 (major, N-CH), 39.8 (minor, N-CH2), 39.5 (major, N-CH2), 33.5 (minor, CH2-C-CH2), 33.2 (major, CH2-C-CH2), 29.9 (minor, CH), 29.5 (major, CH), 27.0 (minor, C), 26.9 (major, C), 21.0 (major, CH2-C-CH3), 20.2 (major, CH2-C-CH3), 20.1 (minor, CH3), 19.9 (minor, CH3), 17.1 (major, CH2), 16.6 (minor, CH2), 13.83 (minor, CH2-CH3), 13.79 (major, CH2-CH3). HRMS (ESI) (m/z) calculated for C16H20ClNO [M + Na]+: 300.1126, found: 300.1127. IR v/cm−1 (KBr) 1676, 1497, 1455, 1417, 1376, 1091, 1013, 819, 723, 527.
- 1-(4-Methoxyphenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2j). White solid. (Yield: 72%). Mp = 48–50 ºC. dr ≈ 2:1. 1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 7.6 Hz, 2H, Ar-H), 7.42–7.32 (m, 6H, Ar-H), 7.25–7.13 (m, 2H, Ar-H), 6.93–6.84 (m, 3H, Ar-H), 4.59 (p, J = 6.0 Hz, 0.5H, minor, N-CH), 4.27 (q, J = 6.4 Hz, 1H, major, N-CH), 3.81 (s, 3H, major, Ar-OCH3), 3.80 (s, 1.4H, minor, Ar-OCH3), 2.34 (dt, J = 7.6, 4.8 Hz, 0.5H, minor, CH), 2.01 (dd, J = 7.6, 4.0 Hz, 1H, major, CH), 1.50 (dd, J = 7.6, 4.4 Hz, 1H, major, CH2), 1.41–1.36 (m, 4H), 1.29–1.24 (m, 1.5H, CH2), 1.23–1.19 (m, 2.8H). 13C NMR (151 MHz, CDCl3) δ 174.2 (minor, C=O), 173.3 (major, C=O), 158.9 (major), 158.7 (minor), 138.1 (major), 137.0 (minor), 130.2 (major), 129.9 (minor), 129.0 (major), 128.9 (minor), 128.4 (major), 128.3 (minor), 125.6 (minor), 125.1 (major), 124.5 (minor), 123.0 (minor), 114.0 (major), 113.8 (minor), 56.1 (major, Ar-OCH3), 55.4 (major, C-N), 55.3 (minor, Ar-OCH3), 53.0 (minor, C-N), 34.8 (major, C), 33.7 (minor, C), 26.6 (minor, CH), 26.2 (major, CH), 21.5 (major, CH3), 19.6 (major, CH3), 17.0 (minor, CH2), 16.2 (minor, CH2). HRMS (ESI) (m/z) calculated for C19H19NO2 [M + Na]+: 316.1308, found: 316.1308. IR v/cm−1 (KBr) 1682, 1516, 1492, 1392, 1369, 1296, 1177, 1107, 1031, 838, 761, 747, 538.
- 1-(3-Methoxyphenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2k). White solid. (Yield: 80%). Mp = 78–80 °C. dr ≈ 5:3. 1H NMR (600 MHz, CDCl3) δ 7.48 (d, J = 7.8 Hz, 2H, Ar-H), 7.37 (dd, J = 16.6, 8.9 Hz, 3H, Ar-H), 7.28 (t, J = 7.8 Hz, 1H, Ar-H), 7.26–7.15 (m, 4H, Ar-H), 7.11 (s, 1H, Ar-H), 7.04 (d, J = 7.8 Hz, 1H, major, Ar-H), 6.99 (d, J = 7.8 Hz, 0.5H, minor, Ar-H), 6.84 (dd, J = 8.4, 2.4 Hz, 1H, major, Ar-H), 6.81 (dd, J = 7.8, 2.1 Hz, 0.5H, minor, Ar-H), 4.59 (p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.26 (q, J = 6.0 Hz, 1H, major, N-CH), 3.83 (s, 3H, major, Ar-OCH3), 3.81 (s, 1.7H, minor, Ar-OCH3), 2.40 (dt, J = 7.8, 5.0 Hz, 0.6H, minor, CH), 2.06 (dd, J = 7.8, 4.2 Hz, 1H, major, CH), 1.55 (dd, J = 7.8, 4.8 Hz, 1H, major, CH2), 1.44 (dd, J = 7.8, 4.8 Hz, 0.6H, minor, CH2), 1.39 (d, J = 6.6 Hz, 3H, major, CH3), 1.32 (t, J = 4.8 Hz, 0.6H, minor, CH2), 1.25 (t, J = 4.5 Hz, 1H, major, CH2), 1.21 (d, J = 6.0 Hz, 1.7H, minor, CH3). 13C NMR (101 MHz, CDCl3) δ 173.7 (minor, C=O), 172.8 (major, C=O), 159.64 (major), 159.59 (minor), 138.0 (major), 137.9 (major), 136.9 (minor), 129.4 (major), 129.3 (minor), 129.0 (major), 128.9 (minor), 125.8 (minor), 125.3 (major), 124.6 (minor), 123.2 (major), 120.9 (major), 120.3 (minor), 114.7 (major), 114.0 (minor), 113.0 (minor), 112.8 (major), 56.1 (minor, Ar-OCH3), 55.3 (major, C-N), 53.0 (minor, Ar-OCH3), 35.1 (major, C), 33.9 (minor, C), 27.1 (minor, CH), 26.5 (major, CH), 21.4 (major, CH3), 20.0 (major, CH3), 17.0 (minor, CH2), 16.9 (major, CH2). HRMS (ESI) (m/z) calculated for C19H19NO2 [M + Na]+: 316.1308, found: 316.1308. IR v/cm−1 (KBr) 1682, 1594, 1493, 1456, 1372, 1293, 1186, 1040, 1028, 939, 759, 623.
- 4-Methyl-3-phenyl-1-(p-tolyl)-3-azabicyclo[3.1.0]hexan-2-one (2l). White solid. (Yield: 67%). Mp = 89–91 °C. dr ≈ 5:4. 1H NMR (600 MHz, CDCl3) δ 7.49 (d, J = 7.8 Hz, 2H, Ar-H), 7.39–7.34 (m, 7H, Ar-H), 7.25 (s, 0.7H, Ar-H), 7.20–7.13 (m, 5H, Ar-H), 4.59 (p, J = 6.0 Hz, 0.7H, minor, N-CH), 4.27 (q, J = 6.0 Hz, 1H, major, N-CH), 2.37–2.34 (m, 3.8H), 2.33 (s, 2H), 2.02 (dd, J = 7.8, 4.2 Hz, 1H, major, CH), 1.54 (dd, J = 7.8, 4.8 Hz, 1H, major, CH2), 1.42 (dd, J = 7.8, 4.8 Hz, 0.8H, minor, CH2), 1.39 (d, J = 6.0 Hz, 3H, major, CH3), 1.28 (t, J = 4.2 Hz, 1H, major, CH2), 1.23 (d, J = 4.2 Hz, 1H, major, CH2), 1.21 (d, J = 6.6 Hz, 2.4H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 174.1 (minor, C=O), 173.1 (major, C=O), 138.1 (major), 137.03 (major), 137.00 (minor), 136.7 (minor), 133.3 (major), 133.2 (minor), 129.2 (major), 129.1 (major), 128.95 (major), 128.85 (minor), 128.8 (minor), 128.5 (minor), 125.6 (minor), 125.1 (minor), 124.5 (major), 123.0 (major), 56.1 (major, C-N), 53.0 (minor), 35.0 (major, C), 33.9 (minor, C), 26.8 (minor, CH), 26.4 (major, CH), 21.5 (major, Ar-CH3), 21.15 (minor, Ar-CH3), 21.11 (minor, CH3), 19.6 (major, CH3), 17.0 (major, CH2), 16.2 (minor, CH2). HRMS (ESI) (m/z) calculated for C19H19NO [M + Na]+: 300.1359, found: 300.1358. IR v/cm−1 (KBr) 1678, 1595, 1493, 1456, 1371, 1296, 1179, 1110, 1066, 1031, 922, 762, 640, 529.
- 4-Methyl-3-phenyl-1-(m-tolyl)-3-azabicyclo[3.1.0]hexan-2-one (2m). White solid. (Yield: 76%). Mp = 103–105 °C. dr ≈ 2:1. 1H NMR (400 MHz, CDCl3) δ 7.52–7.48 (m, 2H, Ar-H), 7.40–7.30 (m, 5H, Ar-H), 7.26–7.14 (m, 5H, Ar-H), 7.13–7.05 (m, 1.6H, Ar-H), 4.59 (p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.27 (q, J = 6.4 Hz, 1H, major, N-CH), 2.39–2.35 (m, 3.8H), 2.34 (s, 1.7H, minor), 2.04 (dd, J = 8.0, 4.4 Hz, 1H, major, CH), 1.57–1.54 (m, 1H, CH2), 1.45 (dd, J = 7.6, 4.8 Hz, 0.6H, CH2), 1.40 (d, J = 9.6 Hz, 3H, major, CH3), 1.29 (t, J = 4.8 Hz, 0.6H, minor, CH2), 1.24 (d, J = 4.4 Hz, 1H, CH2), 1.22 (d, J = 6.0 Hz, 2H, minor, CH3). 13C NMR (101 MHz, CDCl3) δ 174.0 (C=O), 173.1 (C=O), 138.1, 137.9, 137.0, 136.2, 136.1, 129.7, 129.5, 129.0, 128.9, 128.4, 128.3, 128.1, 127.8, 125.9, 125.7, 125.4, 125.2, 124.5, 123.1, 56.1 (C-N), 53.0 (C-N), 35.2 (C), 34.1 (C), 26.9 (CH), 26.4 (CH), 21.5 (Ar-CH3), 21.4 (CH3), 19.6 (CH3), 17.0, (CH2), 16.2 (CH2). HRMS (ESI) (m/z) calculated for C19H19NO2 [M + Na]+: 300.1359, found: 300.1359. IR v/cm−1 (KBr) 1683, 1494, 1455, 1376, 1296, 1181, 1108, 1067, 758, 606, 511.
- 4-Methyl-3-phenyl-1-(o-tolyl)-3-azabicyclo[3.1.0]hexan-2-one (2n). White solid. (Yield: 62%). Mp = 100–102 °C. dr ≈ 5:3. 1H NMR (600 MHz, CDCl3) δ 7.47 (d, J = 7.8 Hz, 2H, Ar-H), 7.40–7.31 (m, 4H, Ar-H), 7.27 (s, 0.5H, Ar-H), 7.25–7.14 (m, 7H, Ar-H), 4.66 (p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.33 (q, J = 6.0 Hz, 1H, major, N-CH), 2.54 (s, 3H, major, Ar-CH3), 2.40 (s, 1.7H, minor, Ar-CH3), 2.22 (dt, J = 7.8, 4.8 Hz, 0.6H, minor, CH), 2.06 (dd, J = 7.2, 3.6 Hz, 1H, major, CH), 1.52 (dd, J = 7.8, 4.8 Hz, 1H, major, CH2), 1.47 (d, J = 4.8 Hz, 0.5H, minor, CH2), 1.45 (d, J = 6.0 Hz, 3H, major, CH3), 1.33–1.29 (m, 2H, CH2), 1.25 (d, J = 6.6 Hz, 2.4H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.9 (minor, C=O), 172.8 (major, C=O), 139.8 (major), 139.2 (minor), 138.0 (major), 137.1 (minor), 134.6 (minor), 134.3 (major), 130.7 (minor), 130.6 (major), 130.5 (major), 130.2 (minor), 128.95 (major), 128.89 (minor), 128.0 (major), 127.9 (minor), 125.9 (minor), 125.74 (major), 125.70 (minor), 125.2 (major), 124.5 (minor), 123.1 (major), 56.3 (major, C-N), 53.2 (minor, C-N), 35.5 (major, C), 34.7 (minor, C), 26.2 (minor, CH), 26.0 (major, CH), 20.9 (major, Ar-CH3), 20.1 (minor, Ar-CH3), 19.6 (minor, CH3), 19.5 (major, CH3), 17.1 (major, CH2), 14.6 (minor, CH2). HRMS (ESI) (m/z) calculated for C19H19NO2 [M + Na]+: 300.1359, found: 300.1358. IR v/cm−1 (KBr) 1682, 1596, 1495, 1456, 1373, 1293, 1179, 1099, 1067, 1027, 923, 751, 728, 659, 533.
- 4-Methyl-1,3-diphenyl-3-azabicyclo[3.1.0]hexan-2-one (2o). Yellow solid. (Yield: 83%). Mp = 87–89 °C. dr ≈ 3:2. 1H NMR (400 MHz, CDCl3) δ 7.52–7.46 (m, 5H, Ar-H), 7.41–7.33 (m, 6H, Ar-H), 7.32–7.28 (m, 1.2H, Ar-H), 7.28–7.26 (m, 1H, Ar-H),7.25–7.23 (m, 0.7H, Ar-H), 7.22–7.15 (m, 1.6H, Ar-H, 4.60 (p, J = 6.0 Hz, 0.7H, minor, N-CH), 4.28 (q, J = 6.3 Hz, 1H, major, N-CH), 2.43–2.37 (m, 0.7H, minor, CH), 2.07 (dd, J = 7.6, 4.4 Hz, 1H, major, CH), 1.58–1.55 (m, 1H, major, CH2), 1.46 (dd, J = 7.6, 4.8 Hz, 0.7H, minor, CH2), 1.39 (d, J = 6.0 Hz, 3H, major, CH3), 1.32 (t, J = 4.8 Hz, 0.7H, minor, CH2), 1.26 (t, J = 4.8 Hz, 1H, major, CH2), 1.22 (d, J = 6.0 Hz, 2H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.9 (minor, C=O), 173.0 (major, C=O), 138.0 (major), 136.9 (major), 136.3 (minor), 136.2 (minor), 129.0 (minor), 128.9 (major), 128.50, 128.47, 128.4, 127.3, 127.0, 125.7, 125.2, 124.6, 123.1, 56.1 (major, C-N), 53.0 (minor, C-N), 35.2 (major, C), 34.1 (minor, C), 26.9 (minor, C-H), 26.4 (major, C-H), 21.5 (major, CH2), 19.7 (minor, CH2), 17.0 (major, CH3), 16.4 (minor, CH3). HRMS (ESI) (m/z) calculated for C18H17NO [M + Na]+: 286.1202, found: 286.1202. IR v/cm−1 (KBr) 1682, 1598, 1495, 1447, 1372, 1299, 1178, 1101, 1063, 1021, 757, 664, 530.
- 1-(4-Fluorophenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2p). White solid. (Yield: 79%). Mp = 98–100 °C. dr ≈ 2:1. 1H NMR (600 MHz, CDCl3) δ 7.48 (d, J = 7.8 Hz, 1.6H, Ar-H), 7.47–7.43 (m, 2.4H, Ar-H), 7.37 (q, J = 7.8 Hz, 2.5H, Ar-H), 7.24 (d, J = 7.8 Hz, 1H, Ar-H), 7.22–7.16 (m, 1.2H, Ar-H), 7.05 (t, J = 8.7 Hz, 1.6H, major, Ar-H), 7.02 (t, J = 8.7 Hz, 1H, minor, Ar-H), 4.59 (p, J = 6.0 Hz, 0.4H, minor, N-CH), 4.27 (q, J = 6.0 Hz, 1H, major, N-CH), 2.38 (dt, J = 7.8, 5.1 Hz, 0.4H, minor, CH), 2.05 (dd, J = 7.8, 4.2 Hz, 1H, major, N-CH), 1.51 (dd, J = 7.8, 4.2 Hz, 1H, major, CH2), 1.39 (d, J = 6.0 Hz, 3H, major, CH3), 1.31 (t, J = 4.5 Hz, 0.5H, minor, CH2), 1.26 (t, J = 4.5 Hz, 1H, major, CH2), 1.22 (d, J = 6.0 Hz, 1.3H, minor, CH3). 13C NMR (101 MHz, CDCl3) δ 173.8 (minor, C=O), 172.8 (major, C=O), 162.1 (d, J = 246.4 Hz, major, C-F), 162.0 (d, J = 246.4 Hz, minor, C-F), 137.9 (major), 136.8 (minor), 132.1 (d, J = 3.0 Hz, major), 132.0 (d, J = 4.0 Hz, minor), 130.6 (d, J = 8.1 Hz, major), 130.3 (d, J = 8.1 Hz, minor), 129.0 (major), 128.9 (minor), 125.8 (minor), 125.3 (major), 124.5 (minor), 123.2 (major), 115.3 (d, J = 22.2 Hz, major), 115.2 (d, J = 21.2 Hz, minor), 56.1 (major, C-N), 53.0 (minor, C-N), 34.7 (major, C), 33.6 (minor, C), 26.7 (minor, C-H), 26.3 (major, C-H), 21.5 (major, CH2), 19.9 (minor, CH2), 16.9 (major, CH3), 16.5 (minor, CH3). 19F NMR (376 MHz, CDCl3) δ -115.1 (major), -115.5 (minor). HRMS (ESI) (m/z) calculated for C18H16FNO [M + Na]+: 304.1108, found: 304.1107. IR v/cm−1 (KBr) 1685, 1493, 1455, 1406, 1394, 1381, 1250, 1230, 1076, 1066, 1028, 757, 600.
- 1-(4-Bromophenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2q). White solid. (Yield: 80%). Mp = 119–121 °C. dr ≈ 5:3. 1H NMR (600 MHz, CDCl3) δ 7.49 (d, J = 8.4 Hz, 2H, Ar-H), 7.46 (t, J = 8.1 Hz, 3H, Ar-H), 7.40–7.34 (m, 6.5H, Ar-H), 7.24 (d, J = 7.8 Hz, 1H, Ar-H), 7.19 (dt, J = 11.4, 7.5 Hz, 1.6H, Ar-H), 4.58 (p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.27 (q, J = 6.0 Hz, 1H, major, N-CH), 2.39 (dt, J = 7.8, 5.1 Hz, 0.6H, minor, CH), 2.06 (dd, J = 7.2, 4.8 Hz, 1H, major, CH), 1.52 (dd, J = 7.2, 4.8 Hz, 1H, major, CH2), 1.41 (dd, J = 7.8, 4.8 Hz, 1H, major, CH2), 1.38 (d, J = 6.6 Hz, 3H, major, CH3), 1.33 (t, J = 4.8 Hz, 0.7H, minor, CH2), 1.28 (t, J = 4.8 Hz, 1H, major, CH2), 1.21 (d, J = 6.6 Hz, 1.8H, minor, CH3). 13C NMR (101 MHz, CDCl3) δ 173.4 (minor, C=O), 172.4 (major, C=O), 137.8 (major), 136.7 (minor), 135.42 (major), 135.36 (minor), 131.6 (major), 131.4 (minor), 130.5 (major), 130.1 (minor), 129.0 (major), 128.9 (minor), 125.9 (minor), 125.4 (major), 124.6 (minor), 123.2 (major), 121.3 (major), 121.0 (minor), 56.1 (major, C-N), 53.0 (minor, C-N), 34.6 (major, C), 33.5 (minor, C), 26.9 (minor, CH), 26.5 (major, CH), 21.5 (major, CH3), 20.1 (minor, CH3), 16.9 (major, CH2), 16.8 (minor, CH2). HRMS (ESI) (m/z) calculated for C18H16BrNO [M + Na]+: 364.0307, found: 364.0307. IR v/cm−1 (KBr) 1682, 1489, 1389, 1382, 1100, 1066, 1057, 765, 699.
- 4-Benzyl-1-(4-chlorophenyl)-3-(p-tolyl)-3-azabicyclo[3.1.0]hexan-2-one: (2r). White solid. (Yield: 81%). Mp = 92–93 °C. dr ≈ 10:1. 1H NMR (600 MHz, CDCl3) δ 7.50 (d, J = 7.8 Hz, 2H, Ar-H), 7.43 (d, J = 7.8 Hz, 0.2H, Ar-H), 7.37 (d, J = 7.8 Hz, 0.5H, Ar-H), 7.36–7.27 (m, 3.5H, Ar-H), 7.24 (d, J = 7.8 Hz, 2.4H, Ar-H), 7.23–7.16 (m, 2.4H, Ar-H), 7.16–7.10 (m, 1.8H, Ar-H), 4.60–4.55 (m, 0.2H, N-CH), 4.49 (dd, J = 6.0, 3.4 Hz, 1H, N-CH), 3.01 (d, J = 13.8, 3.6 Hz, 1H, CH2), 2.94 (dd, J = 13.8, 6.6 Hz, 1H, CH2), 2.48–2.41 (m, 0.3H, CH2), 2.37 (s, 3H, major, CH3), 2.34 (s, 0.3H, minor, CH3), 2.31–2.45 (m, 0.2H, CH2), 2.17–2.12 (m, 0.2H, CH2), 2.06 (dd, J = 7.8, 4.8 Hz, 1H, CH2), 1.62–1.56 (m, 0.3H, CH2),1.52 (dd, J = 7.8, 5.4 Hz, 0.1H, CH2), 1.46 (dd, J = 7.7, 4.9 Hz, 1H), 1.27 (t, J = 4.4 Hz, 1H), 1.22–1.15 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 173.5 (minor, C=O), 172.8 (major, C=O), 137.2, 136.1, 135.9, 135.2, 135.1, 134., 134.50, 134.1, 133.0, 132.9, 130.2, 129.9, 129.81, 129.78, 129.7, 129.1, 128.9, 128.7, 128.4, 128.3, 126.95, 126.88, 124.8, 122.9, 60.6 (major, N-CH), 59.2 (minor, N-CH), 39.2 (major, Ar-CH2), 37.5 (minor, Ar-CH2), 34.9 (major, CH), 33.8 (minor, CH), 24.9 (minor, C), 24.0 (major, C), 21.1 (minor, CH3), 21.0 (major, CH3), 19.0 (major, CH2), 17.3 (minor, CH2). HRMS (ESI) (m/z) calculated for C25H22ClNO [M + Na]+: 410.1282, found: 410.1275. IR v/cm−1 (KBr) 1681, 1514, 1494, 1384, 1293, 1082, 1066, 836, 749, 726, 531.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Devarahosahalli Veeranna, K.; Kanti Das, K.; Baskaran, S. Reversal of polarity by catalytic SET oxidation: Synthesis of azabicyclo[m.n.0]alkanes via chemoselective reduction of amidines. Org. Biomol. Chem. 2021, 19, 4054–4059. [Google Scholar] [CrossRef] [PubMed]
- Lorthiois, E.; Anderson, K.; Vulpetti, A.; Rogel, O.; Cumin, F.; Ostermann, N.; Steinbacher, S.; Mac Sweeney, A.; Delgado, O.; Liao, S.-M.; et al. Discovery of Highly Potent and Selective Small-Molecule Reversible Factor D Inhibitors Demonstrating Alternative Complement Pathway Inhibition In Vivo. J. Med. Chem. 2017, 60, 5717–5735. [Google Scholar] [CrossRef] [PubMed]
- Kuttruff, C.A.; Ferrara, M.; Bretschneider, T.; Hoerer, S.; Handschuh, S.; Nosse, B.; Romig, H.; Nicklin, P.; Roth, G.J. Discovery of BI-2545: A Novel Autotaxin Inhibitor That Significantly Reduces LPA Levels In Vivo. ACS Med. Chem. Lett. 2017, 8, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Ahmet, J.; Ayton, K.; Ball, M.; Cockerill, M.; Fairweather, E.; Hamilton, N.; Harper, P.; Hitchin, J.; Jordan, A.; et al. Discovery and Optimization of Allosteric Inhibitors of Mutant Isocitrate Dehydrogenase 1 (R132H IDH1) Displaying Activity in Human Acute Myeloid Leukemia Cells. J. Med. Chem. 2016, 59, 11120–11137. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.K.; Sheffler, D.J.; Williams, R.; Jadhav, S.B.; Felts, A.S.; Morrison, R.D.; Niswender, C.M.; Daniels, J.S.; Conn, P.J.; Lindsley, C.W. Novel GlyT1 inhibitor chemotypes by scaffold hopping. Part 1: Development of a potent and CNS penetrant [3.1.0]-based lead. Bioorg. Med. Chem. Lett. 2014, 24, 1067–1070. [Google Scholar] [CrossRef]
- Cho, H.P.; Engers, D.W.; Venable, D.F.; Niswender, C.M.; Lindsley, C.W.; Conn, P.J.; Emmitte, K.A.; Rodriguez, A.L. A Novel Class of Succinimide-Derived Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Provides Insight into a Disconnect in Activity between the Rat and Human Receptors. ACS Chem. Neurosci. 2014, 5, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Thompson, A.D.; Brogan, J.T.; Schulte, M.L.; Melancon, B.J.; Mi, D.; Lewis, L.M.; Zou, B.; Yang, L.; Morrison, R.; et al. The Discovery and Characterization of ML218: A Novel, Centrally Active T-Type Calcium Channel Inhibitor with Robust Effects in STN Neurons and in a Rodent Model of Parkinson’s Disease. ACS Chem. Neurosci. 2011, 2, 730–742. [Google Scholar] [CrossRef]
- Robertson, W.M.; Kastrinsky, D.B.; Hwang, I.; Boger, D.L. Synthesis and evaluation of a series of C5′-substituted duocarmycin SA analogs. Bioorg. Med. Chem. Lett. 2010, 20, 2722–2725. [Google Scholar] [CrossRef]
- Anquetin, G.; Rouquayrol, M.; Mahmoudi, N.; Santillana-Hayat, M.; Gozalbes, R.; Greiner, J.; Farhati, K.; Derouin, F.; Guedj, R.; Vierling, P. Synthesis of new fluoroquinolones and evaluation of their in vitro activity on Toxoplasma gondii and Plasmodium spp. Bioorg. Med. Chem. Lett. 2004, 14, 2773–2776. [Google Scholar] [CrossRef]
- Chanda, P.B.; Boyle, K.E.; Brody, D.M.; Shukla, V.; Boger, D.L. Synthesis and evaluation of duocarmycin SA analogs incorporating the methyl 1,2,8,8a-tetrahydrocyclopropa[c]imidazolo [4,5-e]indol-4-one-6-carboxylate (CImI) alkylation subunit. Bioorg. Med. Chem. 2016, 24, 4779–4786. [Google Scholar] [CrossRef]
- Su, P.; Li, H.; Chen, W.; Luo, G.; Yang, G.; Chai, Z. Lewis Acid Catalyzed [3+2] Annulations of γ-Butyrolactam-Fused Donor-Acceptor Cyclopropanes with Aromatic Aldehydes and Aldimines. Eur. J. Org. Chem. 2020, 2020, 5380–5387. [Google Scholar] [CrossRef]
- Karadsheh, R.; Meuser, M.E.; Cocklin, S. Composition and orientation of the core region of novel HIV-1 entry inhibitors influences metabolic stability. Molecules 2020, 25, 1430. [Google Scholar] [CrossRef] [PubMed]
- Časar, Z. Synthetic Approaches to Contemporary Drugs that Contain the Cyclopropyl Moiety. Synthesis 2020, 52, 1315–1345. [Google Scholar] [CrossRef]
- Lee, M.; Adams, A.; Cox, P.B.; Sanford, M.S. Access to 3D Alicyclic Amine-Containing Fragments through Transannular C-H Arylation. Synlett 2019, 30, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.R.; Li, Q.; Lian, Y.; Xiao, J.; Londregan, A.T. Construction of 1-Heteroaryl-3-azabicyclo[3.1.0]hexanes by sp3-sp2 Suzuki-Miyaura and Chan-Evans-Lam Coupling Reactions of Tertiary Trifluoroborates. Org. Lett. 2017, 19, 2450–2453. [Google Scholar] [CrossRef]
- Topczewski, J.J.; Cabrera, P.J.; Saper, N.I.; Sanford, M.S. Palladium-catalysed transannular C-H functionalization of alicyclic amines. Nature 2016, 531, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Zapol’skii, V.A.; Namyslo, J.C.; de Meijere, A.; Kaufmann, D.E. Chemistry of polyhalogenated nitrobutadienes, 10: Synthesis of highly functionalized heterocycles with a rigid 6-amino-3-azabicyclo[3.1.0]hexane moiety. Beilstein J. Org. Chem. 2012, 8, 621–628. [Google Scholar] [CrossRef]
- Ren, Z.; Cao, W.; Lu, Y.; Wang, Y.; Wang, S. Ring-expansion reaction of cyclopropane: A novel process for synthesis of bicyclic dicarboximides from cyclopropanedicarboximides and carbon nucleophile. Synth. Commun. 2008, 38, 2215–2226. [Google Scholar] [CrossRef]
- Adams, D.J.; Blake, A.J.; Cooke, P.A.; Gill, C.D.; Simpkins, N.S. Highly enantioselective synthesis of chiral imides and derived products via chiral base desymmetrization. Tetrahedron 2002, 58, 4603–4615. [Google Scholar] [CrossRef]
- Shen, W.-B.; Tang, X.-T.; Zhang, T.-T.; Lv, D.-C.; Zhao, D.; Su, T.-F.; Meng, L. Copper(I)-Catalyzed Enyne Oxidation/Cyclopropanation: Divergent and Enantioselective Synthesis of Cyclopropanes. Org. Lett. 2021, 23, 1285–1290. [Google Scholar] [CrossRef]
- Shcherbakov, N.V.; Dar’in, D.V.; Kukushkin, V.Y.; Dubovtsev, A.Y. Gold-Catalyzed Nitrene Transfer from Benzofuroxans to N-Allylynamides: Synthesis of 3-Azabicyclo[3.1.0]hexanes. J. Org. Chem. 2021, 86, 12964–12972. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Takenaka, H.; Homma, H.; Harada, S.; Nemoto, T. Stereoselective construction of fused cyclopropane from ynamide and its application to synthesis of small drug candidate molecules. Tetrahedron Lett. 2021, 70, 152985. [Google Scholar] [CrossRef]
- Murai, M.; Taniguchi, R.; Takai, K. Cyclization of 1,n-Enynes Initiated by the Addition Reaction of gem-Dichromiomethane Reagents to Alkynes. Org. Lett. 2020, 22, 3985–3988. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.-S.; Zhai, T.-Y.; Luo, C.; Zhang, Y.-P.; Chen, Y.-B.; Deng, C.; Liu, R.-S.; Ye, L.-W. Copper-Catalyzed Azide-Ynamide Cyclization to Generate α-Imino Copper Carbenes: Divergent and Enantioselective Access to Polycyclic N-Heterocycles. Angew. Chem. Int. Ed. 2020, 59, 17984–17990. [Google Scholar] [CrossRef]
- Gao, M.; Gao, Q.; Hao, X.; Wu, Y.; Zhang, Q.; Liu, G.; Liu, R. Ruthenium Carbene-Mediated Construction of Strained Allenes via the Enyne Cross-Metathesis/Cyclopropanation of 1,6-Enynes. Org. Lett. 2020, 22, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Song, L.; Rudolph, M.; Rominger, F.; Oeser, T.; Hashmi, A.S.K. Sulfilimines as Versatile Nitrene Transfer Reagents: Facile Access to Diverse Aza-Heterocycles. Angew. Chem. Int. Ed. 2019, 58, 3589–3593. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Tian, X.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Gold(III)-catalyzed chemoselective annulations of anthranils with N-allylynamides for the synthesis of 3-azabicyclo[3.1.0]hexan-2-imines. Chem. Commun. 2019, 55, 9007–9010. [Google Scholar] [CrossRef]
- Adcock, H.V.; Chatzopoulou, E.; Davies, P.W. Divergent C-H Insertion-Cyclization Cascades of N-Allyl Ynamides. Angew. Chem. Int. Ed. 2015, 54, 15525–15529. [Google Scholar] [CrossRef]
- Arumugam, K.; Varghese, B.; Brantley, J.N.; Konda, S.S.M.; Lynch, V.M.; Bielawski, C.W. 1,6-Enyne Cyclizations Catalyzed by N-Heterocyclic Carbene Supported Gold Complexes: Deconvoluting Sterics and Electronics. Eur. J. Org. Chem. 2014, 2014, 493–497. [Google Scholar] [CrossRef]
- Liu, R.; Winston-McPherson, G.N.; Yang, Z.-Y.; Zhou, X.; Song, W.; Guzei, I.A.; Xu, X.; Tang, W. Generation of Rhodium(I) Carbenes from Ynamides and Their Reactions with Alkynes and Alkenes. J. Am. Chem. Soc. 2013, 135, 8201–8204. [Google Scholar] [CrossRef]
- Huang, X.; Klimczyk, S.; Veiros, L.F.; Maulide, N. Stereoselective intramolecular cyclopropanation through catalytic olefin activation. Chem. Sci. 2013, 4, 1105–1110. [Google Scholar] [CrossRef]
- Amijs, C.H.M.; Ferrer, C.; Echavarren, A.M. Gold(I)-catalysed arylation of 1,6-enynes: Different site reactivity of cyclopropyl gold carbenes. Chem. Commun. 2007, 7, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.J.R.; Zecri, F.J.; Briner, K.; Schreiber, S.L. Modular Synthesis of Cyclopropane-Fused N-Heterocycles Enabled by Underexplored Diazo Reagents. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203221. [Google Scholar] [CrossRef]
- Ide, K.; Furuta, M.; Tokuyama, H. Photoredox-catalyzed intramolecular cyclopropanation of alkenes with α-bromo-β-keto esters. Org. Biomol. Chem. 2021, 19, 9172–9176. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, J.; Bankhead, B.; Markham, J.P.; Zeller, M. Photoinduced oxidative cyclopropanation of ene-ynamides: Synthesis of 3-aza[n.1.0]bicycles via vinyl radicals. Chem. Commun. 2021, 57, 5254–5257. [Google Scholar] [CrossRef]
- Muriel, B.; Gagnebin, A.; Waser, J. Synthesis of bicyclo[3.1.0]hexanes by (3 + 2) annulation of cyclopropenes with aminocyclopropanes. Chem. Sci. 2019, 10, 10716–10722. [Google Scholar] [CrossRef] [PubMed]
- Abbasi Kejani, A.; Khosravi, H.; Rominger, F.; Balalaie, S.; Breit, B. Metal-Free Domino Oligocyclization Reactions of Enynals and Enynones with Molecular Oxygen. Org. Lett. 2021, 23, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
- Mutra, M.R.; Dhandabani, G.K.; Li, J.; Wang, J.-J. Regio- and chemoselective synthesis of nitrogen-containing heterocycles via the oxidative cascade cyclization of unactivated 1,n-enynes. Chem. Commun. 2020, 56, 2051–2054. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Zhang, Q.; Zhuge, Y.; Liwei, X.; Huang, Y. One-Pot Synthesis of Cyclopropanes from Methylene Azabicyclo[3.1.0]hexanes Obtained by Formal Sequential [1 + 2]- and [2 + 3]-Cycloaddition Reaction of Prop-2-ynylsulfonium Salts and Tosylaminomethyl Enones. Adv. Synth. Catal. 2018, 360, 438–443. [Google Scholar] [CrossRef]
- Luo, C.; Wang, Z.; Huang, Y. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic. Nat. Commun. 2015, 6, 10041. [Google Scholar] [CrossRef]
- Hansmann, M.M.; Melen, R.L.; Rudolph, M.; Rominger, F.; Wadepohl, H.; Stephan, D.W.; Hashmi, A.S.K. Cyclopropanation/Carboboration Reactions of Enynes with B(C6F5)3. J. Am. Chem. Soc. 2015, 137, 15469–15477. [Google Scholar] [CrossRef]
- Fritz, S.P.; Matlock, J.V.; McGarrigle, E.M.; Aggarwal, V.K. Efficient Synthesis of Cyclopropane-Fused Heterocycles with Bromoethylsulfonium Salt. Chem. Eur. J. 2013, 19, 10827–10831. [Google Scholar] [CrossRef] [PubMed]
- Pons, A.; Decaens, J.; Najjar, R.; Otog, N.; Arribat, M.; Jolly, S.; Couve-Bonnaire, S.; Sebban, M.; Coadou, G.; Oulyadi, H.; et al. Fluorocyclopropane-Containing Proline Analogue: Synthesis and Conformation of an Item in the Peptide Chemist’s Toolbox. ACS Omega 2022, 7, 4868–4878. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, K.; Kubota, J.; Ochiai, S.; Doi, T. Stereoselective Synthesis of 1-Aminocyclopropanecarboxylic Acid Carnosadines via Inter-intramolecular Double Alkylation with Optically Active 2-Methylaziridine Derivatives. J. Org. Chem. 2021, 86, 7304–7313. [Google Scholar] [CrossRef] [PubMed]
- Maolanon, A.; Papangelis, A.; Kawiecki, D.; Mou, T.-C.; Syrenne, J.T.; Yi, F.; Hansen, K.B.; Clausen, R.P. Stereoselective synthesis of novel 2′-(S)-CCG-IV analogs as potent NMDA receptor agonists. Eur. J. Med. Chem. 2021, 212, 113099. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yu, J.-Q. Pd(II)-Catalyzed Enantioselective γ-C(sp3)-H Functionalizations of Free Cyclopropylmethylamines. J. Am. Chem. Soc. 2020, 142, 12015–12019. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, Z.-J.; Ye, F.; Ma, J.-H.; Xu, Z.; Bai, X.-F.; Li, L.; Xu, L.-W. Highly efficient desymmetrization of cyclopropenes to azabicyclo[3.1.0]hexanes with five continuous stereogenic centers by copper-catalyzed [3 + 2] cycloadditions. Org. Chem. Front. 2018, 5, 2759–2764. [Google Scholar] [CrossRef]
- Maslivetc, V.; Barrett, C.; Aksenov, N.A.; Rubina, M.; Rubin, M. Intramolecular nucleophilic addition of carbanions generated from N-benzylamides to cyclopropenes. Org. Biomol. Chem. 2018, 16, 285–294. [Google Scholar] [CrossRef]
- Pedroni, J.; Cramer, N. Enantioselective C-H Functionalization-Addition Sequence Delivers Densely Substituted 3-Azabicyclo[3.1.0]hexanes. J. Am. Chem. Soc. 2017, 139, 12398–12401. [Google Scholar] [CrossRef]
- McCabe, S.R.; Wipf, P. Eight-Step Enantioselective Total Synthesis of (-)-Cycloclavine. Angew. Chem. Int. Ed. 2017, 56, 324–327. [Google Scholar] [CrossRef]
- Petronijevic, F.R.; Wipf, P. Total Synthesis of (±)-Cycloclavine and (±)-5-epi-Cycloclavine. J. Am. Chem. Soc. 2011, 133, 7704–7707. [Google Scholar] [CrossRef] [PubMed]
- Wasa, M.; Engle, K.M.; Yu, J.-Q. Pd(II)-Catalyzed Olefination of sp3 C-H Bonds. J. Am. Chem. Soc. 2010, 132, 3680–3681. [Google Scholar] [CrossRef] [PubMed]
- Maximiano, A.P.; Ramos, G.S.; Marques, M.V.; Sá, M.M. Functionalized Cyclopropanes as Versatile Intermediates for the Diversity-Oriented Synthesis of γ-Lactones, γ-Lactams and δ-Lactams. Synthesis 2021, 53, 2408–2421. [Google Scholar]
- Kleban, I.; Krokhmaliuk, Y.; Reut, S.; Shuvakin, S.; Pendyukh, V.V.; Khyzhan, O.I.; Yarmoliuk, D.S.; Tymtsunik, A.V.; Rassukana, Y.V.; Grygorenko, O.O. Multigram Synthesis of Heterabicyclo[n.1.0]alkan-1-yl Trifluoroborates. Eur. J. Org. Chem. 2021, 2021, 6551–6560. [Google Scholar] [CrossRef]
- Liu, L.; Shao, L.; Li, J.; Cui, H.; Li, B.; Zhou, X.; Lv, P.; Zhang, J. Synthesis, antibacterial activities, mode of action and acute toxicity studies of new oxazolidinone-fluoroquinolone hybrids. Molecules 2019, 24, 1641. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, X.; Lv, S.; Mykhailiuk, P.K.; Ma, Q.; Hai, L.; Wu, Y. Synthesis of CHF2-substituted 3-azabicyclo[3.1.0]hexanes by photochemical decomposition of CHF2-pyrazolines. RSC Adv. 2018, 8, 5114–5118. [Google Scholar] [CrossRef] [PubMed]
- Bychek, R.M.; Levterov, V.V.; Sadkova, I.V.; Tolmachev, A.A.; Mykhailiuk, P.K. Synthesis of Functionalized Difluorocyclopropanes: Unique Building Blocks for Drug Discovery. Chem. Eur. J. 2018, 24, 12291–12297. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhu, C.; Zhu, R.; Lin, Z.; Wu, W.; Jiang, H. Synthesis of 3-azabicyclo[3.1.0]hexane derivatives via palladium-catalyzed cyclopropanation of maleimides with N-tosylhydrazones: Practical and facile access to CP-866,087. Org. Biomol. Chem. 2017, 15, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.; Antonchick, A.P. Copper-catalyzed (2 + 1) annulation of acetophenones with maleimides: Direct synthesis of cyclopropanes. Angew. Chem. Int. Ed. 2015, 54, 14845–14848. [Google Scholar] [CrossRef]
- Gomes, A.T.P.C.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Ferreira, V.F.; Juarranz, A.; Cavaleiro, J.A.S.; Sanz-Rodriguez, F. Photodynamic effect of glycochlorin conjugates in human cancer epithelial cells. RSC Adv. 2015, 5, 33496–33502. [Google Scholar] [CrossRef]
- Vempati, R.K.; Reddy, N.S.; Alapati, S.R.; Dubey, P.K. Synthesis of azabicyclo[3.1.0]amine analogues of anacardic acid as potent antibacterial agents. Asian J. Chem. 2013, 25, 986–994. [Google Scholar] [CrossRef]
- Oikawa, M.; Sasaki, S.; Sakai, M.; Ishikawa, Y.; Sakai, R. Total Synthesis of (±)-Dysibetaine CPa and Analogs. Eur. J. Org. Chem. 2012, 2012, 5789–5802. [Google Scholar] [CrossRef]
- Louhichi, N.; Haouas, A.; Ben Hamadi, N.; Msaddek, M. Synthesis and chemistry of pyrazolines derived from diphenyldiazomethane. Heterocycl. Commun. 2011, 17, 215–218. [Google Scholar] [CrossRef]
- Mykhailiuk, P.K.; Afonin, S.; Palamarchuk, G.V.; Shishkin, O.V.; Ulrich, A.S.; Komarov, I.V. Synthesis of trifluoromethyl-substituted proline analogues as 19F NMR labels for peptides in the polyproline II conformation. Angew. Chem. Int. Ed. 2008, 47, 5765–5767. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Simmons, E.M.; Wei, C.S.; Park, H.; Eastgate, M.D. An Enantioselective Total Synthesis of (+)-Duocarmycin SA. J. Org. Chem. 2018, 83, 3928–3940. [Google Scholar] [CrossRef]
- Uematsu, M.; Brody, D.M.; Boger, D.L. A five-membered lactone prodrug of CBI-based analogs of the duocarmycins. Tetrahedron Lett. 2015, 56, 3101–3104. [Google Scholar] [CrossRef]
- Tercel, M.; Pruijn, F.B.; O’Connor, P.D.; Liyanage, H.D.S.; Atwell, G.J.; Alix, S.M. Mechanism of Action of AminoCBIs: Highly Reactive but Highly Cytotoxic Analogues of the Duocarmycins. ChemBioChem 2014, 15, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, K.S.; Nguyen, T.; Hwang, I.; Boger, D.L. Total Synthesis and Evaluation of iso-Duocarmycin SA and iso-Yatakemycin. J. Am. Chem. Soc. 2009, 131, 1187–1194. [Google Scholar] [CrossRef]
- Gauss, C.M.; Hamasaki, A.; Parrish, J.P.; MacMillan, K.S.; Rayl, T.J.; Hwang, I.; Boger, D.L. Synthesis and preliminary evaluation of duocarmycin analogues incorporating the 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[2,3-e]indol-4-one (CNI) and 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[1,2-e]indol-4-one (iso-CNI) alkylation subunits. Tetrahedron 2009, 65, 6591–6599. [Google Scholar] [CrossRef]
- MacMillan, K.S.; Boger, D.L. An Additional Spirocyclization for Duocarmycin SA. J. Am. Chem. Soc. 2008, 130, 16521–16523. [Google Scholar] [CrossRef]
- Tichenor, M.S.; MacMillan, K.S.; Stover, J.S.; Wolkenberg, S.E.; Pavani, M.G.; Zanella, L.; Zaid, A.N.; Spalluto, G.; Rayl, T.J.; Hwang, I.; et al. Rational Design, Synthesis, and Evaluation of Key Analogues of CC-1065 and the Duocarmycins. J. Am. Chem. Soc. 2007, 129, 14092–14099. [Google Scholar] [CrossRef] [PubMed]
- Tichenor, M.S.; Trzupek, J.D.; Kastrinsky, D.B.; Shiga, F.; Hwang, I.; Boger, D.L. Asymmetric Total Synthesis of (+)- and ent-(−)-Yatakemycin and Duocarmycin SA. Evaluation of Yatakemycin Key Partial Structures and Its Unnatural Enantiomer. J. Am. Chem. Soc. 2006, 128, 15683–15696. [Google Scholar] [CrossRef]
- Tietze, L.F.; Herzig, T.; Feuerstein, T.; Schuberth, I. Synthesis and biological evaluation of novel analogues and prodrugs of the cytotoxic antibiotic CC-1065 for selective cancer therapy. Eur. J. Org. Chem. 2002, 2002, 1634–1645. [Google Scholar] [CrossRef]
- Amishiro, N.; Nagamura, S.; Kobayashi, E.; Okamoto, A.; Gomi, K.; Saito, H. Synthesis and antitumor activity of duocarmycin derivatives: A-ring pyrrole compounds bearing 5-membered heteroarylacryloyl groups. Chem. Pharm. Bull. 1999, 47, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Nagamura, S.; Asai, A.; Kanda, Y.; Kobayashi, E.; Gomi, K.; Saito, H. Synthesis and antitumor activity of duocarmycin derivatives: Modification of segment A of duocarmycin B2. Chem. Pharm. Bull. 1996, 44, 1723–1730. [Google Scholar] [CrossRef]
- Yasuzawa, T.; Muroi, K.; Ichimura, M.; Takahashi, I.; Ogawa, T.; Takahashi, K.; Sano, H.; Saitoh, Y. Duocarmycins, potent antitumor antibiotics produced by Streptomyces sp. structures and chemistry. Chem. Pharm. Bull. 1995, 43, 378–391. [Google Scholar] [CrossRef]
- Tietze, L.F.; Grote, T. Synthesis of the reduced A-unit (CI) of the antitumor antibiotic CC-1065. Chem. Ber. 1993, 126, 2733–2737. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, G.; Zhou, Y.; Pang, D.; Zhu, F.; Liu, H. Selectivity of 18-crown-6 ether to alkali ions by density functional theory and molecular dynamics simulation. J. Mol. Liq. 2020, 311, 113305. [Google Scholar] [CrossRef]
- Pudlo, M.; Csányi, D.; Moreau, F.; Hajós, G.; Riedl, Z.; Sapi, J. First Suzuki-Miyaura type cross-coupling of ortho-azidobromobenzene with arylboronic acids and its application to the synthesis of fused aromatic indole-heterocycles. Tetrahedron 2007, 63, 10320–10329. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Li, Y.; Li, S.-M.; Zhou, Y.-G.; Sun, F.-Y.; Gao, L.-X.; Han, F.-S. A Highly Practical and Reliable Nickel Catalyst for Suzuki-Miyaura Coupling of Aryl Halides. Adv. Synth. Catal. 2011, 353, 1543–1550. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Cui, P.; Li, S. Modular Synthesis of Drimane Meroterpenoids Leveraging Decarboxylative Borylation and Suzuki Coupling. Org. Lett. 2020, 22, 8702. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Li, X.; Xiao, X.; Liu, J.; Yang, J.; Wang, J. Synthesis of Imidazolium Precursors for the Hydroxyl-Group-Modified N-Heterocyclic Carbenes and Applications of the in situ Generated Carbene Ligands in Suzuki-Miyaura and Sonogashira Coupling Reactions. Chin. J. Org. Chem. 2017, 37, 1258–1265. [Google Scholar] [CrossRef]
- Sharma, N.; Li, Z.; Sharma, U.K.; Van der Eycken, E.V. Facile Access to Functionalized Spiro[indoline-3,2′-pyrrole]-2,5′-diones via Post-Ugi Domino Buchwald-Hartwig/Michael Reaction. Org. Lett. 2014, 16, 3884–3887. [Google Scholar] [CrossRef] [PubMed]
- Butani, H.H.; Vachhani, D.D.; Bhoya, U.C.; Shah, A.K.; Van der Eycken, E.V. Regio- and Chemoselective Formation of Spiroindolinone-Isoindolinone by a Palladium-Catalyzed Buchwald-Hartwig Addition-Elimination Sequence. Eur. J. Org. Chem. 2014, 2014, 6634–6638. [Google Scholar] [CrossRef]
- Yuen, O.Y.; Leung, M.P.; So, C.M.; Sun, R.W.-Y.; Kwong, F.Y. Palladium-Catalyzed Direct Arylation of Polyfluoroarenes for Accessing Tetra-ortho-Substituted Biaryls: Buchwald-type Ligand Having Complementary -PPh2 Moiety Exhibits Better Efficiency. J. Org. Chem. 2018, 83, 9008–9017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qi, D.; Jiao, C.; Liu, X.; Zhang, G. Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by NN2 pincer ligand. Nat. Commun. 2021, 12, 4904. [Google Scholar] [CrossRef]
- Liu, R.R.; Wang, Y.G.; Li, Y.L.; Huang, B.B.; Liang, R.X.; Jia, Y.X. Enantioselective Dearomative Difunctionalization of Indoles by Palladium-Catalyzed Heck/Sonogashira Sequence. Angew. Chem. Int. Ed. 2017, 56, 7475–7478. [Google Scholar] [CrossRef]
- Tang, T.; Fei, X.-D.; Ge, Z.-Y.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. Palladium-Catalyzed Carbonylative Sonogashira Coupling of Aryl Bromides via tert-Butyl Isocyanide Insertion. J. Org. Chem. 2013, 78, 3170–3175. [Google Scholar] [CrossRef]
- Chinchilla, R.; Najera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 2011, 40, 5084–5121. [Google Scholar] [CrossRef]
- Chinchilla, R.; Nájera, C. The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry. Chem. Rev. 2007, 107, 874–922. [Google Scholar] [CrossRef]
- Knowe, M.T.; Danneman, M.W.; Sun, S.; Pink, M.; Johnston, J.N. Biomimetic Desymmetrization of a Carboxylic Acid. J. Am. Chem. Soc. 2018, 140, 1998–2001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.G.; Zhang, Y.C.; Huang, G.Q.; Zhang, G.S. Organoiodine reagent-promoted intermolecular oxidative amination: Synthesis of cyclopropyl spirooxindoles. Org. Chem. Front. 2017, 4, 1372–1375. [Google Scholar] [CrossRef]
- Lin, C.-H.; Pursley, D.; Klein, J.E.M.N.; Teske, J.; Allen, J.A.; Rami, F.; Koehn, A.; Plietker, B. Non-decarbonylative photochemical versus thermal activation of Bu4N[Fe(CO)3(NO)] – the Fe-catalyzed Cloke–Wilson rearrangement of vinyl and arylcyclopropanes. Chem. Sci. 2015, 6, 7034–7043. [Google Scholar] [CrossRef] [PubMed]
Entry | Base/equiv | Solvent | t/°C | Time/h | Yield/% b |
---|---|---|---|---|---|
1 | tBuOK (4.0) | DMF | 110 | 24 | 82 (11) |
2 | tBuOK (4.0) | DMF | 110 | 24 | 86 c |
3 | tBuOK (2.0) | DMF | 110 | 24 | 64 (35) |
4 | tBuOK (3.0) | DMF | 110 | 24 | 72 (6) |
5 | tBuOK (5.0) | DMF | 110 | 24 | 57 (26) |
6 | tBuOK (4.0) | DMF | 100 | 24 | 47 (48) |
7 | tBuOK (4.0) | DMF | 120 | 24 | 77 (16) |
8 | tBuOK (4.0) | DMF | 130 | 24 | 73 (8) |
9 | tBuOK (4.0) | DMF | 140 | 24 | 43 |
10 | K3PO4 (4.0) | DMF | 110 | 24 | 39 (58) |
11 | NaH (4.0) | DMF | 110 | 24 | 15 (81) |
12 | NaOH (4.0) | DMF | 110 | 24 | 22 (68) |
13 | Cs2CO3 (4.0) | DMF | 110 | 24 | 20 (72) |
14 | tBuOK (4.0) | MeCN | 110 | 24 | 18 (76) |
15 | tBuOK (4.0) | Dioxane | 110 | 24 | 0 (93) |
16 | tBuOK (4.0) | Toluene | 110 | 24 | 0 (91) |
17 | tBuOK (4.0) | NMP | 110 | 24 | 68 (6) |
18 | tBuOK (4.0) | DMSO | 110 | 24 | 0 (85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, Z.; Chen, L.; Li, M.; Zhang, X.; Zhang, G. Base-Promoted Intramolecular Addition of Vinyl Cyclopropanecarboxamides to Access Conformationally Restricted Aza[3.1.0]bicycles. Molecules 2023, 28, 3691. https://doi.org/10.3390/molecules28093691
Li J, Zhang Z, Chen L, Li M, Zhang X, Zhang G. Base-Promoted Intramolecular Addition of Vinyl Cyclopropanecarboxamides to Access Conformationally Restricted Aza[3.1.0]bicycles. Molecules. 2023; 28(9):3691. https://doi.org/10.3390/molecules28093691
Chicago/Turabian StyleLi, Jingya, Zhiguo Zhang, Liming Chen, Mengjuan Li, Xingjie Zhang, and Guisheng Zhang. 2023. "Base-Promoted Intramolecular Addition of Vinyl Cyclopropanecarboxamides to Access Conformationally Restricted Aza[3.1.0]bicycles" Molecules 28, no. 9: 3691. https://doi.org/10.3390/molecules28093691
APA StyleLi, J., Zhang, Z., Chen, L., Li, M., Zhang, X., & Zhang, G. (2023). Base-Promoted Intramolecular Addition of Vinyl Cyclopropanecarboxamides to Access Conformationally Restricted Aza[3.1.0]bicycles. Molecules, 28(9), 3691. https://doi.org/10.3390/molecules28093691