Mono-, Bis-, and Tris-Chelate Zn(II) Complexes with Imidazo[1,5-a]pyridine: Luminescence and Structural Dependence
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Optical Characterization
2.3. Structural Characterization
2.4. Vibrational Characterization
2.5. Mass Spectrometry
3. Materials and Methods
3.1. Experimental Techniques
3.2. Syntheses
General Procedure for Zn(II) Complexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozada, I.B.; Braun, J.D.; Williams, J.A.G.; Herbert, D.E. Yellow-Emitting, Pseudo-Octahedral Zinc Complexes of Benzannulated N^N^O Pincer-Type Ligands. Inorg. Chem. 2022, 61, 17568–17578. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.; Lü, X.; Zhou, G.; Wong, W.-Y. Asymmetric Tris-Heteroleptic Cyclometalated Phosphorescent Iridium(III) Complexes: An Emerging Class of Metallophosphors. Acc. Mater. Res. 2022, 3, 830–842. [Google Scholar] [CrossRef]
- Tao, P.; Liu, S.-J.; Wong, W.-Y. Phosphorescent Manganese(II) Complexes and Their Emerging Applications. Adv. Opt. Mater. 2020, 8, 2000985. [Google Scholar] [CrossRef]
- Ma, D.-L.; Wu, C.; Li, G.; Yung, T.-L.; Leung, C.-H. Transition Metal Complexes as Imaging or Therapeutic Agents for Neurodegenerative Diseases. J. Mater. Chem. B 2020, 8, 4715–4725. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, C.; Spuling, E.; Knoll, D.M.; Volz, D.; Bräse, S. Sustainable Metal Complexes for Organic Light-Emitting Diodes (OLEDs). Coord. Chem. Rev. 2018, 373, 49–82. [Google Scholar] [CrossRef]
- Kagatikar, S.; Sunil, D. Schiff Bases and Their Complexes in Organic Light Emitting Diode Application. J. Electron. Mater. 2021, 50, 6708–6723. [Google Scholar] [CrossRef]
- Mahoro, G.U.; Fernandez-Cestau, J.; Renaud, J.; Coto, P.B.; Costa, R.D.; Gaillard, S. Recent Advances in Solid-State Lighting Devices Using Transition Metal Complexes Exhibiting Thermally Activated Delayed Fluorescent Emission Mechanism. Adv. Opt. Mater. 2020, 8, 2000260. [Google Scholar] [CrossRef]
- Volpi, G.; Garino, C.; Nervi, C. Exploring Synthetic Pathways to Cationic Heteroleptic Cyclometalated Iridium Complexes Derived from Dipyridylketone. Dalton Trans. 2012, 41, 7098–7108. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Constable, E.C. Solar Energy Conversion Using First Row D-Block Metal Coordination Compound Sensitizers and Redox Mediators. Chem. Sci. 2022, 13, 1225–1262. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yiu, S.-C.; Ho, C.-L.; Wong, W.-Y. Recent Advances in Copper Complexes for Electrical/Light Energy Conversion. Coord. Chem. Rev. 2018, 375, 514–557. [Google Scholar] [CrossRef]
- Durini, S.; Ardizzoia, G.A.; Therrien, B.; Brenna, S. Tuning the Fluorescence Emission in Mononuclear Heteroleptic Trigonal Silver(i) Complexes. New J. Chem. 2017, 41, 3006–3014. [Google Scholar] [CrossRef]
- Fresta, E.; Volpi, G.; Milanesio, M.; Garino, C.; Barolo, C.; Costa, R.D. Novel Ligand and Device Designs for Stable Light-Emitting Electrochemical Cells Based on Heteroleptic Copper(I) Complexes. Inorg. Chem. 2018, 57, 10469–10479. [Google Scholar] [CrossRef] [PubMed]
- Fresta, E.; Volpi, G.; Garino, C.; Barolo, C.; Costa, R.D. Contextualizing Yellow Light-Emitting Electrochemical Cells Based on a Blue-Emitting Imidazo-Pyridine Emitter. Polyhedron 2018, 140, 129–137. [Google Scholar] [CrossRef]
- Ferraro, V.; Castro, J.; Agostinis, L.; Bortoluzzi, M. Dual-Emitting Mn(II) and Zn(II) Halide Complexes with 9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene-10-Oxide as Ligand. Inorganica Chim. Acta 2023, 545, 121285. [Google Scholar] [CrossRef]
- Castro, J.; Ferraro, V.; Bortoluzzi, M. Visible-Emitting Cu(i) Complexes with N-Functionalized Benzotriazole-Based Ligands. New J. Chem. 2022, 46, 18938–18951. [Google Scholar] [CrossRef]
- Ferraro, V.; Baggio, F.; Castro, J.; Bortoluzzi, M. Green Phosphorescent Zn(II) Halide Complexes with N,N,N′,N′-Tetramethyl-P-Indol-1-Ylphosphonic Diamide as Ligand. Eur. J. Inorg. Chem. 2022, 2022, e202200119. [Google Scholar] [CrossRef]
- Cheng, G.; So, G.K.-M.; To, W.-P.; Chen, Y.; Kwok, C.-C.; Ma, C.; Guan, X.; Chang, X.; Kwok, W.-M.; Che, C.-M. Luminescent Zinc(II) and Copper(I) Complexes for High-Performance Solution-Processed Monochromic and White Organic Light-Emitting Devices. Chem. Sci. 2015, 6, 4623–4635. [Google Scholar] [CrossRef]
- Sakai, Y.; Sagara, Y.; Nomura, H.; Nakamura, N.; Suzuki, Y.; Miyazaki, H.; Adachi, C. Zinc Complexes Exhibiting Highly Efficient Thermally Activated Delayed Fluorescence and Their Application to Organic Light-Emitting Diodes. Chem. Commun. 2015, 51, 3181–3184. [Google Scholar] [CrossRef]
- Janghouri, M. White-Light-Emitting Devices Based on Nile Red and π Electron Rich [Zn4core] Complex. Opt. Quantum Electron. 2017, 49, 410. [Google Scholar] [CrossRef]
- López-de-Luzuriaga, J.M.; Monge, M.; Olmos, M.E. Luminescent Aryl–Group Eleven Metal Complexes. Dalton Trans. 2017, 46, 2046–2067. [Google Scholar] [CrossRef]
- Priola, E.; Volpi, G.; Rabezzana, R.; Borfecchia, E.; Garino, C.; Benzi, P.; Martini, A.; Operti, L.; Diana, E. Bridging Solution and Solid-State Chemistry of Dicyanoaurate: The Case Study of Zn–Au Nucleation Units. Inorg. Chem. 2020, 59, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, E.; Shibahara, F.; Murai, T. 1-Alkynyl- and 1-Alkenyl-3-Arylimidazo[1,5-a]Pyridines: Synthesis, Photophysical Properties, and Observation of a Linear Correlation between the Fluorescent Wavelength and Hammett Substituent Constants. J. Org. Chem. 2011, 76, 6146–6158. [Google Scholar] [CrossRef] [PubMed]
- Volpi, G.; Rabezzana, R. Imidazo[1,5-a]Pyridine Derivatives: Useful, Luminescent and Versatile Scaffolds for Different Applications. New J. Chem. 2021, 45, 5737–5743. [Google Scholar] [CrossRef]
- Mohbiya, D.R.; Sekar, N. Tuning ‘Stokes Shift’ and ICT Character by Varying the Donor Group in Imidazo[1,5-a]Pyridines: A Combined Optical, DFT, TD-DFT and NLO Approach. ChemistrySelect 2018, 3, 1635–1644. [Google Scholar] [CrossRef]
- Volpi, G. Luminescent Imidazo[1,5-a]Pyridine Scaffold: Synthetic Heterocyclization Strategies-Overview and Promising Applications. Asian J. Org. Chem. 2022, 11, e202200171. [Google Scholar] [CrossRef]
- Volpi, G.; Garino, C.; Priola, E.; Magistris, C.; Chierotti, M.R.; Barolo, C. Halogenated Imidazo[1,5-a]Pyridines: Chemical Structure and Optical Properties of a Promising Luminescent Scaffold. Dye. Pigment. 2019, 171, 107713. [Google Scholar] [CrossRef]
- Volpi, G.; Garino, C.; Fresta, E.; Casamassa, E.; Giordano, M.; Barolo, C.; Viscardi, G. Strategies to Increase the Quantum Yield: Luminescent Methoxylated Imidazo[1,5-a]Pyridines. Dye. Pigment. 2021, 192, 109455. [Google Scholar] [CrossRef]
- Ingersoll, M.A.; Lyons, A.S.; Muniyan, S.; D’Cunha, N.; Robinson, T.; Hoelting, K.; Dwyer, J.G.; Bu, X.R.; Batra, S.K.; Lin, M.-F. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells. PLoS ONE 2015, 10, e0131811. [Google Scholar] [CrossRef] [PubMed]
- Yagishita, F.; Tanigawa, J.; Nii, C.; Tabata, A.; Nagamune, H.; Takanari, H.; Imada, Y.; Kawamura, Y. Fluorescent Imidazo[1,5- a]Pyridinium Salt for a Potential Cancer Therapy Agent. ACS Med. Chem. Lett. 2019, 10, 1110–1114. [Google Scholar] [CrossRef]
- Volpi, G.; Lace, B.; Garino, C.; Priola, E.; Artuso, E.; Cerreia Vioglio, P.; Barolo, C.; Fin, A.; Genre, A.; Prandi, C. New Substituted Imidazo[1,5-a]Pyridine and Imidazo[5,1-a]Isoquinoline Derivatives and Their Application in Fluorescence Cell Imaging. Dye. Pigment. 2018, 157, 298–304. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; Qu, G.; Su, L.; Zhao, B.; Miao, J. A PH Probe Inhibits Senescence in Mesenchymal Stem Cells. Stem Cell Res. Ther. 2018, 9, 343. [Google Scholar] [CrossRef]
- Volpi, G.; Galliano, S.; Buscaino, R.; Viscardi, G.; Barolo, C. Fluorescent Trifluoromethylated Imidazo[1,5-a]Pyridines and Their Application in Luminescent down-Shifting Conversion. J. Lumin. 2022, 242, 118529. [Google Scholar] [CrossRef]
- Volpi, G.; Magnano, G.; Benesperi, I.; Saccone, D.; Priola, E.; Gianotti, V.; Milanesio, M.; Conterosito, E.; Barolo, C.; Viscardi, G. One Pot Synthesis of Low Cost Emitters with Large Stokes’ Shift. Dye. Pigment. 2017, 137, 152–164. [Google Scholar] [CrossRef]
- Yuan, Q.; Chen, L.-L.; Zhu, X.-H.; Yuan, Z.-H.; Duan, Y.-T.; Yang, Y.-S.; Wang, B.-Z.; Wang, X.-M.; Zhu, H.-L. An Imidazo[1,5- a]Pyridine-Derivated Fluorescence Sensor for Rapid and Selective Detection of Sulfite. Talanta 2020, 217, 121087. [Google Scholar] [CrossRef] [PubMed]
- Hutt, J.T.; Jo, J.; Olasz, A.; Chen, C.-H.; Lee, D.; Aron, Z.D. Fluorescence Switching of Imidazo[1,5-a]Pyridinium Ions: PH-Sensors with Dual Emission Pathways. Org. Lett. 2012, 14, 3162–3165. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Ji, R.; Shen, S.; Cao, X.; Li, F. A Ratiometric Fluorescent Probe for Sensing Cu2+ Based on New Imidazo[1,5-a]Pyridine Fluorescent Dye. Sens. Actuators B Chem. 2017, 245, 875–881. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Wu, Y.; Liu, W.; Wang, Y.; Li, Y. Syntheses and Optical Properties of BODIPY Derivatives Based on Imidazo[1,5-a]Pyridine. Chem. Lett. 2015, 44, 645–647. [Google Scholar] [CrossRef]
- Chen, F.; Liu, A.; Ji, R.; Xu, Z.; Dong, J.; Ge, Y. A FRET-Based Probe for Detection of the Endogenous SO2 in Cells. Dye. Pigment. 2019, 165, 212–216. [Google Scholar] [CrossRef]
- Shen, S.-L.; Huang, X.-Q.; Zhang, Y.-Y.; Zhu, Y.; Hou, C.; Ge, Y.-Q.; Cao, X.-Q. Ratiometric Fluorescent Probe for the Detection of HOCl in Lysosomes Based on FRET Strategy. Sens. Actuators B Chem. 2018, 263, 252–257. [Google Scholar] [CrossRef]
- Song, G.-J.; Ma, H.-L.; Luo, J.; Cao, X.-Q.; Zhao, B.-X. A New Ratiometric Fluorescent Probe for Sensing HOC1 Based on TBET in Real Time. Dye. Pigment. 2018, 148, 206–211. [Google Scholar] [CrossRef]
- Strianese, M.; Brenna, S.; Ardizzoia, G.A.; Guarnieri, D.; Lamberti, M.; D’Auria, I.; Pellecchia, C. Imidazo-Pyridine-Based Zinc(II) Complexes as Fluorescent Hydrogen Sulfide Probes. Dalton Trans. 2021, 50, 17075–17085. [Google Scholar] [CrossRef] [PubMed]
- Murai, T.; Nagaya, E.; Shibahara, F.; Maruyama, T.; Nakazawa, H. Rhodium(I) and Iridium(I) Imidazo[1,5-a]Pyridine-1-Ylalkylalkoxy Complexes: Synthesis, Characterization and Application as Catalysts for Hydrosilylation of Alkynes. J. Organomet. Chem. 2015, 794, 76–80. [Google Scholar] [CrossRef]
- Wu, J.-J.; Cao, M.-L.; Ye, B.-H. Spontaneous Chiral Resolution of Mer-[CoII(N,N,O-L3)2] Enantiomers Mediated by π–π Interactions. Chem. Commun. 2010, 46, 3687–3689. [Google Scholar] [CrossRef] [PubMed]
- Ardizzoia, G.A.; Ghiotti, D.; Therrien, B.; Brenna, S. Homoleptic Complexes of Divalent Metals Bearing N,O-Bidentate Imidazo[1,5-a]Pyridine Ligands: Synthesis, X-Ray Characterization and Catalytic Activity in the Heck Reaction. Inorganica Chim. Acta 2018, 471, 384–390. [Google Scholar] [CrossRef]
- Dumur, F. Zinc Complexes in OLEDs: An Overview. Synth. Met. 2014, 195, 241–251. [Google Scholar] [CrossRef]
- Garino, C.; Ruiu, T.; Salassa, L.; Albertino, A.; Volpi, G.; Nervi, C.; Gobetto, R.; Hardcastle, K.I. Spectroscopic and Computational Study on New Blue Emitting ReL(CO)3Cl Complexes Containing Pyridylimidazo[1,5-a]Pyridine Ligands. Eur. J. Inorg. Chem. 2008, 2008, 3587–3591. [Google Scholar] [CrossRef]
- Blanco-Rodríguez, A.M.; Kvapilova, H.; Sykora, J.; Towrie, M.; Nervi, C.; Volpi, G.; Zalis, S.; Vlcek, A. Photophysics of Singlet and Triplet Intraligand Excited States in [ReCl(CO)3(1-(2-Pyridyl)-Imidazo[1,5-a]Pyridine)] Complexes. J. Am. Chem. Soc. 2014, 136, 5963–5973. [Google Scholar] [CrossRef]
- Volpi, G.; Garino, C.; Salassa, L.; Fiedler, J.; Hardcastle, K.I.; Gobetto, R.; Nervi, C. Cationic Heteroleptic Cyclometalated Iridium Complexes with 1-Pyridylimidazo[1,5-a]Pyridine Ligands: Exploitation of an Efficient Intersystem Crossing. Chem. A Eur. J. 2009, 15, 6415–6427. [Google Scholar] [CrossRef]
- Salassa, L.; Garino, C.; Albertino, A.; Volpi, G.; Nervi, C.; Gobetto, R.; Hardcastle, K.I. Computational and Spectroscopic Studies of New Rhenium(I) Complexes Containing Pyridylimidazo[1,5-a]Pyridine Ligands: Charge Transfer and Dual Emission by Fine-Tuning of Excited States. Organometallics 2008, 27, 1427–1435. [Google Scholar] [CrossRef]
- Giordano, M.; Volpi, G.; Bonomo, M.; Mariani, P.; Garino, C.; Viscardi, G. Methoxy-Substituted Copper Complexes as Possible Redox Mediators in Dye-Sensitized Solar Cells. New J. Chem. 2021, 45, 15303–15311. [Google Scholar] [CrossRef]
- Weber, M.D.; Garino, C.; Volpi, G.; Casamassa, E.; Milanesio, M.; Barolo, C.; Costa, R.D. Origin of a Counterintuitive Yellow Light-Emitting Electrochemical Cell Based on a Blue-Emitting Heteroleptic Copper(i) Complex. Dalton Trans. 2016, 45, 8984–8993. [Google Scholar] [CrossRef]
- Volpi, G.; Garino, C.; Conterosito, E.; Barolo, C.; Gobetto, R.; Viscardi, G. Facile Synthesis of Novel Blue Light and Large Stoke Shift Emitting Tetradentate Polyazines Based on Imidazo[1,5-a]Pyridine. Dye. Pigment. 2016, 128, 96–100. [Google Scholar] [CrossRef]
- Volpi, G.; Garino, C.; Priola, E.; Diana, E.; Gobetto, R.; Buscaino, R.; Viscardi, G.; Barolo, C. Facile Synthesis of Novel Blue Light and Large Stoke Shift Emitting Tetradentate Polyazines Based on Imidazo[1,5-a]Pyridine–Part 2. Dye. Pigment. 2017, 143, 284–290. [Google Scholar] [CrossRef]
- Ge, Y.-Q.; Wang, T.; Duan, G.Y.; Dong, L.H.; Cao, X.Q.; Wang, J.W. Synthesis, Characterization, Optical Properties and Theoretical Studies of Novel Substituted Imidazo[1,5-a]Pyridinyl 1,3,4-Oxadiazole Derivatives. J. Fluoresc. 2012, 22, 1531–1538. [Google Scholar] [CrossRef]
- Zhang, X.; Song, G.-J.; Cao, X.-J.; Liu, J.-T.; Chen, M.-Y.; Cao, X.-Q.; Zhao, B.-X. A New Fluorescent PH Probe for Acidic Conditions. RSC Adv. 2015, 5, 89827–89832. [Google Scholar] [CrossRef]
- Renno, G.; Cardano, F.; Volpi, G.; Barolo, C.; Viscardi, G.; Fin, A. Imidazo[1,5-a]Pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models. Molecules 2022, 27, 3856. [Google Scholar] [CrossRef] [PubMed]
- Shibahara, F.; Sugiura, R.; Yamaguchi, E.; Kitagawa, A.; Murai, T. Synthesis of Fluorescent 1,3-Diarylated Imidazo[1,5-a]Pyridines: Oxidative Condensation-Cyclization of Aryl-2-Pyridylmethylamines and Aldehydes with Elemental Sulfur as an Oxidant. J. Org. Chem. 2009, 74, 3566–3568. [Google Scholar] [CrossRef] [PubMed]
- Colombo, G.; Attilio Ardizzoia, G.; Brenna, S. Imidazo[1,5-a]Pyridine-Based Derivatives as Highly Fluorescent Dyes. Inorganica Chim. Acta 2022, 535, 120849. [Google Scholar] [CrossRef]
- Marchesi, A.; Brenna, S.; Ardizzoia, G.A. Synthesis and Emissive Properties of a Series of Tetrahydro (Imidazo[1,5-a]Pyrid-3-Yl)Phenols: A New Class of Large Stokes Shift Organic Dyes. Dye. Pigment. 2019, 161, 457–463. [Google Scholar] [CrossRef]
- Volpi, G.; Magistris, C.; Garino, C. FLUO-SPICES: Natural Aldehydes Extraction and One-Pot Reaction to Prepare and Characterize New Interesting Fluorophores. Educ. Chem. Eng. 2018, 24, 1–6. [Google Scholar] [CrossRef]
- Volpi, G.; Magistris, C.; Garino, C. Natural Aldehyde Extraction and Direct Preparation of New Blue Light-Emitting Imidazo[1,5-a]Pyridine Fluorophores. Nat. Prod. Res. 2018, 32, 2304–2311. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, L.M.; Volpi, G.; Fresta, E.; Garino, C.; Fin, A.; Barolo, C. Microwave-Assisted Synthesis, Optical and Theoretical Characterization of Novel 2-(Imidazo[1,5-a]Pyridine-1-Yl)Pyridinium Salts. Chemistry 2021, 3, 714–727. [Google Scholar] [CrossRef]
- Volpi, G.; Priola, E.; Garino, C.; Daolio, A.; Rabezzana, R.; Benzi, P.; Giordana, A.; Diana, E.; Gobetto, R. Blue Fluorescent Zinc(II) Complexes Based on Tunable Imidazo[1,5-a]Pyridines. Inorganica Chim. Acta 2020, 509, 119662. [Google Scholar] [CrossRef]
- Ardizzoia, G.A.; Colombo, G.; Therrien, B.; Brenna, S. Tuning the Fluorescence Emission and HOMO-LUMO Band Gap in Homoleptic Zinc(II) Complexes with N,O-Bidentate (Imidazo[1,5-a]Pyrid-3-Yl)Phenols. Eur. J. Inorg. Chem. 2019, 2019, 1825–1831. [Google Scholar] [CrossRef]
- Ardizzoia, G.A.; Brenna, S.; Durini, S.; Therrien, B. Synthesis and Characterization of Luminescent Zinc(II) Complexes with a N,N-Bidentate 1-Pyridylimidazo[1,5-a]Pyridine Ligand. Polyhedron 2015, 90, 214–220. [Google Scholar] [CrossRef]
- Priola, E.; Conterosito, E.; Giordana, A.; Volpi, G.; Garino, C.; Andreo, L.; Diana, E.; Barolo, C.; Milanesio, M. Polymorphism and Solid State Peculiarities in Imidazo[1,5-a]Pyridine Core Deriving Compounds: An Analysis of Energetic and Structural Driving Forces. J. Mol. Struct. 2022, 1253, 132175. [Google Scholar] [CrossRef]
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended tight-binding Quantum Chemistry Methods. WIREs Comput. Mol. Sci. 2021, 11, e1493. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Ozel, A.; Kecel Gunduz, S.; Akyuz, S. Vibrational Analysis and Quantum Chemical Calculations of 2,2′-Bipyridine Zinc(II) Halide Complexes. J. Mol. Struct. 2007, 834, 548–554. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ferraro, J.R. Low-Frequency Vibrations of Inorganic and Coordination Compounds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Forster, D.; Goodgame, D.M.L. Infrared Spectra (400-200 Cm−1) of Some Thiocyanate and Isothiocyanate Complexes. Inorg. Chem. 1965, 4, 715–718. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mason, R.; VanDerveer, D.; Feng, K.; Bu, X.R. Convenient Preparation of a Novel Class of Imidazo[1,5-a]Pyridines: Decisive Role by Ammonium Acetate in Chemoselectivity. J. Org. Chem. 2003, 68, 5415–5418. [Google Scholar] [CrossRef] [PubMed]
Compound | Absorption (nm) | Excitation (nm) | Emission (nm) | Stokes Shift (nm) | Quantum Yield (%) |
---|---|---|---|---|---|
L | 377 sh | 377 | 463 | 79 | 19 |
324 | |||||
[Zn(L)Cl2] | 395 sh | 376 | 462 sh | 64 | 32 |
376 | 440 | ||||
362 | 416 sh | ||||
[Zn(L)(NO3)2] | 394 sh | 375 | 462 sh 439 418 sh | 64 | 36 |
375 | |||||
363 | |||||
318 | |||||
294 sh | |||||
[Zn(L)2(NO3)](NO3) | 398 sh | 373 | 460 sh 435 415 sh | 62 | 35 |
373 | |||||
361 | |||||
322 | |||||
[Zn(L)3][Zn(SCN)4] | 395 sh | 374 | 460 sh 438 | 64 | 25 |
374 | |||||
359 | |||||
323 | |||||
296 sh |
Compound | Excitation (nm) | Emission (nm) | Stokes Shift (nm) | Quantum Yield (%) |
---|---|---|---|---|
L | 425 | 520 sh | 83 | 5 |
491 | ||||
460 | ||||
[Zn(L)Cl2] | 418 | 498 | 142 | 6 |
[Zn(L)(NO3)2] | 444 | 493 | 125 | 7 |
[Zn(L)2(NO3)](NO3) | 425 | 495 | 105 | 2 |
[Zn(L)3][Zn(SCN)4] | 423 | 475 | 91 | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerrato, V.; Volpi, G.; Priola, E.; Giordana, A.; Garino, C.; Rabezzana, R.; Diana, E. Mono-, Bis-, and Tris-Chelate Zn(II) Complexes with Imidazo[1,5-a]pyridine: Luminescence and Structural Dependence. Molecules 2023, 28, 3703. https://doi.org/10.3390/molecules28093703
Cerrato V, Volpi G, Priola E, Giordana A, Garino C, Rabezzana R, Diana E. Mono-, Bis-, and Tris-Chelate Zn(II) Complexes with Imidazo[1,5-a]pyridine: Luminescence and Structural Dependence. Molecules. 2023; 28(9):3703. https://doi.org/10.3390/molecules28093703
Chicago/Turabian StyleCerrato, Valerio, Giorgio Volpi, Emanuele Priola, Alessia Giordana, Claudio Garino, Roberto Rabezzana, and Eliano Diana. 2023. "Mono-, Bis-, and Tris-Chelate Zn(II) Complexes with Imidazo[1,5-a]pyridine: Luminescence and Structural Dependence" Molecules 28, no. 9: 3703. https://doi.org/10.3390/molecules28093703
APA StyleCerrato, V., Volpi, G., Priola, E., Giordana, A., Garino, C., Rabezzana, R., & Diana, E. (2023). Mono-, Bis-, and Tris-Chelate Zn(II) Complexes with Imidazo[1,5-a]pyridine: Luminescence and Structural Dependence. Molecules, 28(9), 3703. https://doi.org/10.3390/molecules28093703