Complementary Analysis for Undetectable Microplastics from Contact Lenses to Aquatic Environments via Fourier Transform Infrared Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. Method Validation of the Released MPs from Contact Lenses
2.2. Identification of Contact Lenses: Chemical Properties
Qualitative Analysis of Unused Contact Lenses
2.3. Release of MPs from Contact Lenses to Water
2.3.1. Qualitative Analysis of the Fragmented Contact Lens after Usage
2.3.2. Identification of the MPs Released from Fragmented Contact Lenses after Usage
2.3.3. MP/NP Release by Degradation
2.4. Environmental Implications
2.4.1. Generation of MPs
2.4.2. NP Generation: Are They Undetectable?
2.4.3. Hazardous Effect: Transfer of Pollutants to the Human Body, Intrinsic Toxicity
2.4.4. Daily Discharged Amounts to the Environment but Undetected by the Currently Used Method (micro-FTIR)
3. Materials and Methods
3.1. Materials
3.2. Experimental Design for MP Generation from Contact Lens Discharge
3.3. MP Identification via FTIR
3.4. Particle Size Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Morais, L.M.S.; Sarti, F.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T.; Filho, J.M. The sea anemone Bunodosoma cangicum as a potential biomonitor for microplastics contamination on the Brazilian Amazon coast. Environ. Pollut. 2020, 265, 114817. [Google Scholar] [CrossRef]
- Pegado, T.; Brabo, L.; Schmid, K.; Sarti, F.; Gava, T.T.; Nunes, J.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T. Ingestion of microplastics by Hypanus guttatus stingrays in the Western Atlantic Ocean (Brazilian Amazon Coast). Mar. Pollut. Bull. 2021, 162, 111799. [Google Scholar] [CrossRef]
- Devi, S.S.; Sreedevi, A.; Kumar, A. First report of microplastic ingestion by the alien fish Pirapitinga (Piaractus brachypomus) in the Ramsar site Vembanad Lake, south India. Mar. Pollut. Bull. 2020, 160, 111637. [Google Scholar] [CrossRef]
- Karami, A.; Golieskardi, A.; Bin Ho, Y.; Larat, V.; Salamatinia, B. Microplastics in eviscerated flesh and excised organs of dried fish. Sci. Rep. 2017, 7, 5473. [Google Scholar] [CrossRef]
- Gündoğdu, S. Contamination of table salts from Turkey with microplastics. Food Addit. Contam. Part A 2018, 35, 1006–1014. [Google Scholar] [CrossRef]
- Lee, P.S.; Jung, S. Quantitative analysis of microplastics coagulation-removal process for clean sea salt production. Int. J. Environ. Sci. Technol. 2022, 19, 5205–5216. [Google Scholar] [CrossRef]
- Li, Q.; Feng, Z.; Zhang, T.; Ma, C.; Shi, H. Microplastics in the commercial seaweed nori. J. Hazard. Mater. 2020, 388, 122060. [Google Scholar] [CrossRef]
- Collard, F.; Gilbert, B.; Compère, P.; Eppe, G.; Das, K.; Jauniaux, T.; Parmentier, E. Microplastics in livers of European anchovies (Engraulis encrasicolus L.). Environ. Pollut. 2017, 229, 1000–1005. [Google Scholar] [CrossRef]
- Vardar, S.; Onay, T.T.; Demirel, B.; Kideys, A.E. Evaluation of microplastics removal efficiency at a wastewater treatment plant discharging to the Sea of Marmara. Environ. Pollut. 2021, 289, 117862. [Google Scholar] [CrossRef]
- Alavian Petroody, S.S.; Hashemi, S.; van Gestel, C. Transport and accumulation of microplastics through wastewater treatment sludge processes. Chemosphere 2021, 278, 130471. [Google Scholar] [CrossRef]
- Sousa, M.C.; Decastro, M.; Gago, J.; Ribeiro, A.S.; Des, M.; Gómez-Gesteira, J.L.; Dias, J.M.; Gomez-Gesteira, M. Modelling the distribution of microplastics released by wastewater treatment plants in Ria de Vigo (NW Iberian Peninsula). Mar. Pollut. Bull. 2021, 166, 112227. [Google Scholar] [CrossRef]
- Kankanige, D.; Babel, S. Smaller-sized micro-plastics (MPs) contamination in single-use PET-bottled water in Thailand. Sci. Total Environ. 2020, 717, 137232. [Google Scholar] [CrossRef]
- Oßmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, S.; Chae, K.-J. Discharge of microplastics fibres from wet wipes in aquatic and solid environments under different release conditions. Sci. Total Environ. 2021, 784, 147144. [Google Scholar] [CrossRef]
- Su, Y.; Hu, X.; Tang, H.; Lu, K.; Li, H.; Liu, S.; Xing, B.; Ji, R. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. 2021, 17, 76–85. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Yousefi, N.; Tufenkji, N. Are There Nanoplastics in Your Personal Care Products? Environ. Sci. Technol. Lett. 2017, 4, 280–285. [Google Scholar] [CrossRef]
- Da Costa, J.P.; Santos, P.S.; Duarte, A.C.; Rocha-Santos, T. (Nano)plastics in the environment—Sources, fates and effects. Sci. Total Environ. 2016, 566–567, 15–26. [Google Scholar] [CrossRef]
- Mohana, A.A.; Farhad, S.; Haque, N.; Pramanik, B.K. Understanding the fate of nano-plastics in wastewater treatment plants and their removal using membrane processes. Chemosphere 2021, 284, 131430. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Zhao, Y.; Nurdebek, B.; Bu, Y.; Wang, D. Long-term exposure to polystyrene nanoparticles causes transgenerational toxicity by affecting the function and expression of MEV-1 and DAF-2 signals in Caenorhabditis elegans. NanoImpact 2022, 26, 100403. [Google Scholar] [CrossRef]
- Yuan, Z.; Nag, R.; Cummins, E. Human health concerns regarding microplastics in the aquatic environment—From marine to food systems. Sci. Total Environ. 2022, 823, 153730. [Google Scholar] [CrossRef]
- Mortensen, N.P.; Fennell, T.; Johnson, L. Unintended human ingestion of nanoplastics and small microplastics through drinking water, beverages, and food sources. NanoImpact 2021, 21, 100302. [Google Scholar] [CrossRef]
- Vitali, C.; Peters, R.J.; Janssen, H.-G.; Nielen, M.W. Microplastics and nanoplastics in food, water, and beverages; part I. Occurrence. TrAC Trends Anal. Chem. 2022, 159, 116670. [Google Scholar] [CrossRef]
- Schwarzfischer, M.; Niechcial, A.; Lee, S.S.; Sinnet, B.; Wawrzyniak, M.; Laimbacher, A.; Atrott, K.; Manzini, R.; Morsy, Y.; Häfliger, J.; et al. Ingested nano- and microsized polystyrene particles surpass the intestinal barrier and accumulate in the body. NanoImpact 2022, 25, 100374. [Google Scholar] [CrossRef]
- Rajendran, D.; Chandrasekaran, N.; Waychal, Y.; Mukherjee, A. Nanoplastics alter the conformation and activity of human serum albumin. NanoImpact 2022, 27, 100412. [Google Scholar] [CrossRef]
- Forest, V. Combined effects of nanoparticles and other environmental contaminants on human health—An issue often overlooked. NanoImpact 2021, 23, 100344. [Google Scholar] [CrossRef]
- Torres, F.G.; Dioses-Salinas, D.C.; Pizarro-Ortega, C.I.; De-La-Torre, G.E. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Sci. Total Environ. 2021, 757, 143875. [Google Scholar] [CrossRef]
- Lee, J.; Chae, K.-J. A systematic protocol of microplastics analysis from their identification to quantification in water environment: A comprehensive review. J. Hazard. Mater. 2021, 403, 124049. [Google Scholar] [CrossRef]
- Primpke, S.; Lorenz, C.; Rascher-Friesenhausen, R.; Gerdts, G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal. Methods 2017, 9, 1499–1511. [Google Scholar] [CrossRef]
- Xu, J.-L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
- Jung, J.-W.; Kim, S.; Kim, Y.-S.; Jeong, S.; Lee, J. Tracing microplastics from raw water to drinking water treatment plants in Busan, South Korea. Sci. Total Environ. 2022, 825, 154015. [Google Scholar] [CrossRef]
- Sarkar, D.J.; Das Sarkar, S.; Das, B.K.; Praharaj, J.K.; Mahajan, D.K.; Purokait, B.; Mohanty, T.R.; Mohanty, D.; Gogoi, P.; Kumar, S.; et al. Microplastics removal efficiency of drinking water treatment plant with pulse clarifier. J. Hazard. Mater. 2021, 413, 125347. [Google Scholar] [CrossRef]
- Simongini, C.; Pucetaite, M.; Serranti, S.; van Praagh, M.; Hammer, E.; Bonifazi, G. Microplastics identification in landfill leachates by different spectroscopic techniques. Detritus 2022, 18, 58–69. [Google Scholar] [CrossRef]
- Lee, J.; Wang, J.; Oh, Y.; Jeong, S. Highly efficient microplastics removal from water using in-situ ferrate coagulation: Performance evaluation by micro-Fourier-transformed infrared spectroscopy and coagulation mechanism. Chem. Eng. J. 2023, 451, 138556. [Google Scholar] [CrossRef]
- Lai, Y.-C. Effect of crosslinkers on photocopolymerization of N-vinylpyrrolidone and methacrylates to give hydrogels. J. Appl. Polym. Sci. 1997, 66, 1475–1484. [Google Scholar] [CrossRef]
- Lai, C.-F.; Li, J.-S.; Fang, Y.-T.; Chien, C.-J.; Lee, C.-H. UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC Adv. 2018, 8, 4006–4013. [Google Scholar] [CrossRef]
- Huang, Y.; Li, G.; Chu, F. In situ polymerization of 2-hydroxyethyl methacrylate (HEMA) and 3-(methacryloxy)propyltrimethoxysilane (MAPTES) in poplar cell wall to enhance its dimensional stability. Holzforschung 2019, 73, 469–474. [Google Scholar] [CrossRef]
- Samavedi, S. Synthetic Biomaterials for Regenerative Medicine Applications. In Regenerative Medicine Applications in Organ Transplantation; Orlando, G., Ed.; Academic Press: Boston, MA, USA, 2014; Chapter 7; pp. 81–99. [Google Scholar]
- Nilsson, S.E.G.; Lovsund, P.; Öberg, P.; Flordahl, L.-E. The transmittance and absorption properties of contact lenses. Scand. J. Work Environ. Health 1979, 3, 262–270. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 2016, 145, 265–268. [Google Scholar] [CrossRef]
- Li, P.; Li, Q.; Hao, Z.; Yu, S.; Liu, J. Analytical methods and environmental processes of nanoplastics. J. Environ. Sci. 2020, 94, 88–99. [Google Scholar] [CrossRef]
- Ali, I.; Ding, T.; Peng, C.; Naz, I.; Sun, H.; Li, J.; Liu, J. Micro- and nanoplastics in wastewater treatment plants: Occurrence, removal, fate, impacts and remediation technologies—A critical review. Chem. Eng. J. 2021, 423, 130205. [Google Scholar] [CrossRef]
- Lambert, S.; Sinclair, C.J.; Bradley, E.L.; Boxall, A.B. Effects of environmental conditions on latex degradation in aquatic systems. Sci. Total Environ. 2013, 447, 225–234. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef]
- Efron, N.; Maldonado-Codina, C. 7.35 Development of Contact Lenses from a Biomaterial Point of View: Materials, Manufacture, and Clinical Application. In Comprehensive Biomaterials II.; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 686–714. [Google Scholar]
- Liu, J.; Ma, Y.; Zhu, D.; Xia, T.; Qi, Y.; Yao, Y.; Guo, X.; Ji, R.; Chen, W. Polystyrene Nanoplastics-Enhanced Contaminant Transport: Role of Irreversible Adsorption in Glassy Polymeric Domain. Environ. Sci. Technol. 2018, 52, 2677–2685. [Google Scholar] [CrossRef]
- Yu, F.; Yang, C.; Zhu, Z.; Bai, X.; Ma, J. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total Environ. 2019, 694, 133643. [Google Scholar] [CrossRef]
- Sack, R.A.; Jones, B.; Antignani, A.; Libow, R.; Harvey, H. Specificity and biological activity of the protein deposited on the hydrogel surface. Relationship of polymer structure to biofilm formation. Investig. Ophthalmol. Vis. Sci. 1987, 28, 842–849. [Google Scholar]
- Maïssa, C.; Franklin, V.A.L.E.R.I.E.; Guillon, M.I.C.H.E.L.; Tighe, B.R.I.A.N. Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optom. Vis. Sci. 1998, 75, 697–705. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Deng, Y.; Yan, Z.; Shen, R.; Wang, M.; Huang, Y.; Ren, H.; Zhang, Y.; Lemos, B. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. Environ. Int. 2020, 143, 105916. [Google Scholar] [CrossRef]
- Parsai, T.; Figueiredo, N.; Dalvi, V.; Martins, M.; Malik, A.; Kumar, A. Implication of microplastic toxicity on functioning of microalgae in aquatic system. Environ. Pollut. 2022, 308, 119626. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Int-Veen, I.; Löder, M.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017, 108, 365–372. [Google Scholar] [CrossRef]
- Associates, M.E. How do I Actually Dispose of My Disposable Contact Lenses? 2019. Available online: https://www.matossianeye.com/dispose-contact-lenses/ (accessed on 2 April 2023).
- Djebaili, K.; Mekhalif, Z.; Boumaza, A.; Djelloul, A.X.P.S. XPS, FTIR, EDX, and XRD Analysis of Al2O3 Scales Grown on PM2000 Alloy. J. Spectrosc. 2015, 2015, 868109. [Google Scholar] [CrossRef]
(a) Contact Lens A | Detected MPs | Undetected MPs | ||
---|---|---|---|---|
Number of MPs | Proportion (%) | Number of MPs | Proportion (%) | |
Total | 1696 | 97.70 | 40 | 2.30 |
>100 µm | 484 | 27.88 | 32 | 1.84 |
50–100 µm | 792 | 45.62 | 8 | 0.46 |
20–50 µm | 420 | 24.19 | 0 | 0.00 |
(b) Contact Lens B | Detected MPs | Undetected MPs | ||
Number of MPs | Proportion (%) | Number of MPs | Proportion (%) | |
Total | 5332 | 99.26 | 32 | 0.60 |
>100 µm | 2628 | 48.99 | 32 | 0.60 |
50–100 µm | 1792 | 33.41 | 0 | 0.00 |
20–50 µm | 912 | 17.00 | 0 | 0.00 |
Contact Lens Waste (g/Day) | Number of MPs Released from Contact Lens Wastes (Particle/g of Contact Lens·Day) | ||
---|---|---|---|
Estimation | Weight of individual dried contact lens (g) | (0.0167 ± 0.0004) g | |
People wearing contact lenses | 45 million people | ||
Number of contact lenses discharged into toilet/basins | One fifth | ||
Formula | (45 million × 1/5) × (0.0167 × 2) g | ||
Estimated results | 300,600 g/day | 5653.3–17,773.3 p/g·day |
Real-Life Conditions | Simulation in the Lab |
---|---|
1. Contact lenses are removed from the eyes: getting dried | |
Unused contact lenses in the case | |
2. Rubbed off by the hands of the user | |
a. Getting dried state | Drying in the desiccator |
b. Fragmentation | Grinding with a mortar and pestle |
3. Disposal to the toilet/basin/sewage system | |
a. Staying in aquatic environments | Immersed in DI water |
4. In the case of degradation of contact lens fragments under decomposing conditions | |
a. NPs generation by degradation | b. HCl treatment to accelerate decomposing conditions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, Y.; Lee, J.; Kang, M.; Jeong, S. Complementary Analysis for Undetectable Microplastics from Contact Lenses to Aquatic Environments via Fourier Transform Infrared Spectroscopy. Molecules 2023, 28, 3713. https://doi.org/10.3390/molecules28093713
Lee J, Lee Y, Lee J, Kang M, Jeong S. Complementary Analysis for Undetectable Microplastics from Contact Lenses to Aquatic Environments via Fourier Transform Infrared Spectroscopy. Molecules. 2023; 28(9):3713. https://doi.org/10.3390/molecules28093713
Chicago/Turabian StyleLee, Jieun, Yejin Lee, Jeonghyeon Lee, Minseong Kang, and Sanghyun Jeong. 2023. "Complementary Analysis for Undetectable Microplastics from Contact Lenses to Aquatic Environments via Fourier Transform Infrared Spectroscopy" Molecules 28, no. 9: 3713. https://doi.org/10.3390/molecules28093713
APA StyleLee, J., Lee, Y., Lee, J., Kang, M., & Jeong, S. (2023). Complementary Analysis for Undetectable Microplastics from Contact Lenses to Aquatic Environments via Fourier Transform Infrared Spectroscopy. Molecules, 28(9), 3713. https://doi.org/10.3390/molecules28093713