Silver Ion High-Performance Liquid Chromatography—Atmospheric Pressure Chemical Ionization Mass Spectrometry: A Tool for Analyzing Cuticular Hydrocarbons
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ag-HPLC of Hydrocarbons
2.2. The APCI-MS Detection of HCs Separated by HPLC
2.3. Cuticular HCs of N. bullata
2.4. Cuticular HCs of P. americana
3. Materials and Methods
3.1. Chemicals and Materials
3.2. HPLC/APCI-MS
3.3. NMR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kunst, L.; Samuels, A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42, 51–80. [Google Scholar] [CrossRef]
- Blomquist, G.J.; Bagneres, A.G. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. In Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology; Cambridge University Press: Cambridge, UK, 2010; pp. 1–492. [Google Scholar] [CrossRef]
- Howard, R.W.; Blomquist, G.J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 2005, 50, 371–393. [Google Scholar] [CrossRef]
- Monnin, T. Chemical recognition of reproductive status in social insects. Ann. Zool. Fenn. 2006, 43, 515–530. [Google Scholar]
- Fu, W.J.; Chi, Z.; Ma, Z.C.; Zhou, H.X.; Liu, G.L.; Lee, C.F.; Chi, Z.M. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl. Microbiol. Biotechnol. 2015, 99, 7481–7494. [Google Scholar] [CrossRef]
- Sutton, P.A.; Rowland, S.J. High temperature gas chromatography-time-of-flight-mass spectrometry (HTGC-ToF-MS) for high-boiling compounds. J. Chromatogr. A 2012, 1243, 69–80. [Google Scholar] [CrossRef]
- Sutton, P.A.; Wilde, M.J.; Martin, S.J.; Cvačka, J.; Vrkoslav, V.; Rowland, S.J. Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography-mass spectrometry. J. Chromatogr. A 2013, 1297, 236–240. [Google Scholar] [CrossRef]
- Ludanyi, K.; Dallos, A.; Kuhn, Z.; Vekey, K. Mass spectrometry of very large saturated hydrocarbons. J. Mass Spectrom. 1999, 34, 264–267. [Google Scholar] [CrossRef]
- Amirav, A.; Gordin, A.; Hagooly, Y.; Rozen, S.; Belgorodsky, B.; Seemann, B.; Marom, H.; Gozin, M.; Fialkov, A.B. Measurement and optimization of organic chemical reaction yields by GC-MS with supersonic molecular beams. Tetrahedron 2012, 68, 5793–5799. [Google Scholar] [CrossRef]
- Fialkov, A.B.; Gordin, A.; Amirav, A. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry—The novel concept of isomer abundance analysis. J. Chromatogr. A 2008, 1195, 127–135. [Google Scholar] [CrossRef]
- Ryska, M.; Kuras, M.; Mostecky, J. Phenomenology of adsorption processes on emitters in field-ionization of hydrocarbon mixtures. Int. J. Mass Spectrom. 1975, 16, 257–267. [Google Scholar] [CrossRef]
- Gross, J.H.; Vekey, K.; Dallos, A. Field desorption mass spectrometry of large multiply branched saturated Hydrocarbons. J. Mass Spectrom. 2001, 36, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Schaub, T.M.; Hendrickson, C.L.; Quinn, J.P.; Rodgers, R.P.; Marshall, A.G. Instrumentation and method for ultrahigh resolution field desorption ionization Fourier transform ion cyclotron resonance mass spectrometry of nonpolar species. Anal. Chem. 2005, 77, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.F.; Viidanoja, J.; Li, M.Z.; Zhang, Y.Y.; Ikonen, E.; Root, A.; Romanczyk, M.; Manheim, J.; Dziekonski, E.; Kenttamaa, H.I. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons. Anal. Chem. 2016, 88, 10592–10598. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, Q.; Zhang, Y.; Zhao, S.; Zhang, R.; Chung, K.H.; Xu, C. Analysis of Saturated Hydrocarbons by Redox Reaction with Negative-Ion Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2012, 84, 3192–3199. [Google Scholar] [CrossRef]
- Campbell, J.L.; Crawford, K.E.; Kenttamaa, H.I. Analysis of saturated hydrocarbons by using chemical ionization combined with laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2004, 76, 959–963. [Google Scholar] [CrossRef]
- Nyadong, L.; Quinn, J.P.; Hsu, C.S.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Atmospheric Pressure Laser-Induced Acoustic Desorption Chemical Ionization Mass Spectrometry for Analysis of Saturated Hydrocarbons. Anal. Chem. 2012, 84, 7131–7137. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yalcin, T.; Wallace, W.E.; Guttman, C.M.; Li, L. Laser desorption ionization and MALDI time-of-flight mass spectrometry for low molecular mass polyethylene analysis. J. Am. Soc. Mass Spectrom. 2001, 12, 1186–1192. [Google Scholar] [CrossRef]
- Yalcin, T.; Schriemer, D.C.; Li, L. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the analysis of polydienes. J. Am. Soc. Mass Spectrom. 1997, 8, 1220–1229. [Google Scholar] [CrossRef]
- Cvačka, J.; Svatoš, A. Matrix-assisted laser desorption/ionization analysis of lipids and high molecular weight hydrocarbons with lithium 2,5-dihydroxybenzoate matrix. Rapid Commun. Mass Spectrom. 2003, 17, 2203–2207. [Google Scholar] [CrossRef]
- Vrkoslav, V.; Muck, A.; Cvačka, J.; Svatoš, A. MALDI Imaging of Neutral Cuticular Lipids in Insects and Plants. J. Am. Soc. Mass Spectrom. 2010, 21, 220–231. [Google Scholar] [CrossRef]
- Lorente, E.; Berrueco, C.; Herod, A.A.; Millan, M.; Kandiyoti, R. The detection of high-mass aliphatics in petroleum by matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Cvačka, J.; Jiroš, P.; Šobotník, J.; Hanus, R.; Svatoš, A. Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. J. Chem. Ecol. 2006, 32, 409–434. [Google Scholar] [CrossRef] [PubMed]
- Golian, M.; Bien, T.; Schmelzle, S.; Esparza-Mora, M.A.; McMahon, D.P.; Dreisewerd, K.; Buellesbach, J. Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects. Insects 2022, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Yew, J.Y.; Cody, R.B.; Kravitz, E.A. Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. USA 2008, 105, 7135–7140. [Google Scholar] [CrossRef] [PubMed]
- Cody, R.B.; Dane, A.J. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H.; Attygalle, A.B. Aliphatic Hydrocarbon Spectra by Helium Ionization Mass Spectrometry (HIMS) on a Modified Atmospheric-Pressure Source Designed for Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2011, 22, 1395–1402. [Google Scholar] [CrossRef]
- Kaminski, M.; Kartanowicz, R.; Gilgenast, E.; Namiesnik, J. High-performance liquid chromatography in group-type separation and technical or process analytics of petroleum products. Crit. Rev. Anal. Chem. 2005, 35, 193–216. [Google Scholar] [CrossRef]
- Hayes, P.C.; Anderson, S.D. The analysis of hydrocarbon distillates for group types using HPLC with dielectric-constant detection—A review. J. Chromatogr. Sci. 1988, 26, 210–216. [Google Scholar] [CrossRef]
- Benson, G.A.; Lennon, M. Indirect photometric detection of straight chain hydrocarbons separated by reverse phase HPLC. J. High Resolut. Chromatogr. 1987, 10, 109–110. [Google Scholar] [CrossRef]
- Hayes, P.C.; Anderson, S.D. Hydrocarbon group type analyzer system for the rapid determination of saturates, olefins, and aromatics in hydrocarbon distillate products. Anal. Chem. 1986, 58, 2384–2388. [Google Scholar] [CrossRef]
- Bartelt, N.C.; Einstein, T.L.; Roelofs, L.D. Transfer-matrix approach to estimating coverage discontinuities and multicritical-point positions in two-dimensional lattice-gas phase diagrams. Phys. Rev. B 1986, 34, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Grushka, E. Silver loaded aluminosilicate as a stationary phase for liquid-chromatographic separation of unsaturated compounds. J. Chromatogr. Sci. 1977, 15, 234–238. [Google Scholar] [CrossRef]
- Dobson, G.; Christie, W.W.; Nikolovadamyanova, B. Silver ion chromatography of lipids and fatty acids. J. Chromatogr. B 1995, 671, 197–222. [Google Scholar] [CrossRef]
- Nikolova-Damyanova, B. Retention of lipids in silver ion high-performance liquid chromatography: Facts and assumptions. J. Chromatogr. A 2009, 1216, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- Adlof, R. Analysis of triacylglycerol and fatty acid isomers by low-temperature silver-ion high performance liquid chromatography with acetonitrile in hexane as solvent: Limitations of the methodology. J. Chromatogr. A 2007, 1148, 256–259. [Google Scholar] [CrossRef]
- Sehat, N.; Rickert, R.; Mossoba, M.M.; Kramer, J.K.G.; Yurawecz, M.P.; Roach, J.A.G.; Adlof, R.O.; Morehouse, K.M.; Fritsche, J.; Eulitz, K.D.; et al. Improved separation of conjugated fatty acid methyl esters by silver ion-high-performance liquid chromatography. Lipids 1999, 34, 407–413. [Google Scholar] [CrossRef]
- Adlof, R.O. Separation of cis and trans unsaturated fatty acid methyl esters by silver ion high-performance liquid chromatography. J. Chromatogr. A 1994, 659, 95–99. [Google Scholar] [CrossRef]
- Nikolovadamyanova, B.; Herslof, B.G.; Christie, W.W. Silver ion high-performance liquid-chromatography of derivatives of isomeric fatty acids. J. Chromatogr. A 1992, 609, 133–140. [Google Scholar] [CrossRef]
- Nikolova-Damyanova, B.; Christie, W.W.; Herslof, B. Silver ion high-performance liquid chromatography of esters of isomeric octadecenoic fatty acids with short-chain monounsaturated alcohols. J. Chromatogr. A 1995, 693, 235–239. [Google Scholar] [CrossRef]
- Momchilova, S.M.; Nikolova-Damyanova, B.M. Advances in Silver Ion Chromatography for the Analysis of Fatty Acids and Triacylglycerols—2001 to 2011. Anal. Sci. 2012, 28, 837–844. [Google Scholar] [CrossRef]
- Cvačka, J.; Hovorka, O.; Jiroš, P.; Kindl, J.; Stránský, K.; Valterová, I. Analysis of triacylglycerols in fat body of bumblebees by chromatographic methods. J. Chromatogr. A 2006, 1101, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Lisa, M.; Velinska, H.; Holcapek, M. Regioisomeric Characterization of Triacylglycerols Using Silver-Ion HPLC/MS and Randomization Synthesis of Standards. Anal. Chem. 2009, 81, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Lisa, M.; Netusilova, K.; Franek, L.; Dvorakova, H.; Vrkoslav, V.; Holcapek, M. Characterization of fatty acid and triacylglycerol composition in animal fats using silver-ion and non-aqueous reversed-phase high-performance liquid chromatography/mass spectrometry and gas chromatography/flame ionization detection. J. Chromatogr. A 2011, 1218, 7499–7510. [Google Scholar] [CrossRef]
- Nordback, J.; Lundberg, E. High resolution separation of nonpolar lipid classes by HPLC-ELSD using alumina as stationary phase. J. High Resolut. Chromatog. 1999, 22, 483–486. [Google Scholar] [CrossRef]
- Gao, J.S.; Owen, B.C.; Borton, D.J.; Jin, Z.C.; Kenttamaa, H.I. HPLC/APCI Mass Spectrometry of Saturated and Unsaturated Hydrocarbons by Using Hydrocarbon Solvents as the APCI Reagent and HPLC Mobile Phase. J. Am. Soc. Mass Spectrom. 2012, 23, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Tose, L.V.; Cardoso, F.M.R.; Fleming, F.P.; Vicente, M.A.; Silva, S.R.C.; Aquije, G.; Vaz, B.G.; Romao, W. Analyzes of hydrocarbons by atmosphere pressure chemical ionization FT-ICR mass spectrometry using isooctane as ionizing reagent. Fuel 2015, 153, 346–354. [Google Scholar] [CrossRef]
- Hourani, N.; Kuhnert, N. High molecular weight nonpolar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 2365–2371. [Google Scholar] [CrossRef] [PubMed]
- Tose, L.V.; Silva, S.K.C.; Barros, E.V.; Souza, L.M.; Pinto, F.E.; Palomino, D.K.; Freitas, J.C.C.; Thompson, C.J.; Vaz, B.G.; Lacerda, V.; et al. APCI(+)FT-ICR MS Analysis of Hydrocarbons Using Isooctane as Ionizing Reagent—A Comparison with HTGC-FID, GCxGC-MS and NMR. J. Braz. Chem. Soc. 2019, 30, 997–1009. [Google Scholar] [CrossRef]
- Manheim, J.M.; Milton, J.R.; Zhang, Y.; Kenttämaa, H.I. Fragmentation of Saturated Hydrocarbons upon Atmospheric Pressure Chemical Ionization Is Caused by Proton-Transfer Reactions. Anal. Chem. 2020, 92, 8883–8892. [Google Scholar] [CrossRef]
- Strmeň, T.; Vrkoslav, V.; Bosáková, Z.; Cvačka, J. Atmospheric pressure chemical ionization mass spectrometry at low flow rates: Importance of ion source housing. Rapid Commun. Mass Spectrom. 2020, 34, e8722. [Google Scholar] [CrossRef]
- Owen, B.C.; Gao, J.; Borton, D.J., II; Amundson, L.M.; Archibold, E.F.; Tan, X.; Azyat, K.; Tykwinski, R.; Gray, M.; Kenttaemaa, H.I. Carbon disulfide reagent allows the characterization of nonpolar analytes by atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 1924–1928. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, S. Improved Abundance Sensitivity of Molecular Ions in Positive-Ion APCI MS Analysis of Petroleum in Toluene. J. Am. Soc. Mass Spectrom. 2010, 21, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.L.; Armold, M.T.; Regnier, F.E. Cuticular lipids of adult fleshflies, Sarcophaga bullata. Insect Biochem. 1974, 4, 369–379. [Google Scholar] [CrossRef]
- Armold, M.T.; Regnier, F.E. Developmental-study of cuticular hydrocarbons of Sarcophaga bullata. J. Insect Physiol. 1975, 21, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Vrkoslav, V.; Urbanová, K.; Haková, M.; Cvačka, J. Analysis of wax esters by silver-ion high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2013, 1302, 105–110. [Google Scholar] [CrossRef]
- Jeffrey, B.S.J. Silver-complexation liquid-chromatography for fast, high-resolution separations of triacylglycerols. J. Am. Oil Che. Soc. 1991, 68, 289–293. [Google Scholar] [CrossRef]
- Adlof, R.; List, G. Analysis of triglyceride isomers by silver-ion high-performance liquid chromatography—Effect of column temperature on retention times. J. Chromatogr. A 2004, 1046, 109–113. [Google Scholar] [CrossRef]
- Vrkoslav, V.; Urbanová, K.; Cvačka, J. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 2010, 1217, 4184–4194. [Google Scholar] [CrossRef]
- Holčapek, M.; Lísa, M.; Jandera, P.; Kabátová, N. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 2005, 28, 1315–1333. [Google Scholar] [CrossRef]
- Marotta, E.; Paradisi, C. A Mass Spectrometry Study of Alkanes in Air Plasma at Atmospheric Pressure. J. Am. Soc. Mass Spectrom. 2009, 20, 697–707. [Google Scholar] [CrossRef]
- Vrkoslav, V.; Cvačka, J. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 2012, 1259, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Gilby, A.R.; Cox, M.E. The cuticular lipids of the cockroach, Periplaneta americana (L.). J. Insect Physiol. 1963, 9, 671–681. [Google Scholar] [CrossRef]
- Jackson, L.L. Cuticular lipids of insects. 4. Hydrocarbons of cockroaches Periplaneta japonica and Periplaneta americana compared to other cockroach hydrocarbons. Comp. Biochem. Physiol. 1972, 41, 331–336. [Google Scholar] [CrossRef]
- Said, I.; Costagliola, G.; Leoncini, I.; Rivault, C. Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). J. Insect Physiol. 2005, 51, 995–1003. [Google Scholar] [CrossRef]
Solvent System | Solvent A (vol.%) | Solvent B (vol.%) |
---|---|---|
I | hexane/acetonitrile/2-propanol (99.95/0.025/0.025) | hexane/acetonitrile/2-propanol (98.0/1.0/1.0) |
II | isooctane/acetonitrile/2-propanol (99.95/0.025/0.025) | isooctane/acetonitrile/2-propanol (98.0/1.0/1.0) |
III | Hexane | Toluene |
Solvent System | T (°C) | Retention Time of the Most Abundant Peak (min) | |||
---|---|---|---|---|---|
Saturated | Monounsaturated | Diunsaturated | Triunsaturated | ||
I | 15 | 6.7 | 28.1 | 66.1 | 66.1 |
25 | 6.5 | 16.0 | 61.0 | 66.5 | |
35 | 6.5 | 16.5 | 54.5 | 60.1 | |
II | 15 | 6.5 | 16.5 | 61.1 | 64.1 |
25 | 6.5 | 16.5 | 54.7 | 58.2 | |
35 | 6.6 | 17.0 | 52.2 | 56.2 | |
III | 15 | 6.5 | 22.9 | 74.1 | 130.1 |
25 | 6.4 | 18.9 | 65.3 | 115.4 | |
35 | 6.3 | 17.9 | 59.3 | 102.5 |
Peak No. | Rt (min) | CN:DB 1 | Relative Peak Area (%) 2 | Peak No. | Rt (min) | CN:DB 1 | Relative Peak Area (%) 2 |
---|---|---|---|---|---|---|---|
0 double bond(s) | 1.3 | ||||||
1 | 6.45 | 49:0 | 5.9 | 13 | 6.50 | 37:0 | 1.2 |
2 | 6.45 | 48:0 | 1.4 | 14 | 6.50 | 36:0 | 1.1 |
3 | 6.48 | 47:0 | 11.3 | 15 | 6.52 | 35:0 | 2.0 |
4 | 6.48 | 46:0 | 2.0 | 16 | 6.52 | 34:0 | 1.6 |
5 | 6.50 | 45:0 | 11.3 | 17 | 6.54 | 33:0 | 5.4 |
6 | 6.50 | 44:0 | 2.0 | 18 | 6.54 | 32:0 | 6.0 |
7 | 6.50 | 43:0 | 7.1 | 19 | 6.56 | 31:0 | 5.4 |
8 | 6.50 | 42:0 | 1.9 | 20 | 6.56 | 30:0 | 13.1 |
9 | 6.50 | 41:0 | 2.4 | 21 | 6.56 | 29:0 | 4.8 |
10 | 6.50 | 40:0 | 1.3 | 22 | 6.56 | 28:0 | 4.8 |
11 | 6.50 | 39:0 | 1.7 | 23 | 6.56 | 27:0 | 2.9 |
12 | 6.50 | 38:0 | 1.2 | 24 | 6.56 | 26:0 | 2.3 |
1 double bond(s) | 37.9 | ||||||
25 | 30.28 | 47:1 | 3.9 | 37 | 31.17 | 37:1 | 11.8 |
26 | 30.34 | 46:1 | 0.6 | 38 | 31.19 | 36:1 | 2.4 |
27 | 30.36 | 45:1 | 5.8 | 39 | 31.30 | 35:1 | 1.6 |
28 | 30.50 | 44:1 | 0.8 | 40 | 31.38 | 34:1 | 0.8 |
29 | 30.50 | 43:1 | 5.1 | 41 | 31.46 | 33:1 | 0.5 |
30 | 30.67 | 42:1 | 11.7 | 42 | 31.46 | 32:1 | 1.2 |
31 | 30.73 | 40:1 | 10.7 | 43 | 31.61 | 31:1 | 2.0 |
32 | 30.86 | 41:1 | 4.1 | 44 | 31.69 | 30:1 | 0.4 |
33 | 30.86 | 40:1 | 8.7 | 45 | 31.73 | 28:1 | 0.4 |
34 | 30.93 | 38:1 | 7.2 | 46 | 31.77 | 29:1 | 2.1 |
35 | 30.95 | 39:1 | 12.1 | 47 | 31.92 | 27:1 | 1.3 |
36 | 31.04 | 38:1 | 5.0 | ||||
2 double bond(s) | 43.1 | ||||||
48 | 55.38 | 45:2 | 0.6 | 73 | 66.48 | 45:2 | 1.7 |
49 | 62.18 | 41:2 | 0.1 | 74 | 66.82 | 44:2 | 2.3 |
50 | 62.77 | 39:2 | 0.2 | 75 | 66.84 | 40:2 | 0.2 |
51 | 62.93 | 41:2 | 0.4 | 76 | 67.12 | 43:2 | 8.0 |
52 | 63.53 | 43:2 | 0.1 | 77 | 67.16 | 39:2 | 1.7 |
53 | 63.60 | 39:2 | 1.6 | 78 | 67.45 | 37:2 | 0.1 |
54 | 63.75 | 45:2 | 0.2 | 79 | 67.45 | 42:2 | 3.1 |
55 | 63.91 | 41:2 | 1.1 | 80 | 67.63 | 41:2 | 22.8 |
56 | 64.25 | 37:2 | 0.2 | 81 | 67.97 | 40:2 | 1.7 |
57 | 64.34 | 43:2 | 0.3 | 82 | 68.27 | 39:2 | 10.4 |
58 | 64.36 | 39:2 | 1.4 | 83 | 68.47 | 38:2 | 0.1 |
59 | 64.51 | 45:2 | 0.4 | 84 | 68.81 | 38:2 | 0.1 |
60 | 64.80 | 41:2 | 0.4 | 85 | 68.85 | 46:2 | 0.6 |
61 | 65.03 | 37:2 | 0.3 | 86 | 69.12 | 37:2 | 0.8 |
62 | 65.05 | 43:2 | 0.9 | 87 | 69.43 | 45:2 | 0.2 |
63 | 65.07 | 46:2 | 0.3 | 88 | 69.64 | 44:2 | 1.7 |
64 | 65.22 | 39:2 | 0.5 | 89 | 70.13 | 43:2 | 0.8 |
65 | 65.55 | 44:2 | 0.5 | 90 | 70.37 | 42:2 | 18.1 |
66 | 65.71 | 37:2 | 0.1 | 91 | 70.73 | 41:2 | 2.5 |
67 | 65.71 | 41:2 | 1.8 | 92 | 70.86 | 40:2 | 0.4 |
68 | 65.86 | 43:2 | 1.7 | 93 | 71.23 | 39:2 | 2.6 |
69 | 66.17 | 39:2 | 0.4 | 94 | 71.32 | 40:2 | 0.6 |
70 | 66.26 | 42:2 | 0.6 | 95 | 71.74 | 38:2 | 0.2 |
71 | 66.26 | 46:2 | 1.0 | 96 | 71.90 | 37:2 | 0.2 |
72 | 66.42 | 41:2 | 3.9 | ||||
3 double bond(s) | 17.7 | ||||||
97 | 99.90 | 47:3 | 0.6 | 117 | 106.23 | 43:3 | 1.6 |
98 | 100.73 | 47:3 | 0.6 | 118 | 106.83 | 41:3 | 13.9 |
99 | 101.33 | 45:3 | 1.3 | 119 | 106.97 | 45:3 | 1.9 |
100 | 101.53 | 47:3 | 3.0 | 120 | 107.30 | 49:3 | 0.4 |
101 | 102.12 | 45:3 | 1.7 | 121 | 107.52 | 43:3 | 1.9 |
102 | 102.58 | 47:3 | 0.9 | 122 | 107.86 | 41:3 | 2.6 |
103 | 103.01 | 45:3 | 7.5 | 123 | 107.90 | 45:3 | 0.8 |
104 | 103.5 | 43:3 | 0.9 | 124 | 108.60 | 43:3 | 3.9 |
105 | 103.69 | 44:3 | 0.6 | 125 | 108.94 | 39:3 | 0.4 |
106 | 103.84 | 45:3 | 4.2 | 126 | 108.97 | 41:3 | 0.5 |
107 | 104.44 | 47:3 | 0.4 | 127 | 109.43 | 39:3 | 0.3 |
108 | 104.55 | 43:3 | 22.0 | 128 | 109.52 | 43:3 | 1.4 |
109 | 104.55 | 44:3 | 0.4 | 129 | 110.31 | 41:3 | 4.2 |
110 | 104.94 | 45:3 | 1.2 | 130 | 110.77 | 43:3 | 0.4 |
111 | 105.10 | 41:3 | 0.6 | 131 | 111.37 | 41:3 | 2.0 |
112 | 105.18 | 42:3 | 0.6 | 132 | 112.33 | 41:3 | 0.9 |
113 | 105.20 | 43:3 | 13.0 | 133 | 113.05 | 39:3 | 0.7 |
114 | 105.49 | 47:3 | 0.7 | 134 | 113.76 | 41:3 | 0.3 |
115 | 105.92 | 45:3 | 0.5 | 135 | 114.17 | 39:3 | 0.5 |
116 | 106.03 | 42:3 | 0.5 | 136 | 114.21 | 43:3 | 0.2 |
Peak No. | Rt (min) | CN:DB 1 | Relative Peak Area (%) 2 | Peak No. | Rt (min) | CN:DB 1 | Relative Peak Area (%) 2 |
---|---|---|---|---|---|---|---|
0 double bond(s) | 2.5 | ||||||
1 | 6.47 | 63:0 | 1.4 | 17 | 6.52 | 47:0 | 1.8 |
3 | 6.49 | 62:0 | 1.0 | 18 | 6.52 | 46:0 | 2.5 |
4 | 6.49 | 61:0 | 0.8 | 19 | 6.52 | 45:0 | 4.3 |
5 | 6.49 | 60:0 | 1.2 | 20 | 6.52 | 44:0 | 17.8 |
6 | 6.50 | 59:0 | 0.8 | 21 | 6.54 | 43:0 | 6.3 |
7 | 6.50 | 58:0 | 1.1 | 22 | 6.54 | 42:0 | 25.0 |
7 | 6.50 | 57:0 | 0.9 | 23 | 6.54 | 41:0 | 2.8 |
8 | 6.50 | 56:0 | 1.2 | 24 | 6.54 | 40:0 | 4.4 |
9 | 6.51 | 55:0 | 0.8 | 25 | 6.55 | 39:0 | 0.9 |
10 | 6.51 | 54:0 | 1.1 | 26 | 6.58 | 30:0 | 0.7 |
11 | 6.51 | 53:0 | 0.7 | 27 | 6.59 | 29:0 | 6.6 |
12 | 6.51 | 52:0 | 1.3 | 38 | 6.59 | 28:0 | 1.4 |
13 | 6.51 | 51:0 | 1.0 | 29 | 6.59 | 27:0 | 1.5 |
14 | 6.52 | 50:0 | 1.6 | 33 | 6.59 | 26:0 | 5.2 |
15 | 6.52 | 49:0 | 1.3 | 31 | 6.59 | 25:0 | 1.0 |
16 | 6.52 | 48:0 | 1.8 | ||||
1 double bond(s) | 17.0 | ||||||
32 | 29.11 | 43:1 | 40.8 | 36 | 29.90 | 27:1 | 0.3 |
33 | 29.14 | 27:1 | 0.4 | 37 | 29.98 | 45:1 | 2.3 |
34 | 29.23 | 41:1 | 50.6 | 38 | 30.20 | 27:1 | 4.0 |
35 | 29.24 | 40:1 | 1.6 | ||||
2 double bond(s) | 65.3 | ||||||
39 | 66.14 | 29:2 | 0.4 | 41 | 66.38 | 27:2 | 99.3 |
40 | 66.19 | 28:2 | 0.3 | ||||
3 double bond(s) | 15.2 | ||||||
42 | 117.31 | 45:3 | 3.1 | 44 | 118.97 | 41:3 | 25.3 |
43 | 118.01 | 43:3 | 71.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrkoslav, V.; Horká, P.; Jindřich, J.; Buděšínský, M.; Cvačka, J. Silver Ion High-Performance Liquid Chromatography—Atmospheric Pressure Chemical Ionization Mass Spectrometry: A Tool for Analyzing Cuticular Hydrocarbons. Molecules 2023, 28, 3794. https://doi.org/10.3390/molecules28093794
Vrkoslav V, Horká P, Jindřich J, Buděšínský M, Cvačka J. Silver Ion High-Performance Liquid Chromatography—Atmospheric Pressure Chemical Ionization Mass Spectrometry: A Tool for Analyzing Cuticular Hydrocarbons. Molecules. 2023; 28(9):3794. https://doi.org/10.3390/molecules28093794
Chicago/Turabian StyleVrkoslav, Vladimír, Petra Horká, Jindřich Jindřich, Miloš Buděšínský, and Josef Cvačka. 2023. "Silver Ion High-Performance Liquid Chromatography—Atmospheric Pressure Chemical Ionization Mass Spectrometry: A Tool for Analyzing Cuticular Hydrocarbons" Molecules 28, no. 9: 3794. https://doi.org/10.3390/molecules28093794
APA StyleVrkoslav, V., Horká, P., Jindřich, J., Buděšínský, M., & Cvačka, J. (2023). Silver Ion High-Performance Liquid Chromatography—Atmospheric Pressure Chemical Ionization Mass Spectrometry: A Tool for Analyzing Cuticular Hydrocarbons. Molecules, 28(9), 3794. https://doi.org/10.3390/molecules28093794