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Abstract: In this paper, two benzimidazole derivative ligands were obtained using o-phenylenediamine
and n-pyridine formaldehyde (n = 3, 4) by amine–aldol condensation reactions, which were reacted
with selected inorganic metal salts by ambient temperature volatilization method to give compounds
1–4: {[(L1)6]·[Cu8I8]} (1), {[L1]·[CuBr]·H2O} (2), {[L2]·[CuBr]}n (3), and {[(L2)4]·[Cu4I4]} (4). They were
characterized by IR, UV-Vis absorption spectroscopy, thermogravimetric analysis, and single crystal
X-ray analysis. Simultaneously, compounds 1–4 were found to possess photocatalytic degradation of
ciprofloxacin (CIP) by preliminary experimental investigations.

Keywords: coordination polymer; photocatalytic degradation; antibiotic; water treatment and recycling

1. Introduction

In recent years, the presence of pharmaceutical residues in wastewater and their
detrimental effects on biological ecosystems has attracted worldwide attention. Drug
residues are discharged into the aquatic environment through various channels, such as
the pharmaceutical industry, hospital wastewater, and human and livestock excrement,
causing pollution to the living environment. Antibiotics are an important part of human
and veterinary medicine [1]. Residues of antibiotics account for a large part of pharma-
ceutical contamination due to the high rate of consumption of antibiotics not only in
humans but also in aquaculture and livestock medicines [2]. Ciprofloxacin (CIP), as a
typical third-generation fluoroquinolone antibiotic, is difficult to remove by conventional
treatment techniques due to its chemical stability and non-biodegradability (Figure 1a).
Therefore, there is an urgent need to develop effective technologies to degrade antibiotics
in wastewater [3]. Unfortunately, traditional chemical and physical methods are inefficient
for its removal, and new biochemical treatments often produce more toxic by-products. At
present, the migration behavior and degradation mode of antibiotics in water environment
have become a hot research topic. In recent years, photocatalysis technology has been
widely used in water pollution control, which has important application prospect and
potential [4–7]. The photocatalytic degradation process provides an ideal way for the gover-
nance and degradation of CIP [8–10]. Compared with other methods mentioned above, the
use of photocatalytic technology can effectively degrade CIP without secondary pollution.

In recent years, coordination compounds as an emerging material for photocatalysis
have been widely used in water treatment and recycling fields [11–15]. The benzimidazole
ligands are usually used as N-donor ligands, which can adopt different conformations
according to the coordination geometry requirements of different metal ions, and serve as
donors and acceptors of hydrogen bonds [16–21]. This type of ligand has three aromatic
rings (pyridine ring, benzene ring, and imidazole ring), which is easy to form a conju-
gated system that is conducive to strengthening the overall structure; and there are three
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nitrogen atoms in this type of molecule, they can be obtained by using nitrogen atoms to
participate in the coordination with metal ions, while other nitrogen atoms easily form
hydrogen-bonding interactions, which further extend the structure to a three-dimensional
supramolecular network. Based on this, in this paper, two benzimidazole ligands L1 and
L2 (Figure 1b,c) [21] were selected, synthesized, and assembled with metal salts to ob-
tain compounds 1–4 through room temperature reaction, and the obtained compounds
were quantitatively produced and their photocatalytic degradation ability to ciprofloxacin
containing wastewater was investigated. In addition, the effects of coexisting anions and
organic compounds on the removal of CIP were also discussed.
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2. Results
2.1. Synthesis of Compounds

Over the years, our laboratory has accumulated some experience in the synthesis of
single crystals of complexes. The synthesis of the compounds in this paper fully refers to the
previous experience of our research group. Two ligands of benzimidazoles were obtained
through the condensation reaction of o-phenylenediamine and n-pyridine formaldehyde
through amine–aldehyde condensation. Specific inorganic metal salts were reacted to
obtain compounds 1–4 (Scheme 1).
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2.2. Description of Crystal Structure
2.2.1. Crystal Structure of Compound 1

Compound 1 was obtained by evaporation at room temperature, and its crystal form
was red block. X-ray single crystal diffraction analysis showed that compound 1 belonged
to a trigonal system, space group R-3. It can be seen from Figure 2 that L1 is a bidentate
ligand composed of benzimidazole and pyridine rings. The crystal structure of the complex
is shown in Figure 2, and its basic structural unit contains six L1 bidentate ligands; and
[Cu8I8] coordinated with it. As shown in Figure 2a, compound 1 is a multinuclear complex.
In compound 1, both the nitrogen atom of the pyridine ring and the nitrogen atom of the
imidazole ring on the bidentate ligand L1 are involved in the coordination with monovalent
copper. The nitrogen atoms on the pyridine ring of each of the six ligands L1 are coordinated
to six monovalent copper atoms, which are all coordinated to one N atom and three
iodines [Cu1-I1 = 2.7229(10) Å, Cu1-I2 = 2.6728(13) Å, Cu1-N1 = 2.050(6) Å]. The remaining
two monovalent copper atoms are in a three-coordination mode, which are, respectively,
coordinated with the nitrogen atoms of the imidazole ring on the three bidentate ligands
L1[Cu2-N2 = 1.979(5) Å]. Through the coordination of monovalent copper with the nitrogen
atom on the pyridine ring, a six-pointed star polygonal structure [Cu6I7] composed of Cu-I
is formed in the middle of compound 1, as shown in Figure 2b. It should be noted here that
the structure of the hexagram cluster is the same as that of the literature [22], so we boldly
conclude that the two asymmetric ligands have similar template effects. In addition, it can
be seen from correlation calculations that the pyridine rings are approximately coplanar,
and the dihedral angle between the plane N(1)C(1)C(2)C(3) and the plane N(1)C(5)C(4)C(3)
is 2.123(334)◦. Benzimidazole is also approximately coplanar, where the dihedral angle
between plane C(6)N(3)C(8)C(7)N(2) and plane C(9)C(8)C(7)C(12)C(11)C(10) is 1.290(245)◦.
The length of the Cu-N bond ranges from 1.979(5) to 2.476(9) Å; the length of the Cu-I
bond ranges from 2.439(10) to 2.7229(10) Å. According to the analysis, the dihedral angle of
pyridine ring and benzimidazole is 22.841(189)◦.
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Figure 2. (a) Structural monomer diagram of compound 1. (b) Cu-I polygonal structure formed in
compound 1. (The H atom is hidden.)

2.2.2. Crystal Structure of Compound 2

Compound 2 is obtained by evaporation at room temperature and its crystal form is
green block. It must be mentioned that the valence state of Cu atoms in compound 2 has
changed from +1 (CuBr) to +2 (C24H22Br2CuN6O2) during the self-assembly process at
room temperature. X-ray single crystal diffraction analysis shows that compound 2 belongs
to monoclinic system and space group P21/c. The unit cell parameters of compound 2
are as follows: a = 7.1021(13) Å; b = 11.769(2) Å; c = 14.147(3) Å; α = 90◦; β = 99.243(7)◦;
γ = 90◦. It can be seen from Figure 3a that L1 is a monodentate ligand, and Figure 3a below
is a monomer diagram of compound 2, which shows that compound 2 is a mononuclear
complex. Its smallest structural unit contains an L1 ligand, a copper atom, a bromine atom,
and a water molecule. Among them, the copper atom forms a mononuclear complex by
coordinating with the nitrogen atom on the pyridine ring. The associated bond lengths
are Cu1-Br1 = 2.5170(5) Å, Cu1-N1 = 1.998(3) Å. The structure of compound 8 in the
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literature [21] is similar to that of compound 2 in this paper, except for metal salt. The
two compounds have different hydrogen bond strengths due to different atoms that form
hydrogen bonds. Figure 3b shows the crystal packing diagram of compound 2 in the
a-direction, and it can be concluded that compound 2 is a 0D structure. In addition, the
relevant calculations show that the pyridine ring is approximately coplanar, where the
dihedral angle between the plane N(1)C(1)C(2)C(3) and the plane N(1)C(12)C(11)C(3) is
0.240(177)◦; the benzimidazole is also approximately coplanar, where the dihedral angle
between the plane C(4)N(2)C(5)C(10)N(3) and the plane C(5)C(6)C(7)C(8)C(9)C(10) is
0.845(116)◦. According to the analysis, the dihedral angle between the pyridine ring and
benzimidazole is 2.357(85)◦, which means that the ligand L1 is approximately coplanar in
this structure.
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compound 2 in the a-direction. (The H atom is hidden.).

2.2.3. Crystal Structure of Compound 3

Compound 3 is a 1D structure. X-ray single crystal diffraction analysis showed that
compound 3 belonged to triclinic system, space group P-1. The unit cell parameters of com-
pound 3 are a = 7.8416(9) Å, b = 8.6988(9) Å, c = 9.9539(11) Å; α = 109.736(4)◦, β = 94.939(4)◦,
and γ = 113.314(3)◦. Figure 4a is the structural monomer diagram of compound 3. It can be
seen from the figure that L2 is a bidentate ligand, and the N atom on the imidazole ring
and the N atom on the pyridine ring are involved in the coordination with monovalent
copper. The structure of the compound in the literature [23] is basically similar to that
of compound 3, except that the position of the N atom in the pyridine ring in the ligand
and the metal salt used are different. The dihedral angle of pyridine ring and benzimi-
dazole ring of the compounds in the literature is 54.6◦, while the dihedral angle of the
two rings in this paper is 38.357(81)◦. In general, when ligand L2 is a monodentate ligand,
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the two rings are substantially coplanar; while when ligand L2 is a bidentate ligand, the
two rings are not coplanar [23]. Moreover, compared to the structure in reference [24], the
copper atom of compound 3 in this paper is coordinated with two types of N atoms in
the ligand, namely N1 and N3. The structure in reference [24] is that the copper atom is
coordinated with N atoms on benzimidazole, forming a one-dimensional chain structure.
At the same time, as can be seen from Figure 4b, there is a ring in compound 3 into which
we insert a pseudo-atom D. By relevant calculations, we conclude that the macrocyclic ring
of compound 3 can pass through a molecule or substance with a radius of 1.41875 Å. The
associated bond lengths are Cu1-N1 = 1.983(2) Å,Cu1-N32 = 2.025(2) Å. Figure 4c is the
layered packing diagram of compound 3, and it can also be observed that compound 3 has
a 1D chain structure.
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2.2.4. Crystal Structure of Compound 4

Compound 4 is a polynuclear cubane-like anion structure. X-ray single crystal diffrac-
tion analysis shows that compound 4 belongs to the monoclinic system, C2/c space
group. The unit cell parameters of compound 4 are a = 37.424(4) Å, b = 10.1253(11) Å,
c = 16.5226(18) Å; α = 90◦, β = 115.919(7)◦, γ = 90◦. Figure 5a is the structural monomer
diagram of compound 4. It can be seen from the figure that: L2 is a monodentate ligand,
and the N atom on the pyridine ring of the ligand L2 participates in the coordination
with monovalent copper, while the N atom on the imidazole ring is not involved in co-
ordination. The monomer structure of the compound is like a windmill, and the ligand
L2 is like a blade on a windmill. The associated bond length are Cu1-N4 = 2.026(4) Å,
Cu2-N1 = 2.030(4) Å. In addition, as shown in Figure 5b, according to the analysis, the
dihedral angle of the plane where the ligand L1 containing N1 is located, i.e., the plane
N(1)C(1)C(2)C(3)C(4)C (6)N(2)C(7)C(8)C(9)C(10)C(11)C(12)N(3), and the plane where the
ligand L1 containing N4 is located, i.e., the plane N(4)C(14)C(15)C(16)C(17)N(6)C(19)C(20)C
(21)C(22)C(23)C(24)N(5), is 86.055(38)◦, approximately perpendicular to each other. Fig-
ure 5c is the unit cell packing diagram of compound 4, like many small windmills stacked
together. The structure of compound 4 is similar to that of compound 2 in the literature [25],
in which the ligands of both compounds are the same, but the difference is the polygonal
structure. Interestingly, the ligand portion of compound 4 resembles a blade, while the
polygonal metal salt in the middle of compound 2 in the literature [25] resembles a blade.
As can be seen from Figure 5d, the Cu-I polygon contains a tetrahedron about Cu.
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Figure 5. (a) The structural monomer diagram of compound 4. (b) The structure diagram of
compound 4 with atomic label. (c) The unit cell packing diagram of compound 4. (d) Cu-I polygonal
structure formed in compound 4. (The H atom is hidden.).

2.3. Thermogravimetry

Under N2 atmosphere, the four compounds was tested by thermogravimetry at a
temperature range of 30–800 ◦C, and the thermogravimetric curve is shown in Figure 6. By
analyzing the thermogravimetric curve, we can obtain information related to the quality of
the sample and its possible intermediate products, including their composition, thermal
stability, thermal decomposition, and generated products. It can be seen from the figure
that these compounds are basically stable when the temperature is lower than 300 ◦C, and
they begin to decompose when the temperature reaches above 300 ◦C. The weight loss in
the range of 30–400 ◦C may be the pyrolysis of the ligand. When it reaches above 400 ◦C, it
is the decomposition of inorganic metal salt components.
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2.4. Optical Band Gap of Compounds 1, 2, 3, 4

In order to explore the energy band structures and their respective light absorption
characteristics of the compounds, they were measured by solid ultraviolet diffuse re-
flectance spectroscopy (UV-vis-NIRCary5000). The UV-Vis diffuse reflectance spectroscopy
of compounds 1–4 were measured using samples of compounds 1–4 at room temperature,
the associated spectra are shown in Figure 7. According to the preliminary experiments on
the photocatalytic degradation of CIP of compounds 1–4, it was found that compounds 1–4
had good photodegradation effects on CIP. Therefore, the optical properties of compounds
1–4 were characterized by UV-Vis diffuse reflectance spectroscopy. The photoconductive
properties of compounds 1–4 with better degradation performance were studied to de-
termine their respective forbidden band width/band gap energy. Calculate the band gap
energy (Eg) of the compound according to Ahv = C(hv − Eg)2 [26] where A is the absorption
coefficient, h is Planck’s constant, v is the incident light frequency, and C is a constant.
The variation of (αhv)2 as a function of incident photon energy is shown in Figure 8. The
band gap energy values Eg of compounds 1–4 are 1.71 eV, 2.12 eV, 2.23 eV, and 2.03 eV,
respectively. This shows that they are all potential semiconductor materials.
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2.5. Photocatalytic Properties

CIP is a typical antibiotic. Here, we will first discuss the degradation mechanism of
CIP [27]. It has been reported that the products of CIP degradation are CO2, H2O, and
intermediates, as shown in Figure 9. In order to explore the photodegradation performance
of compounds 1–4 as photocatalysts on CIP, photocatalytic degradation experiments were
carried out on CIP wastewater under visible light irradiation. In the whole photodegra-
dation reaction, a 500 W mercury lamp was used as the visible light source, tap water
was used as the cooling water, and the pH value of the CIP solution was adjusted with
0.1 mol·L−1 HCl or NaOH. 10 mg of the catalyst was suspended in CIP (20 mL, 20 mg·L−1).
To eliminate the adsorption of compounds on CIP, the suspensions were stirred in the dark
for 30 min before light irradiation to achieve adsorption-desorption equilibrium. During
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visible light irradiation, samples were taken at intervals to measure absorbance with a
UV-Vis spectrophotometer (UV5500PC).
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Figure 8. The band gap energy diagrams of compounds 1 (a), 2 (b), 3 (c), and 4 (d).

Figure 10 shows the effect of light time on the photocatalytic degradation of CIP by
compounds 1–4. The degradation effects of compounds 1–4 on CIP are obvious. With the
increase in light time, the concentration of CIP gradually decreases, and the degradation
efficiencies are 86.95%, 67.18%, 62.02%, and 59.34%. According to the band gap value and
photocatalytic degradation efficiency value, we can conclude that the smaller Eg is, the
higher the photocatalytic efficiency is. Of course, there are many other factors affecting
photocatalytic activity, such as separation and capture of photogenerated electrons and
holes, crystal structure, lattice defects, etc. Here we only discuss the influence of band gap
on it.

Due to the better photocatalytic degradation performance of compounds 1 and 3 com-
pared to compounds 2 and 4, the following discussion focuses on some of the photocatalytic
properties of compounds 1 and 3.

Various anions and organic compounds in water can also affect the photocatalytic
degradation effect of compounds on antibiotics. Based on this, taking compound 1 and 3 as
examples, Cl−, NO3

−, SO4
2−, and HA were selected to explore the effects of anions and

organic compounds on the photocatalytic degradation of CIP by compounds. The results



Molecules 2023, 28, 3841 9 of 19

are shown in Figure 11. When several anions and HA were added to the compound/CIP
reaction system, the degradation effect of the compound on CIP was inhibited to varying
degrees. HA was selected as the representative of organic compound, which also has a
certain impact on the degradation effect of compounds. It can be seen from the figure that
Cl- has the most obvious inhibitory effect on the photocatalytic effect. The wastewater with
high salt content can be appropriately pretreated during the photocatalytic degradation of
CIP in water.
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Figure 11. Effect of adding anions and HA on the photodegradation of CIP by compounds 1 (a) and
3 (b).

It is generally believed that the main active substances induced by light are pho-
togenerated holes (h+), superoxide radical anions (·O2

−), and hydroxyl radicals (·OH),
which can act as reaction catalysts in photocatalytic reaction systems. In order to further
study the internal mechanism of compounds degrading CIP, and to understand the active
radicals that play a major role in the catalytic degradation of CIP, active substance capture
experiments were carried out in this paper. Different radical scavengers were added to the
photocatalytic reaction system under the same light conditions. Three quenchers used in
this experiment: disodium ethylenediaminetetraacetic acid (EDTA-2Na, 1 mmol·L−1, h+

scavenger), 1 4-benzoquinone (BQ, 1 mmol·L−1, ·O2
− scavenger), and isopropanol (IPA,

1 mmol·L−1, ·OH scavenger). It can be seen from Figure 12 that when no capture agent
was added, the removal rates of CIP by compounds 1 and 3 were 87.93% and 88.46%, re-
spectively. After adding three capture agents to the above solutions, the photodegradation
efficiency of CIP had a certain degree, indicating that ·OH, h+ and ·O2

− are the active
substances to degrade CIP. When BQ was added, the inhibitory effect was the most obvious,
which indicated that ·O2

− was the main active substance involved in the photodegradation
of CIP catalyzed by the compound, and h+ and ·OH played a synergistic effect.
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Figure 12. The effect of different radical scavengers on CIP removal by compounds 1 (a) and 3 (b).

In order to investigate the value of the compounds for practical applications of pho-
tocatalytic degradation of CIP, the recyclability and stability of the compounds for use as
photocatalysts were investigated in this paper. The compound 1 and 3 after the photo-
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catalysis experiment were washed, dried, and recovered, and the mid-far infrared test was
carried out on them. The results are shown in Figure 13. It can be seen from the figure that
the infrared spectra of the compounds before and after the degradation experiment are
basically the same. In addition, around 3423 cm−1, there is a N-H stretching vibration peak,
and around 1602 cm−1 and 1434 cm−1, there is a stretching vibration peak of the benzene
ring. These characteristic peaks can all prove the presence of benzene ring, N-H bond, and
pyridine ring. The photocatalytic stability of compound 1 and 3 is shown in Figure 14.
After each photocatalytic degradation of the CIP solution, the collected compound was
washed with deionized water several times to wash away the residual CIP on the surface of
the compound. The collected compounds were then reintroduced into fresh CIP solution to
start a new experiment. In the cycle experiment, all experimental conditions and operations
were kept the same as the first experiment. The stability and reusability of compound 1
and 3 in degrading CIP were studied by three consecutive cycle experiments. As shown in
Figure 14, the degradation efficiency of CIP did not decrease significantly, and the removal
rate of CIP by the compound remained above 80% after three cycles of experiments. The
results showed that compound 1 and 3 could be used as a stable photocatalyst for the pho-
tocatalytic degradation of CIP. Figure 15 is the powder X-ray diffraction test of compound
1 and 3 after each cycle test, showing that the structure and composition of compound 1
and 3 have not changed before and after the degradation test, and can still maintain its
structural integrity.
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Figure 13. Infrared spectra of compounds 1 (a) and 3 (b) before and after photocatalytic degradation
of CIP.
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3. Materials and Methods
3.1. Materials

The reagents used in the experiment were all commercially analytically pure and were
not purified before the experiment. According to the literature and adjusting the synthesis
scheme, the ligand 2-Pyridin-n-yl-1H-benzoimidazole (n = 3, 4) was prepared by direct
reaction of o-phenylenediamine and n-pyridine formaldehyde (n = 3, 4). Herein, when n is
4, it is called L1, and when n is 3, it is called L2. L1 and L2 belong to Schiff bases. Schiff
bases are a class of organic compounds that contain imine or imine characteristic groups
(-RC=N-), in which the imine bond (-C=N-) has a solitary pair of electrons in N atom, and
can cooperate with various substances. They have the advantages of simple synthesis, easy
modification, stability, and flexibility [28].

X-ray single crystal diffraction: The instrument model is Bruker D8 VENTURE, the
manufacturer is Bruker, Karlsruhe, Germany. After the single crystal is cultured, a single
crystal with good quality is selected under the microscope as the sample to be tested. Good
quality single crystal samples are generally angular, with a smooth surface free of cracks
and free of microscopic grains and powdered impurities. OlEX-2 was used to analyze
and refine the crystal data collected. The main crystallographic data parameters of the
compounds are shown in Table 1. The bond lengths and angles selected for compounds
1–4 are shown in Table 2. The PXRD patterns of compounds 1–4 are shown in Figure 16.
It can be seen from the Figure 16 that the experimental data of compounds 1–4 and the
simulation data of single crystal have a high degree of fitting, and the comparison patterns
are basically the same, indicating that the sample is of high purity, which can be used
for subsequent experimental exploration. Simultaneously, we also conducted a scanning
electron microscopy of compound 3. By using scanning electron microscopy, crystal defects
can be directly studied. From Figure 17, it can be seen from the electron microscopy that
compound 3 may have a porous structure inside and a relatively large specific surface area,
so we conclude that its photocatalytic performance may be good. Infrared spectroscopy
(IR): Infrared spectra were measured in the wave number range of 400~4000 cm−1 by using
a potassium bromide press using an instrument model Bruker VECTOR27, Karlsruhe,
Germany, as shown in Figure 18. In addition, around 3430 cm−1, there is a N-H stretching
vibration peak, and around 1610 cm−1, there is a stretching vibration peak of the benzene
ring. These characteristic peaks can all prove the presence of benzene ring, N-H bond, and
pyridine ring. In the IR Spectrogram, we made a comparison between the ligand and the
compound. Through comparison, we found that the ligand structure did not change after
the formation of the complex, and the original characteristic peaks belonging to the ligand
did not disappear. Solid UV diffuse reflectance spectroscopy: the instrument model is
UV-vis-NIRCary5000, Guangdong, China, barium sulfate is used as a blank control at room
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temperature, and the scanning range is 200–800 nm. Thermogravimetric analysis (TG): The
instrument model is NETZSCHTG209. Take 15 mg of sample and raise the temperature
from room temperature to 800 ◦C under N2 atmosphere, and record the mass change of
the sample during the heating process. Elemental analysis (EA): The instrument model is
Perkin-Elmer 240, Waltham, Massachusetts, USA, and the content of C, H, and N elements
in the obtained compound is determined at room temperature.

Table 1. Crystal data and structural refinement details of complexes 1–4.

Compounds 1 2 3 4

Empirical formula C72H54Cu8I8N18 C24H22Br2CuN6O2 C12H9BrCuN3 C48H36Cu4I4N12
Formula weight 2694.85 649.83 338.67 1542.65
Temperature/K 100.2(4) 298.00 300.00 297.0
Crystal system trigonal monoclinic triclinic monoclinic
Space group R-3 P21/c P-1 C2/c
a/Å 16.2957(3) 7.1021(13) 7.8416(9) 37.424(4)
b/Å 16.2957(3) 11.769(2) 8.6988(9) 10.1253(11)
c/Å 23.1449(5) 14.147(3) 9.9539(11) 16.5226(18)
α/◦ 90 90 109.736(4) 90
β/◦ 90 99.243(7) 94.939(4) 115.919(7)
γ/◦ 120 90 113.314(3) 90
Volume/Å3 5322.7(2) 1167.1(4) 567.63(11) 5631.2(11)
Z 3 2 2 4
ρcalcg/cm3 2.522 1.849 1.981 1.820
µ/mm−1 5.890 4.396 5.420 3.726
F(000) 3804.0 646.0 332.0 2944.0
Crystal size/mm3 0.12 × 0.11 × 0.1 0.35 × 0.23 × 0.14 0.27 × 0.23 × 0.22 0.25 × 0.23 × 0.17
Reflections collected 13,736 27,464 12,706 71,651
Independent
reflections/Rint/Rsigma

2760, 0.0286, 0.0202 2813, 0.1060, 0.0520 2613, 0.0516, 0.0352 6401, 0.1346, 0.0616

Data/restraints/parameters 2760/0/178 2813/0/163 2613/0/154 6401/0/307
Goodness-of-fit on F2 1.128 1.006 1.015 0.987

Final R indexes [I > =2σ (I)] R1 = 0.0393,
wR2 = 0.1054

R1 = 0.0364,
wR2 = 0.0859

R1 = 0.0286,
wR2 = 0.0826

R1 = 0.0397,
wR2 = 0.0819

Final R indexes [all data] R1 = 0.0412,
wR2 = 0.1063

R1 = 0.0706,
wR2 = 0.0970

R1 = 0.0339,
wR2 = 0.0856

R1 = 0.0852,
wR2 = 0.0929

Largest diff. peak/hole/e Å−3 3.22/−3.03 0.59/−0.58 0.63/−0.56 0.66/−0.46

3.2. Photocatalytic Determination

In this paper, the photocatalytic performance of the obtained compound as a pho-
tocatalyst was evaluated by studying the degradation effect of the obtained compound
on CIP under visible light irradiation. The CIP degradation experiment was completed
in a photochemical reaction instrument (HANUO-IV) produced by Shanghai Hanuo In-
strument Co., Ltd., Shanghai, China, and a mercury lamp with a wavelength range of
250–720 nm was selected to simulate a visible light source. Before using the instrument,
put the magnetic stirrer into the dark box of the main machine, fix the quartz cold trap,
put the magnet in the reaction vessel, and then connect the mercury lamp, the reactor, and
the cooling water circulation device. During the experiment, 10 mg of the compound was
first weighed and added to the reaction vessel, and then the antibiotic solution prepared in
advance was added. In order to eliminate the adsorption of compounds on CIP, the reaction
solution was stirred in the dark for 30 min before light to achieve adsorption-desorption
equilibrium. When the light source is turned on, the low-temperature coolant circulation
pump is started to control the internal temperature of the reactor at 25 ◦C. A 0.22 µm
filter was used for each sample taken with a syringe. The absorbance of the degradation
product at the maximum absorption wavelength was measured on an ultraviolet-visible
spectrophotometer (UV5500PC).
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Table 2. The main bond length and bond angle of compounds 1–4.

Compound 1

I2-Cu11 2.5916 (12) I2-Cu1 2.6728 (13) I1-Cu12 2.7229 (10)
I1-Cu13 2.7229 (10) I1-Cu14 2.7229 (10) I1-Cu11 2.7229 (10)
I1-Cu1 2.7229 (10) I1-Cu15 2.7229 (10) Cu1-Cu15 2.9812 (13)

Cu1-Cu11 2.9812 (13) Cu1-N1 2.050 (6) Cu2-N23 1.979 (5)
Cu2-N2 1.979 (5) Cu2-N24 1.979 (5) N3-Cu2A6 2.230 (9)

N1-Cu2A 2.476 (9) Cu2A-I2A 2.439 (10) Cu11-I2-Cu1 68.96 (5)
Cu11-I1-Cu12 113.617 (15) Cu13-I1-Cu11 180.0 Cu13-I1-Cu12 66.384 (15)
Cu14-I1-Cu11 66.384 (15) Cu13-I1-Cu1 113.619 (15) Cu14-I1-Cu12 180.0
Cu15-I1-Cu14 66.382 (15) Cu15-I1-Cu11 113.617 (15) Cu15-I1-Cu1 180.00 (3)
Cu11-I1-Cu1 66.383 (15) Cu15-I1-Cu13 66.381 (15) Cu15-I1-Cu12 113.617 (15)
Cu12-I1-Cu1 66.383 (15) Cu14-I1-Cu13 113.616 (15) Cu14-I1-Cu1 113.619 (15)
I22-Cu1-I2 120.62 (4) I22-Cu1-I1 108.36 (4) I2-Cu1-I1 106.02 (4)

I22-Cu1-Cu12 56.80 (4) I22-Cu1-Cu11 113.83 (5) I2-Cu1-Cu11 54.23 (3)
I2-Cu1-Cu12 152.22 (5) I1-Cu1-Cu11 56.808 (7) I1-Cu1-Cu12 56.808 (8)

Cu12-Cu1-Cu11 99.69 (4) N1-Cu1-I22 111.50 (16) N1-Cu1-I2 105.02 (16)
N1-Cu1-I1 104.00 (17) N1-Cu1-Cu12 100.69 (16) N1-Cu1-Cu11 134.40 (16)

N23-Cu2-N2 119.917 (18) N23-Cu2-N24 119.916 (18) N24-Cu2-N2 119.916 (16)
C6-N3-Cu2A6 104.0 (4) C8-N3-Cu2A6 123.5 (4) C6-N2-Cu2 134.8 (4)

C7-N2-Cu2 119.4 (4) C1-N1-Cu1 118.9 (5) C1-N1-Cu2A 118.4 (5)
C5-N1-Cu1 123.6 (4) C5-N1-Cu2A 110.8 (5) N36-Cu2A-N1 142.9 (4)

N36-Cu2A-I2A 99.8 (3) I2A-Cu2A-N1 101.0 (3) Cu2A-I2A-Cu2A1 130.1 (4)

Compound 2

Br1-Cu1 2.5170 (5) Cu1-N11 1.999 (3) Cu1-N1 1.998 (3)
N1-C1 1.350 (4) N3-C4 1.315 (4) C1-C2 1.369 (4)

Br1-Cu1-Br11 179.999 (11) N11-Cu1-Br1 89.84 (7) N1-Cu1-Br11 89.84 (7)
N11-Cu1-Br11 90.16 (7) N1-Cu1-Br1 90.16 (7) N1-Cu1-N11 180.00 (3)
C12-N1-Cu1 120.6 (2) C1-N1-Cu1 122.2 (2)

Compound 3

Br1-Cu1 2.5678 (5) Br1-Cu11 2.6537 (5) Cu1-N1 1.983 (2)
Cu1-N32 2.025 (2) Cu1-Br1-Cu11 86.720 (15) Br1-Cu1-Br11 93.280 (15)

N1-Cu1-Br11 108.83 (6) N1-Cu1-Br1 115.12 (6) N1-Cu1-N32 128.14 (8)
N32-Cu1-Br1 102.94 (6) N32-Cu1-Br11 102.43 (6) C1-N1-Cu1 125.69 (16)
C7-N1-Cu1 127.56 (17) C11-N3-Cu12 120.63 (17) C12-N3-Cu12 121.81 (17)

Compound 4

I1-Cu1 2.5714 (7) I1-Cu2 2.5713 (8) I2-Cu11 2.5872 (8)
I2-Cu2 2.5814 (8) Cu1-Cu11 2.7688 (15) Cu1-Cu2 2.6778 (9)

Cu1-Cu21 2.6408 (9) Cu1-N4 2.026 (4) Cu2-Cu21 2.7509 (13)
Cu2-N1 2.030 (4) Cu2-I1-Cu1 62.76 (2) Cu2-I1-Cu11 61.45 (2)

I1-Cu1-I21 120.48 (3) I1-Cu1-Cu11 113.44 (2) I1-Cu1-Cu21 75.37 (3)
I1-Cu1-Cu2 58.62 (2) I21-Cu1-Cu11 75.34 (3) I21-Cu1-Cu21 59.16 (2)
I21-Cu1-Cu2 117.82 (3) Cu21-Cu1-Cu11 59.29 (2) Cu2-Cu1-Cu11 57.98 (3)

Cu21-Cu1-Cu2 62.29 (3) N4-Cu1-I1 115.18 (11) N4-Cu1-I21 108.15 (10)
N4-Cu1-Cu11 118.52 (11) N4-Cu1-Cu21 167.23 (11) N4-Cu1-Cu2 128.67 (10)

I1-Cu2-I2 120.99 (3) I1-Cu2-Cu11 117.91 (3) I1-Cu2-Cu1 58.62 (2)
I1-Cu2-Cu21 73.48 (3) I2-Cu2-Cu11 59.38 (2) I2-Cu2-Cu1 77.04 (3)
I2-Cu2-Cu21 115.44 (2) Cu11-Cu2-Cu1 62.74 (3) Cu1-Cu2-Cu21 58.20 (2)

Cu11-Cu2-Cu21 59.52 (3) N1-Cu2-I1 108.87 (12) N1-Cu2-I2 112.66 (11)
N1-Cu2-Cu1 167.48 (12) N1-Cu2-Cu11 128.55 (12) N1-Cu2-Cu21 120.24 (11)
C14-N4-Cu1 120.5 (3) C13-N4-Cu1 121.4 (3) C5-N1-Cu2 120.2 (3)
C1-N1-Cu2 121.5 (3)
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Figure 17. (a) Scanning electron micrograph of compound 3. (b) Scanning electron microscopy of
compound 3 after magnification.
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3.3. Synthesis of Compounds
3.3.1. Synthesis of {[(L1)6]·[Cu8I8]} (1)

L1 (0.0020 g, 0.01 mmol), CuI (0.0019 g, 0.01 mmol) were weighed in two clean
penicillin vials, L1 was fully dissolved with 3 mL methanol, 2 drops of water was first
added to the vial in which CuI was placed, then an appropriate amount of KI was added
and sonicated until CuI was completely dissolved, then 3 mL methanol was added. The
methanol solution of L1 was added drop by drop to the vial in which the methanol solution
of CuI was placed, stirred on a magnetic stirrer for 10 min after adding the magnet, filtered
the solution in the vial into another clean penicillin vial, labeled and sealed with cling film,
pierce 3–4 small holes, volatilized the solvent slowly at room temperature, recorded the
time of dispensing the vial and observed regularly, about 4 days later there were red lumpy
crystals at the bottom of the vial. After about 4 days, red lumpy crystals were analyzed
at the bottom of the vial. The crystals were collected by filtration, washing and drying,
and the yield was about 24%. Mass: 0.0011g. IR (KBr, cm−1): 3440 (s), 2924 (w), 1610 (m),
1437 (w), 1321 (w), 1069 (w), 831 (w), 816 (w), 764 (w), 748 (w), 566 (w).Anal. Calcd for
C72H54Cu8I8N18 (2694.85): C, 32.06; H, 2.00; N, 9.35%. Found: C, 32.11; H, 2.01; N, 9.42%.

3.3.2. Synthesis of {[L1]·[CuBr]·H2O} (2)

The synthesis of {[L1]·[CuBr]·H2O} (2) is the same as that of {[(L1)6]·[Cu8I8]} (1), except
that CuI is replaced by CuBr and KI is replaced by KBr. Green crystals are precipitated at
the bottom of the vial after about two weeks. The crystals were filtered, washed, dried, and
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collected with a yield of about 10%. Mass: 0.0008 g. IR (KBr, cm−1): 3561 (m), 3439 (m),
3231 (m), 1618 (m), 1449 (m), 1433 (m), 1404 (w), 1315 (m), 1284 (w), 1241 (m), 1216 (m),
1148 (w), 1113 (m), 1070 (m), 1030 (m), 968 (w).Anal. Calcd for C24H22Br2CuN6O2 (649.83):
C, 44.32; H, 3.39; N, 12.93%. Found: C, 44.39; H, 3.41; N, 12.89%.

3.3.3. Synthesis of {[L2]·[CuBr]}n (3)

L2 (0.0040 g, 0.02 mmol) and CuBr (0.0028 g, 0.02 mmol) were weighed into two clean
penicillin vials, and L2 was fully dissolved with 4 mL methanol. A total of 2 drops of water
were added into the CuBr vial, and then excessive KBr was added. After the CuBr was
dissolved, 4mL methanol was added. Add the methanol solution of L2 to the methanol
solution of CuBr, add the magneon, stir on the magnetic agitator, filter the solution in the
vial into another clean penicillin vial, label it and seal it with plastic wrap, pierce 3–4 holes,
slowly evaporate the solvent at room temperature, record the vial preparation time and
observe regularly. After about two days, yellow mass crystals formed at the bottom of the
bottle. Filtration, washing, dries collection; the yield of crystal is about 78%. Mass: 0.0031
g. IR (KBr, cm−1): 3839 (w), 3440 (m), 2923 (w), 1635 (w), 1558 (w), 1447 (w), 1317 (w),
1120 (w), 814 (w), 705 (w), 619 (w), 440 (w).Anal. Calcd for C12H9BrCuN3 (338.48): C, 42.54;
H, 2.66; N, 12.40%. Found: C, 42.51; H, 2.69; N, 12.38%.

3.3.4. Synthesis of {[(L2)4]·[Cu4I4]} (4)

L2 (0.0040 g, 0.02 mmol) and CuI (0.0019 g, 0.01 mmol) were weighed into two clean
penicillin vials, respectively. L2 was fully dissolved with 4 mL methanol, and then 2 drops
of water were added into the vial placed with CuI and appropriate amount of KI was
added. After it was completely dissolved, 4 mL acetonitrile was added. Add the methanol
solution of L2 drop by drop to CuI’s acetonitrile solution, add the magneton and stir it on
the magnetic agitator for 10 min, filter the solution in the vial into another clean penicillin
vial, label it and seal it with plastic wrap, pierce 3–4 holes, slowly evaporate the solvent at
room temperature, record the vial preparation time and make regular observation. After
about a week, thin yellow crystals formed at the bottom of the bottle. Filtration, washing,
dries collection, the yield of crystal is about 78%. Mass: 0.0015 g. IR (KBr, cm−1): 3758 (w),
3445 (m), 2922 (w), 1635 (w), 1558 (w), 1447 (w), 1319 (w), 1281 (w), 1114 (w), 973 (w),
779 (w), 659 (w), 450 (w). Anal. Calcd for C48H36Cu4I4N12 (1541.78): C, 37.36; H, 2.33; N,
10.90%. Found: C, 37.31; H, 2.35; N, 10.89%.

4. Conclusions

Herein, the ligands L1 and L2 were synthesized, and then four complexes were
obtained by the reaction of these two ligands with selected inorganic metal salts. The
preparation of compounds 1–4 was demonstrated by single crystal X-ray diffraction, in-
frared, and PXRD characterization. TGA test showed that the compounds had high thermal
stability. Simultaneously, compounds 1–4 showed photocatalytic degradation of CIP. The
values of the compounds 1 and 3 as photocatalyst were proved by cyclic experiments. ·O2

−

is the main active substance in CIP degradation process. Finally, we can conclude that the
smaller Eg is, the higher the photocatalytic efficiency is. Therefore, compounds 1 and 3 can
be applied to the wastewater treatment in the future. The photocatalytic degradation exper-
iments under different light sources would also be increased for the control experiment in
the future.

Supplementary Materials: The complete crystallography data of compounds 1–4 can be obtained
free of charge from The Cambridge Crystallographic Data centre via www.ccdc.cam.ac.uk/structures,
accessed on 11 April 2023, with CCDC numbers of 2132905 (for compound 1), 2133316(for compound
2), 2255341(for compound 3) and 2255340 (for compound 4), respectively. Other related supramolecu-
lar coordination compounds constructed by templated assembly with transition metals in our group
see CCDC(623644, 623649-50, 623343-44, 623349, 623351, 623352, 629782, 1839494, 1872124).

www.ccdc.cam.ac.uk/structures
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