The Potential Use of Plant Growth Regulators for Modification of the Industrially Valuable Volatile Compounds Synthesis in Hylocreus undatus Stems
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Biological Material
4.2. Aroma Profiling
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cheah, L.K.; Eid, A.M.; Aziz, A.; Ariffin, F.D.; Elmahjoubi, A.; Elmarzugi, N.A. Phytochemical Properties and Health Benefits of Hylocereusundatus. Nanomed. Nanotechnol. Open Access 2016, 1, 1–10. [Google Scholar] [CrossRef]
- Liaotrakoon, W. Characterization of Dragon Fruit (Hylocereus spp.) Components with Valorization Potential. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2013; p. 217. [Google Scholar]
- Drew, R.A.; Azimi, M. Micropropagation of Red Pitaya (Hylocereous undatus). Acta Hortic. 2002, 575, 93–98. [Google Scholar] [CrossRef]
- ElObeidy, A.A. Mass Propagation of Pitaya (Dragon Fruit). Fruits 2006, 61, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Gunasena, H.P.M.; Pushpakumara, D.K.N.G.; Kariyawasam, M. Dragon Fruit Hylocereus undatus (Haw.) Britton and Rose. In Underutilized Fruit Trees in Sri Lanka; World Agroforestry Centre: New Delhi, India, 2007; pp. 110–141. [Google Scholar]
- Hoa, T.T.; Clark, C.J.; Waddell, B.C.; Woolf, A.B. Postharvest Quality of Dragon Fruit (Hylocereus undatus) Following Disinfesting Hot Air Treatments. Postharvest Biol. Technol. 2006, 41, 62–69. [Google Scholar] [CrossRef]
- Hua, Q.; Chen, P.; Liu, W.; Ma, Y.; Liang, R.; Wang, L.; Wang, Z.; Hu, G.; Qin, Y. A Protocol for Rapid in Vitro Propagation of Genetically Diverse Pitaya. Plant Cell Tissue Organ Cult. 2015, 120, 741–745. [Google Scholar] [CrossRef]
- Zee, F.; Yen, C.-R.; Nishina, M. Pitaya (Dragon Fruit, Strawberry Pear). In Fruits and Nuts; University of Hawaii: Honolulu, HI, USA, 2004; pp. 1–3. [Google Scholar]
- Mohamed-Yasseen, Y. Micropropagation of Pitaya (Hylocereus undatus Britton et Rose). Vitr. Cell. Dev. Biol. Plant 2002, 38, 427–429. [Google Scholar] [CrossRef]
- Hua, Q.; Zhou, Q.; Gan, S.; Wu, J.; Chen, C.; Li, J.; Ye, Y.; Zhao, J.; Hu, G.; Qin, Y. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes. Int. J. Mol. Sci. 2016, 17, 1606. [Google Scholar] [CrossRef]
- Cohen, H.; Fait, A.; Tel-Zur, N. Morphological, Cytological and Metabolic Consequences of Autopolyploidization in Hylocereus (Cactaceae) Species. BMC Plant Biol. 2013, 13, 173. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Y.; Wu, Y.; Li, B.; Sun, J.; Gu, S.; Pang, X. Lipid Metabolism Regulated by Superoxide Scavenger Trypsin in Hylocereus undatus through Multi-omics Analyses. J. Food Biochem. 2022, 46, e14144. [Google Scholar] [CrossRef]
- Jiao, Z.; Xu, W.; Nong, Q.; Zhang, M.; Jian, S.; Lu, H.; Chen, J.; Zhang, M.; Xia, K. An Integrative Transcriptomic and Metabolomic Analysis of Red Pitaya (Hylocereus polyrhizus) Seedlings in Response to Heat Stress. Genes 2021, 12, 1714. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Min, D.; Ji, N.; Zhang, X.; Li, F.; Zheng, Y. Transcriptomic Analysis Reveals Key Genes Associated with the Biosynthesis Regulation of Phenolics in Fresh-Cut Pitaya Fruit (Hylocereus undatus). Postharvest Biol. Technol. 2021, 181, 111684. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, H.; Zhang, Z.; Li, T.; Qu, H.; Jiang, Y.; Yun, Z. Deciphering the Metabolic Pathways of Pitaya Peel after Postharvest Red Light Irradiation. Metabolites 2020, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Yang, G.; Liu, D.; Li, Q.; Zheng, L.; Ma, J. Metabolomics and Transcriptomics Analysis of Vitro Growth in Pitaya Plantlets with Different LED Light Spectra Treatment. Ind. Crops Prod. 2022, 186, 115237. [Google Scholar] [CrossRef]
- Wang, A.; Ma, C.; Ma, H.; Qiu, Z.; Wen, X. Physiological and Proteomic Responses of Pitaya to PEG-Induced Drought Stress. Agriculture 2021, 11, 632. [Google Scholar] [CrossRef]
- Winson, K.W.S.; Chew, B.L.; Sathasivam, K.; Subramaniam, S. Effect of Amino Acid Supplementation, Elicitation and LEDs on Hylocereus Costaricensis Callus Culture for the Enhancement of Betalain Pigments. Sci. Hortic. 2021, 289, 110459. [Google Scholar] [CrossRef]
- Fadzliana, N.A.F.; Rogayah, S.; Shaharuddin, N.A.; Janna, O.A. Addition of L-Tyrosine to Improve Betalain Production in Red Pitaya Callus. Pertanika J. Trop. Agric. Sci. 2017, 40, 521–532. [Google Scholar]
- Mustafa, M.A.; Ali, A.; Seymour, G.; Tucker, G. Treatment of Dragonfruit (Hylocereus polyrhizus) with Salicylic Acid and Methyl Jasmonate Improves Postharvest Physico-Chemical Properties and Antioxidant Activity during Cold Storage. Sci. Hortic. 2018, 231, 89–96. [Google Scholar] [CrossRef]
- Winson, K.W.S.; Chew, B.L.; Sathasivam, K.; Subramaniam, S. The Establishment of Callus and Cell Suspension Cultures of Hylocereus costaricensis for the Production of Betalain Pigments with Antioxidant Potential. Ind. Crops Prod. 2020, 155, 112750. [Google Scholar] [CrossRef]
- Wee, C.; Sekeli, R.; Asari, N.H.C.; Yahya, S.F.; Machap, C. Select Record Enhancement of Bioactive Compounds in Hylocereus polyrhzus Callus Mediated by Plant Growth Regulators and Elicitors. Malays. Soc. Plant Physiol. 2018, 10, 1–10. [Google Scholar]
- Biddington, N.L.; Thomas, T.H. Interactions of Abscisic Acid, Cytokinin and Gibberellin in the Control of Betacyanin Synthesis in Seedlings of Amaranthus Caudatus. Physiol. Plant 1977, 40, 312–314. [Google Scholar] [CrossRef]
- Biddington, N.L.; Thomas, T.H. A Modified Amaranthus Betacyanin Bioassay for the Rapid Determination of Cytokinins in Plant Extracts. Planta 1973, 111, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.D.; Guruprasad, K.N.; Laloraya, M.M. Reversal of Abscisic Acid-Inhibited Betacyanin Synthesis by Phenolic Compounds in Amaranthus Caudatus Seedlings. Physiol. Plant 1983, 58, 175–178. [Google Scholar] [CrossRef]
- Ewas, M.; Gao, Y.; Ali, F.; Nishawy, E.M.; Shahzad, R.; Subthain, H.; Amar, M.; Martin, C.; Luo, J. RNA-Seq Reveals Mechanisms of SlMX1 for Enhanced Carotenoids and Terpenoids Accumulation along with Stress Resistance in Tomato. Sci. Bull. 2017, 62, 476–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, U.; Schliemann, W.; Böhm, H.; Strack, D. Tyrosinase Involved in Betalain Biosynthesis of Higher Plants. Planta 1999, 208, 114–124. [Google Scholar] [CrossRef]
- Rodrigues-Brandão, I.; Kleinowski, A.M.; Einhardt, A.M.; Lima, M.C.; do Amarante, L.; Peters, J.A.; Braga, E.J.B. Salicylic Acid on Antioxidant Activity and Betacyan in Production from Leaves of Alternanthera tenella. Ciência Rural 2014, 44, 1893–1898. [Google Scholar] [CrossRef] [Green Version]
- Badrhadad, A.; Piri, K.; Ghiasvand, T. Increase Alpha-Tocopherol in Cell Suspension Cultures Elaeagnus angustifolia L. Int. J. Agric. Crop Sci. 2013, 5, 1–4. [Google Scholar]
- Saw, N.M.M.T.; Riedel, H.; Kütük, O.; Ravichandran, K.; Smetanska, I. Effect of Elicitors and Precursors on the Synthesis of Anthocyanin in Grape Vitis Vinifera Cell Cultures. Energy Res. J. 2010, 1, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Mendhulkar, V.D.; Moinuddin, M. Ali Vakil Elicitation of Flavonoids by Salicylic Acid and Penicillium expansum in Andrographis paniculata (Burm. f.) Nees. Cell Culture. Res. Biotechnol. 2013, 4, 1–9. [Google Scholar]
- Łyczko, J.; Piotrowski, K.; Kolasa, K.; Galek, R.; Szumny, A. Mentha piperita L. Micropropagation and the Potential Influence of Plant Growth Regulators on Volatile Organic Compound Composition. Molecules 2020, 25, 2652. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Naik, P.M. Influence of 2iP and 2,4-D Concentrations on Accumulation of Biomass, Phenolics, Flavonoids and Radical Scavenging Activity in Date Palm (Phoenix dactylifera L.) Cell Suspension Culture. Horticulturae 2022, 8, 683. [Google Scholar] [CrossRef]
- Clapa, D.; Nemeș, S.-A.; Ranga, F.; Hârța, M.; Vodnar, D.-C.; Călinoiu, L.-F. Micropropagation of Vaccinium Corymbosum L.: An Alternative Procedure for the Production of Secondary Metabolites. Horticulturae 2022, 8, 480. [Google Scholar] [CrossRef]
- Koprna, R.; Humplík, J.F.; Špíšek, Z.; Bryksová, M.; Zatloukal, M.; Mik, V.; Novák, O.; Nisler, J.; Doležal, K. Improvement of Tillering and Grain Yield by Application of Cytokinin Derivatives in Wheat and Barley. Agronomy 2020, 11, 67. [Google Scholar] [CrossRef]
- Yang, L.; Yan, Y.; Zhao, B.; Xu, H.; Su, X.; Dong, C. Study on the Regulation of Exogenous Hormones on the Absorption of Elements and the Accumulation of Secondary Metabolites in the Medicinal Plant Artemisia argyi Leaves. Metabolites 2022, 12, 984. [Google Scholar] [CrossRef] [PubMed]
- Rogowska, A.; Stpiczyńska, M.; Pączkowski, C.; Szakiel, A. The Influence of Exogenous Jasmonic Acid on the Biosynthesis of Steroids and Triterpenoids in Calendula officinalis Plants and Hairy Root Culture. Int. J. Mol. Sci. 2022, 23, 12173. [Google Scholar] [CrossRef] [PubMed]
- Meza, S.L.R.; de Castro Tobaruela, E.; Pascoal, G.B.; Magalhães, H.C.R.; Massaretto, I.L.; Purgatto, E. Induction of Metabolic Changes in Amino Acid, Fatty Acid, Tocopherol, and Phytosterol Profiles by Exogenous Methyl Jasmonate Application in Tomato Fruits. Plants 2022, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- Elahi, N.N.; Raza, S.; Rizwan, M.S.; Albalawi, B.F.A.; Ishaq, M.Z.; Ahmed, H.M.; Mehmood, S.; Imtiaz, M.; Farooq, U.; Rashid, M.; et al. Foliar Application of Gibberellin Alleviates Adverse Impacts of Drought Stress and Improves Growth, Physiological and Biochemical Attributes of Canola (Brassica napus L.). Sustainability 2022, 15, 78. [Google Scholar] [CrossRef]
- Didi, D.A.; Su, S.; Sam, F.E.; Tiika, R.J.; Zhang, X. Effect of Plant Growth Regulators on Osmotic Regulatory Substances and Antioxidant Enzyme Activity of Nitraria tangutorum. Plants 2022, 11, 2559. [Google Scholar] [CrossRef]
- Wu, P.; Liu, A.; Zhang, Y.; Feng, K.; Zhao, S.; Li, L. NnABI4-Mediated ABA Regulation of Starch Biosynthesis in Lotus (Nelumbo nucifera Gaertn). Int. J. Mol. Sci. 2021, 22, 13506. [Google Scholar] [CrossRef]
- Dong, Y.; Li, J.; Zhang, W.; Bai, H.; Li, H.; Shi, L. Exogenous Application of Methyl Jasmonate Affects the Emissions of Volatile Compounds in Lavender (Lavandula angustifolia). Plant Physiol. Biochem. 2022, 185, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Patt, J.M.; Robbins, P.S.; Niedz, R.; McCollum, G.; Alessandro, R. Exogenous Application of the Plant Signalers Methyl Jasmonate and Salicylic Acid Induces Changes in Volatile Emissions from Citrus Foliage and Influences the Aggregation Behavior of Asian Citrus Psyllid (Diaphorina citri), Vector of Huanglongbing. PLoS ONE 2018, 13, e0193724. [Google Scholar] [CrossRef] [Green Version]
- Amo, L.; Mrazova, A.; Saavedra, I.; Sam, K. Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica. Biology 2022, 11, 84. [Google Scholar] [CrossRef]
- Jamwal, K.; Bhattacharya, S.; Puri, S. Plant Growth Regulator Mediated Consequences of Secondary Metabolites in Medicinal Plants. J. Appl. Res. Med. Aromat. Plants 2018, 9, 26–38. [Google Scholar] [CrossRef]
- Quijano-Célis, C.; Echeverri-Gil, D.; Pino, J.A. Characterization of Odor-Active Compounds in Yellow Pitaya (Hylocereus megalanthus (Haw.) Britton et Rose). Rev. CENIC Cienc. Químicas 2012, 43, 1–7. [Google Scholar]
- Scala, A.; Allmann, S.; Mirabella, R.; Haring, M.; Schuurink, R. Green Leaf Volatiles: A Plant’s Multifunctional Weapon against Herbivores and Pathogens. Int. J. Mol. Sci. 2013, 14, 17781–17811. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, K.; Maoz, I.; Kochanek, B.; Sela, N.; Lerno, L.; Ebeler, S.E.; Lichter, A. Cytokinin but Not Gibberellin Application Had Major Impact on the Phenylpropanoid Pathway in Grape. Hortic. Res. 2021, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. CRC Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Brilli, F.; Loreto, F.; Baccelli, I. Exploiting Plant Volatile Organic Compounds (VOCs) in Agriculture to Improve Sustainable Defense Strategies and Productivity of Crops. Front. Plant Sci. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Hammerbacher, A.; Coutinho, T.A.; Gershenzon, J. Roles of Plant Volatiles in Defence against Microbial Pathogens and Microbial Exploitation of Volatiles. Plant Cell Env. 2019, 42, 2827–2843. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, S.; Yi, J.; Li, Y.; Liu, J.; Wang, J.; Xi, J. Three Host Plant Volatiles, Hexanal, Lauric Acid, and Tetradecane, Are Detected by an Antenna-Biased Expressed Odorant Receptor 27 in the Dark Black Chafer Holotrichia Parallela. J. Agric. Food Chem. 2020, 68, 7316–7323. [Google Scholar] [CrossRef] [PubMed]
- Schade, F.; Thompson, J.E.; Legge, R.L. Use of a Plant-Derived Enzyme Template for the Production of the Green-Note Volatile Hexanal. Biotechnol. Bioeng. 2003, 84, 265–273. [Google Scholar] [CrossRef]
- Li, S.-F.; Zhang, S.-B.; Zhai, H.-C.; Lv, Y.-Y.; Hu, Y.-S.; Cai, J.-P. Hexanal Induces Early Apoptosis of Aspergillus flavus Conidia by Disrupting Mitochondrial Function and Expression of Key Genes. Appl. Microbiol. Biotechnol. 2021, 105, 6871–6886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zheng, M.; Zhai, H.; Ma, P.; Lyu, Y.; Hu, Y.; Cai, J. Effects of Hexanal Fumigation on Fungal Spoilage and Grain Quality of Stored Wheat. Grain Oil Sci. Technol. 2021, 4, 10–17. [Google Scholar] [CrossRef]
- Francke, W.; Schulz, S. Pheromones. In Comprehensive Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 1999; pp. 197–261. [Google Scholar]
- Francke, W.; Schulz, S. Pheromones of Terrestrial Invertebrates. In Comprehensive Natural Products II; Elsevier: Amsterdam, The Netherlands, 2010; pp. 153–223. [Google Scholar]
- Hatanaka, A. Biosynthesis of So-Called “Green Odor” Emitted by Green Leaves. In Comprehensive Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 1999; pp. 83–115. [Google Scholar]
- Koczor, S.; Vuts, J.; Caulfield, J.C.; Withall, D.M.; Sarria, A.; Pickett, J.A.; Birkett, M.A.; Csonka, É.B.; Tóth, M. Sex Pheromone of the Alfalfa Plant Bug, Adelphocoris lineolatus: Pheromone Composition and Antagonistic Effect of 1-Hexanol (Hemiptera: Miridae). J. Chem. Ecol. 2021, 47, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Von Arx, M.; Schmidt-Büsser, D.; Guerin, P.M. Plant Volatiles Enhance Behavioral Responses of Grapevine Moth Males, Lobesia botrana to Sex Pheromone. J. Chem. Ecol. 2012, 38, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Roussos, P.A.; Efstathios, N.; Intidhar, B.; Denaxa, N.-K.; Tsafouros, A. Plum (Prunus domestica L. and P. salicina Lindl.). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 639–666. [Google Scholar]
- Li, X.; Li, X.; Wang, T.; Gao, W. Nutritional Composition of Pear Cultivars (Pyrus spp.). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 573–608. [Google Scholar]
- Najar, B.; Nardi, V.; Stincarelli, M.A.; Patrissi, S.; Pistelli, L.; Giannecchini, S. Screening of the Essential Oil Effects on Human H1N1 Influenza Virus Infection: An in Vitro Study in MDCK Cells. Nat. Prod. Res. 2022, 36, 3149–3152. [Google Scholar] [CrossRef] [PubMed]
- Zouirech, O.; Alyousef, A.A.; El Barnossi, A.; El Moussaoui, A.; Bourhia, M.; Salamatullah, A.M.; Ouahmane, L.; Giesy, J.P.; Aboul-soud, M.A.M.; Lyoussi, B.; et al. Phytochemical Analysis and Antioxidant, Antibacterial, and Antifungal Effects of Essential Oil of Black Caraway (Nigella sativa L.) Seeds against Drug-Resistant Clinically Pathogenic Microorganisms. Biomed. Res. Int. 2022, 2022, 5218950. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Mancini, E.; Camele, I.; De Martino, L.; De Feo, V. In Vivo Antifungal Activity of Two Essential Oils from Mediterranean Plants against Postharvest Brown Rot Disease of Peach Fruit. Ind. Crops Prod. 2015, 66, 11–15. [Google Scholar] [CrossRef]
- Setzer, W.N. Leaf and Bark Essential Oil Compositions of Bursera simaruba from Monteverde, Costa Rica. Am. J. Essent. Oils Nat. Prod. 2014, 1, 34–36. [Google Scholar]
- Pourbafrani, M.; Forgács, G.; Horváth, I.S.; Niklasson, C.; Taherzadeh, M.J. Production of Biofuels, Limonene and Pectin from Citrus Wastes. Bioresour. Technol. 2010, 101, 4246–4250. [Google Scholar] [CrossRef]
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Silva, A.S.; Ramos, F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants 2022, 12, 38. [Google Scholar] [CrossRef]
- Han, Y.; Sun, Z.; Chen, W. Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules 2019, 25, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suri, S.; Singh, A.; Nema, P.K. Current Applications of Citrus Fruit Processing Waste: A Scientific Outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Nagoor Meeran, M.F.; Seenipandi, A.; Javed, H.; Sharma, C.; Hashiesh, H.M.; Goyal, S.N.; Jha, N.K.; Ojha, S. Can Limonene Be a Possible Candidate for Evaluation as an Agent or Adjuvant against Infection, Immunity, and Inflammation in COVID-19? Heliyon 2021, 7, e05703. [Google Scholar] [CrossRef]
- Nagy, M.M.; Al-Mahdy, D.A.; Abd El Aziz, O.M.; Kandil, A.M.; Tantawy, M.A.; El Alfy, T.S.M. Chemical Composition and Antiviral Activity of Essential Oils from Citrus reshni Hort. Ex Tanaka (Cleopatra mandarin) Cultivated in Egypt. J. Essent. Oil Bear. Plants 2018, 21, 264–272. [Google Scholar] [CrossRef]
- Shojaei, S.; Kiumarsi, A.; Moghadam, A.R.; Alizadeh, J.; Marzban, H.; Ghavami, S. Perillyl Alcohol (Monoterpene Alcohol), Limonene. In The Enzymes; Academic Press: Cambridge, MA, USA, 2014; pp. 7–32. [Google Scholar]
- Fahmy, N.M.; Elhady, S.S.; Bannan, D.F.; Malatani, R.T.; Gad, H.A. Citrus reticulata Leaves Essential Oil as an Antiaging Agent: A Comparative Study between Different Cultivars and Correlation with Their Chemical Compositions. Plants 2022, 11, 3335. [Google Scholar] [CrossRef]
- Polito, F.; Kouki, H.; Khedhri, S.; Hamrouni, L.; Mabrouk, Y.; Amri, I.; Nazzaro, F.; Fratianni, F.; De Feo, V. Chemical Composition and Phytotoxic and Antibiofilm Activity of the Essential Oils of Eucalyptus bicostata, E. Gigantea, E. Intertexta, E. Obliqua, E. Pauciflora and E. Tereticornis. Plants 2022, 11, 3017. [Google Scholar] [CrossRef]
- Khedhri, S.; Polito, F.; Caputo, L.; Manna, F.; Khammassi, M.; Hamrouni, L.; Amri, I.; Nazzaro, F.; De Feo, V.; Fratianni, F. Chemical Composition, Phytotoxic and Antibiofilm Activity of Seven Eucalyptus Species from Tunisia. Molecules 2022, 27, 8227. [Google Scholar] [CrossRef] [PubMed]
- Juergens, L.J.; Worth, H.; Juergens, U.R. New Perspectives for Mucolytic, Anti-Inflammatory and Adjunctive Therapy with 1,8-Cineole in COPD and Asthma: Review on the New Therapeutic Approach. Adv. Ther. 2020, 37, 1737–1753. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.D.; Kaur, I. Molecular Docking Studies on Jensenone from Eucalyptus Essential Oil as a Potential Inhibitor of COVID 19 Corona Virus Infection. arXiv 2020, arXiv:2004.00217. [Google Scholar]
- Seol, G.H.; Kim, K.Y. Eucalyptol and Its Role in Chronic Diseases. In Eucalyptol and Its Role in Chronic Diseases; Springer: Cham, Switzerland, 2016; pp. 389–398. [Google Scholar]
- Usachev, E.V.; Pyankov, O.V.; Usacheva, O.V.; Agranovski, I.E. Antiviral Activity of Tea Tree and Eucalyptus Oil Aerosol and Vapour. J. Aerosol. Sci. 2013, 59, 22–30. [Google Scholar] [CrossRef]
- Astani, A.; Reichling, J.; Schnitzler, P. Comparative Study on the Antiviral Activity of Selected Monoterpenes Derived from Essential Oils. Phytother. Res. 2010, 24, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Oriola, A.O.; Oyedeji, A.O. Essential Oils and Their Compounds as Potential Anti-Influenza Agents. Molecules 2022, 27, 7797. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Song, G.; Hu, Y. Application of HS-SPME and GC-MS to Characterization of Volatile Compounds Emitted from Osmanthus Flowers. Ann. Chim. 2004, 94, 921–927. [Google Scholar] [CrossRef]
- Jürgens, A.; Witt, T.; Gottsberger, G. Flower Scent Composition in Night-Flowering Silene Species (Caryophyllaceae). Biochem. Syst. Ecol. 2002, 30, 383–397. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Vellaikumar, S.; Murugan, M.; Dhanya, M.K.; Ariharasutharsan, G.; Aiswarya, S.; Akilan, M.; Warkentin, T.D.; Karthikeyan, A. Essential Oil Profile Diversity in Cardamom Accessions from Southern India. Front. Sustain. Food Syst. 2021, 5, 639619. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, M.; Li, J. Aroma Volatiles in Litchi Fruit: A Mini-Review. Horticulturae 2022, 8, 1166. [Google Scholar] [CrossRef]
- Shen, Q.; Li, H.; Wang, Q.; Wang, J.; Ge, J.; Yang, X.; Wang, X.; Li, X.; Zhang, Y.; Zhang, R.; et al. Alleviating Effects of Linalool Fumigation on Botrytis Cinerea Infections in Postharvest Tomato Fruits. Horticulturae 2022, 8, 1074. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; del Contreras, M.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, Thyme, and Other Plant Sources: Health and Potential Uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef] [PubMed]
- Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharm. 2017, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef]
- Glavinic, U.; Blagojevic, J.; Ristanic, M.; Stevanovic, J.; Lakic, N.; Mirilovic, M.; Stanimirovic, Z. Use of Thymol in Nosema ceranae Control and Health Improvement of Infected Honey Bees. Insects 2022, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- Trivellini, A.; Lucchesini, M.; Ferrante, A.; Massa, D.; Orlando, M.; Incrocci, L.; Mensuali-Sodi, A. Pitaya, an Attractive Alternative Crop for Mediterranean Region. Agronomy 2020, 10, 1065. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chang, J.-C. Development of an Improved Micropropagation Protocol for Red-Fleshed Pitaya ‘Da Hong’ with and without Activated Charcoal and Plant Growth Regulator Combinations. Horticulturae 2022, 8, 104. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Abdi, H.; Lynne, J. Williams Tukey’s Honestly Significant Difference (HSD) Test. Encycl. Res. Des. 2010, 3, 1–5. [Google Scholar]
No. | Compound | Experimental Retention Index | Litrature Retention Index | BA [%] | SD | IAA [%] | SD |
---|---|---|---|---|---|---|---|
1 | Hexanal | 807 | 806 | 6.87 e* | ±1.13 | 4.53 ef | ±0.45 |
2 | 2-Hexenal | 858 | 860 | 22.53 d | ±3.74 | 25.48 c | ±2.77 |
3 | 1-Hexanol | 862 | 868 | 40.89 a | ±3.58 | 36.44 d | ±2.02 |
4 | 2-Heptenal, (Z)- | 961 | 964 | 1.12 g | ±0.18 | 0.79 g | ±0.09 |
5 | 2-Hexenoic acid, methyl ester, (E)- | 970 | 966 | 1.94 fg | ±0.84 | 0.99 g | ±0.49 |
6 | 1-Heptanol | 974 | 970 | - | - | 0.24 g | ±0.25 |
7 | 1-Octen-3-ol | 983 | 980 | - | - | 0.35 g | ±0.32 |
8 | 3-Octanone, 2-methyl- | 987 | 985 | 0.59 g | ±0.44 | 2.67 fg | ±1.72 |
9 | Hexanoic acid | 989 | 981 | 0.91 g | ±0.69 | 1.05 g | ±0.53 |
10 | Furan, 2-pentyl- | 992 | 993 | 0.67 g | ±0.27 | 0.39 g | ±0.08 |
11 | Octanal | 1004 | 1007 | - | - | 1.04 g | ±1.01 |
12 | o-Cymene | 1029 | 1022 | - | - | 0.82 g | ±0.64 |
13 | Limonene | 1034 | 1031 | 1.26 g | ±0.31 | 0.95 g | ±0.22 |
14 | Eucalyptol | 1036 | 1033 | 1.66 g | ±0.11 | 0.93 g | ±0.18 |
15 | Pyrazine, 3-methoxy-2.5-dimethyl- | 1057 | 1054 | 0.39 g | ±0.26 | 0.43 g | ±0.09 |
16 | 1-Octanol | 1074 | 1082 | 0.70 g | ±0.35 | 0.60 g | ±0.26 |
17 | Heptanoic acid | 1082 | 1078 | 0.45 g | ±0.30 | - | - |
18 | Pyrazine, 2-methoxy-3-(1-methylethyl)- | 1096 | 1093 | 1.27 g | ±0.09 | 2.07 fg | ±0.36 |
19 | Linalool | 1100 | 1103 | 1.49 g | ±0.24 | 0.57 g | ±0.07 |
20 | Nonanal | 1105 | 1104 | 0.67 g | ±0.17 | 1.30 g | ±1.29 |
21 | Hexanoic acid, 2-ethyl- | 1126 | 1123 | - | - | 0.85 g | ±0.64 |
22 | Benzene, 1.2-dimethoxy- | 1149 | 1149 | 1.13 g | ±0.23 | 0.78 g | ±0.12 |
23 | Pyrazine, 2-methoxy-3-(1-methylpropyl)- | 1175 | 1175 | 2.55 fg | ±0.98 | 2.45 fg | ±0.71 |
24 | Octanoic Acid | 1179 | 1182 | 0.66 g | ±0.35 | 0.98 g | ±0.40 |
25 | Pyrazine, 2-methoxy-3-(2-methylpropyl)- | 1182 | 1192 | 1.03 g | ±0.22 | 1.31 g | ±0.07 |
26 | Ethanol, 2-(2-butoxyethoxy)- | 1190 | 1196 | - | - | 0.36 g | ±0.23 |
27 | Decanal | 1205 | 1206 | 0.89 g | ±0.23 | 0.51 g | ±0.08 |
28 | 2-Decenal | 1263 | 1270 | - | - | 0.60 g | ±0.76 |
29 | Nonanoic acid | 1277 | 1280 | 1.24 g | ±0.32 | 1.06 g | ±0.90 |
30 | Thymol | 1293 | 1291 | 0.67 g | ±0.11 | 1.60 g | ±1.18 |
31 | Unknow 1 | 1359 | - | 0.74 g | ±0.37 | 0.65 g | ±0.20 |
32 | Unknow 2 | 1375 | - | 0.55 g | ±0.22 | 1.49 g | ±0.69 |
33 | Unknow 3 | 1379 | - | 1.07 g | ±0.61 | 0.63 g | ±0.59 |
34 | Tetradecane | 1399 | 1400 | - | - | 0.59 g | ±0.51 |
35 | Geranyl acetone | 1457 | 1452 | - | - | 0.27 g | ±0.05 |
36 | 1-Dodecanol | 1478 | 1473 | 2.42 fg | ±1.12 | 1.33 g | ±0.26 |
37 | β-Ionone | 1490 | 1494 | 0.51 g | ±0.10 | 0.59 g | ±0.05 |
38 | Octanoic acid, hexyl ester | 1584 | 1580 | 0.53 g | ±0.28 | - | - |
39 | Unknow 4 | 1638 | - | 0.43 g | ±0.44 | 0.78 g | ±0.09 |
40 | Octyl ether | 1667 | 1657 | 0.66 g | ±0.18 | 0.27 g | ±0.06 |
41 | Unknow 5 | 1680 | - | 0.60 g | ±0.25 | 0.54 g | ±0.15 |
42 | Norphytan | 1707 | 1703 | 0.10 g | ±0.03 | 0.30 g | ±0.08 |
43 | Phytan | 1811 | 1811 | 0.84 g | ±0.58 | 0.41 g | ±0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakobina, M.; Łyczko, J.; Zydorowicz, K.; Galek, R.; Szumny, A. The Potential Use of Plant Growth Regulators for Modification of the Industrially Valuable Volatile Compounds Synthesis in Hylocreus undatus Stems. Molecules 2023, 28, 3843. https://doi.org/10.3390/molecules28093843
Jakobina M, Łyczko J, Zydorowicz K, Galek R, Szumny A. The Potential Use of Plant Growth Regulators for Modification of the Industrially Valuable Volatile Compounds Synthesis in Hylocreus undatus Stems. Molecules. 2023; 28(9):3843. https://doi.org/10.3390/molecules28093843
Chicago/Turabian StyleJakobina, Maciej, Jacek Łyczko, Kinga Zydorowicz, Renata Galek, and Antoni Szumny. 2023. "The Potential Use of Plant Growth Regulators for Modification of the Industrially Valuable Volatile Compounds Synthesis in Hylocreus undatus Stems" Molecules 28, no. 9: 3843. https://doi.org/10.3390/molecules28093843
APA StyleJakobina, M., Łyczko, J., Zydorowicz, K., Galek, R., & Szumny, A. (2023). The Potential Use of Plant Growth Regulators for Modification of the Industrially Valuable Volatile Compounds Synthesis in Hylocreus undatus Stems. Molecules, 28(9), 3843. https://doi.org/10.3390/molecules28093843