Supercritical Carbon Dioxide Technology for Recovering Valuable Phytochemicals from Cannabis sativa L. and Valorization of Its Biomass for Food Applications
Abstract
:1. Introduction
2. Cannabis Plant, Cannabinoids and Endocannabinoid System
3. Therapeutic Effects of Cannabis
4. Side Effects
5. Supercritical Fluid Extraction (SFE)
6. Impact of SFE Operating Conditions on Cannabis Compounds Extraction
6.1. Cannabis Aerial Parts (Inflorescences, Stems and Leaves)
Molecules | Strain/Cultivar | Plant Part | Operational Conditions 1 | Extraction Yield 1 | Ref. |
---|---|---|---|---|---|
CBDA THC THCA CBDV THCV CBG CBGA CBN CBC | Cannatonic | Flowers | T (°C): 35, 39 and 45 P (MPa): 15, 20 and 25 t (min): 30, 120 and 180 F (g): 0.5, 0.6 and 1.0 PS (mm): <2.7 | EY (%): 15.20 CBD (μg/mL): 195.26 CBDA (μg/mL): 603.37 THC (μg/mL): 21.06 THCA (μg/mL): 11.92 CBDV (μg/mL): 1.13 THCV (μg/mL): 0.76 CBG (μg/mL): 1.20 CBGA (μg/mL): 2.75 CBN (μg/mL): 0.59 CBC (μg/mL): 6.11 | [80] |
CBD THC | Seized cannabis bar | - | T (°C): 40, 60 and 80 P (MPa): 18, 25 and 32 t (min): 60 F (g): 600 PS (mesh): <40 Co-solvent: 0, 8.3, 16.7% ethanol | EY (%): 2.46 CBD (%): 11.92 THC (%): 19.52 | [81] |
CBD THC | Cultivar Helena | Aerial parts | T (°C): 40, 50 and 60 P (MPa): 10, 20 and 30 t (min): 60, 120, 180 and 240 F (g): 40 | EY (%): 1.15 CBD (mg/g extract): 163.11 THC (mg/g extract): 6.58 | [55] |
CBD CBN THC | Cannabis sativa L. | - | T (°C): 42 and 50 P (MPa): 19–20, 25 and 29–30 t (min): 60, 90, 110 and 120 F (g): 420, 480, 500, 750, 900 and 920 PS (mesh):14 and 20–40 Co-solvent: 0, 1, 2, 3 and 4% ethanol | EY (%): 0.93 CBD (w/w extract): 10.30% CBN (w/w extract): 26.75% Δ9-THC (w/w extract): 2.140% | [83] |
CBDV THCV CBD CBG CBDA CBGA CBN THC CBC THCA | Strain 1 Strain 2 | Flowers | T (°C): 37 P (MPa): 25 t (min): 180 F (g): 1 PS (mm): <2.7 | Strains 1 and 2, respectively CBD (μg/mL): 92.23 and 252.72 CBDA (μg/mL): 282.50 and 21.05 THC (μg/mL): 9.48 and 197.50 THCA (μg/mL): 4.71 and 1.60 | [79] |
CBDA CBD CBN CBCA CBC CBG THCA THC THCVA THCV CBGA CBDVA CBDV | Cannabis sativa L. | Inflorescences | Decarboxylation: 120 °C/45 min P (MPa): 20 and 30 T (°C): 50, 60 and 70 t (min): 15 (static) PS (mm): 0.5 to 2 CO2 flow rate (L/min): 0.50 (NTP) Co-solvent: 0 and 10% ethanol (w/w) F (g): 3.7 to 5.1 S (L): 100 (NTP) | THCA (g/100 g extract): 35.2 THC (g/100 g extract): 40.7 CBDA (g/100 g extract): 0.15 CBN (g/100 g extract): 0.119 CBCA (g/100 g extract): 2.67 CBC (g/100 g extract): 0.61 CBGA (g/100 g extract): 0.32 CBG (g/100 g extract): 0.35 THCVA (g/100 g extract): 0.35 THCV (g/100 g extract): 0.41 | [58] |
CBD THC | Narlı strain Elnur strain Papatya strain Gökçeağaç strain | Female leaves | Decarboxylation: 140 °C/30 min P (MPa): 15 and 33 T (°C): 40 and 60 CO2 flow rate (g/min): 100 t (h): 2 F (g): 100 Co-solvent: 0 and 2% (wt%) | CBD (Papatya strain): 3.71% THC (Papatya strain): 90.82% CBD (Elnur strain): 3.29% THC (Elnur strain): 58.22% CBD (Narlı strain): 7.70% | [84] |
CBD THC | Mixture of cannabis plants of varying genotype (CBD:THC ~1:1.5) | Biomass | Decarboxylation: 120 °C/2 h P (MPa): 15, 23.5 and 32 T (°C): 60 CO2 flow rate (g/mL): 40, 95 and 150 F (g): 1000 t (min): 240, 420 and 600 | CBD: 8.48 mg/g db (151.7 mg/g extract) THC: 4.99 mg/g db (187.6 mg/g extract) | [86] |
CBD THC | Cultivar Finola | Inflorescences | Decarboxylation: 100 °C/6 h P (MPa): 38 T (°C): 60 PS (μm): ~50 F (g): 18 CO2 flow rate (m3/h): 0.28 8 cicles—10 min maceration (static conditions) + 10 min (dynamic conditions) | Without decarboxylation CBD (% w/w): 2.22 on dry biomass (15.8 mg/g extract) With decarboxylation CBD (% w/w): 6.21 on dry biomass (50.02 mg/g extract) THC (% w/w): 0.370 on dry biomass (3.01 mg/g extract) | [70] |
THC CBD CBDA CBG CBGA CBN | Cannabis sativa L. different cultivars | Flower buds | Decarboxylation: 150 °C P (MPa): 30 T (°C): 50 PS: ~2 mm Fractionation 1° separator (P, MPa): 9, 11 and 13 2° separator (P, MPa): 5 S/F: 25 Effect of co-solvent Co-solvent: 5% ethanol S/F: 25 Effect of pressure S/F: 20 P (MPa): 20, 50, 70, 100 and 130 | EY (wt%): 5.8 to 12 Total cannabinoids recovery (%): 51 to 100 CBD (mg/g): 449 | [85] |
THC | Cannabis sativa L. | Inflorescences | P (MPa): 15, 24 and 33 T (°C): 40, 60 and 80 PS (mm): <0.5 t (h): 4 CO2 flow rate (kg/h): 0.55 F (g): 8 S/F: 275 Co-solvent: 0, 2 and 5% ethanol | THC (% dry sample): 6.06 (5.38 recovery) | [60] |
CBD CBDA CBG CBN THCA THC | Cannabis sativa chemovars Cherry kush Pineapple kush Purple sour diesel Ripped Bubba Harlequin | Flower trim | T (°C): 43 t (h): 6 P (psi): 1850 (12.76 MPa) | Cherry kush chemovar CBDA (mg/g extract): 91.2 CBD (mg/g extract): 5.3 THCA (mg/g extract): 693.8 THC (mg/g extract): 1.6 CBN (mg/g extract): 1.5 CBG (mg/g extract): 0.0 | [59] |
CBDA THC THCA | Hash Berry Sour Alien OG White Widow Abusive OG | Inflorescences | P (MPa): 17, 24 and 34 T (K): 328 F (g): 500 | EY (g extact/g feed): 0.185 CBDA (%): 2.92 THCA (%): 70.56 THC (%): 25.78 | [62] |
Molecules | Strain/Cultivar | Plant Part | Operational Conditions 1 | Extraction Yield 1 | Ref. |
---|---|---|---|---|---|
endo-Fenchol trans-Pinene hydrate ⍺-Bisabolol | Cannabis sativa L. | Inflorescences | Decarboxylation: 120 °C/45 min P (MPa): 20 and 30 T (°C): 50, 60 and 70 t (min): 15 (static) PS (mm): 0.5 to 2 CO2 flow rate (L/min): 0.50 (NTP) Co-solvent: 0 and 10% ethanol (w/w) F (g): 3.7 to 5.1 S (L): 100 (NTP) | endo-Fenchol (%): 14.7 trans-Pinene hydrate (%): 4.5 ⍺-Bisabolol (%): 25.7 | [58] |
α-Pinene β-Pinene β-Myrcene D-Limonene Linalool Fenchyl alcohol α-Terpineol β-Caryophyllene α-Humulene α-Bisabolol | Cannabis sativa chemovars Cherry kush Pineapple kush Purple sour diesel Ripped Bubba Harlequin | Flower trim | T (°C): 43 t (h): 6 P (psi): 1850 (12.76 MPa) | Cherry kush chemovar α-Pinene (mg/g extract): 0.48 β-Pinene (mg/g extract): 0.48 β-Myrcene (mg/g extract): 0.13 D-Limonene (mg/g extract): 0.19 Linalool (mg/g extract): 3.14 Fenchyl alcohol (mg/g extract): 4.04 α-Terpineol (mg/g extract): 5.06 β-caryophyllene (mg/g extract): 20.60 α-Humulene (mg/g extract): 5.69 α-Bisabolol (mg/g extract): 4.53 | [59] |
α-Pinene Camphene β-Pinene Myrcene Limonene 1,8-cineol (Z)-ocimene (E)-ocimene γ-terpinene Terpinolene Linalool Caryophyllen (E)-b-farnesene α-Humulene Caryophyllene oxide β-Eudesmol β-Bisabolol α-Bisabolol | Cannabis sativa L. | Inflorescences | F (g): 150 P (MPa): 10 and 14 T (°C): 40 CO2 flow rate (kg/h): 3 S/F: 80 Fractionation (2 separators: S1 and S2) S1: 7 MPa and 25 °C S2: 5 MPa and 15 °C | %—peak area percentage α-Pinene (%): 13.78 Camphene (%): 0.53 β-Pinene (%): 4.23 Myrcene (%): 22.65 Limonene (%): 0.87 1,8-cineol (%): 0.80 (Z)-ocimene (%): 0.52 (E)-ocimene (%): 1.47 γ-terpinene (%): 0.62 Terpinolene (%): 7.55 Linalool (%): 1.91 Caryophyllen (%): 39.6 (E)-b-farnesene (%): 1.77 α-Humulene (%): 9.52 Caryophyllene oxide (%): 6.11 β-Eudesmol (%): 2.39 β-Bisabolol (%): 2.80 α-Bisabolol (%): 1.47 | [63] |
6.2. Seeds
Class of Compounds | Molecules | Strain/Cultivar | Plant Part | Operational Conditions1 | Extraction yield 1 | Ref. |
---|---|---|---|---|---|---|
Cannabinoids Polyphenols Tocopherols | Polyphenols α-tocopherol γ-tocopherol CBD CBN | Cannabis sativa L. USO31 cultivar | Seeds | PS ≤ 1 mm and 1 < PS < 2 mm F (g): 18 T (°C): 40 P (MPa): 30 CO2 flow rate (mL/min): 10 t (min): 195 | EY (g/100 g): 30.98 ± 1.02 (93.19 ± 3.08% recovery) Polyphenols (GAE/kg oil): 51.42 ± 0.31 α-tocopherol (mg/kg oil): 39.57 ± 0.72 γ-tocopherol (mg/kg oil): 770.08 ± 10.75 CBD (mg/kg oil): 47.40 ± 0.85 CBN (mg/kg oil):76.52 ± 1.4 | [87] |
Fatty acids | Palmitic acid (C16:0) Stearic acid (C18:0) Oleic acid (C18:l) Linoleic acid (C18:2ω6) α-Linolenic acid (C18:3ω3) | Cannabis sativa L. | Seeds | F (g): 50 t (h): 4 T (K): 313.15, 333.15 and 353.15 P (MPa): 20, 27.5 and 35 CO2 flow rate (g/min): 5, 10 and 15 PS (mm): 0.430, 0.675 and 1.015 Co-solvent: 0, 5 and 10 % of CO2 flow rate | EY (%): 36.26 C16:0 (%): 2.52 C18:0 (%): 0.44 C18:l (%): 8.09 C18:2ω6 (%): 51.38 C18:3ω3 (%): 21.41 | [52] |
Fatty acids β-carotene Total tocopherols | Palmitic acid (C16:0) Palmitoleic acid (C16:1ω7) Stearic acid (C18:0) Oleic acid (C18:l ω9) Linoleic acid (C18:2ω6) α-Linolenic acid (C18:3ω3) C20:1ω9 C22:1ω9 β-carotene Total tocopherols | Cannabis sativa L. | Seeds | T (°C): 40 and 60 P (MPa): 30 and 40 CO2 flow rate (mL/min): 1.15 F (g): 4 t (min): 240 | C16:0 (%): 6.28 C16:1ω7 (%): 0.10 C18:0 (%): 2.61 C18:1ω9 (%): 12.64 C18:2ω6 (%): 57.99 C18:3ω3 (%): 18.54 C20:1ω9 (%): 0.35 C22:1ω9 (%): 0.02 Total tocopherols (mg/L): 935.5 β-carotene (mg/L): 16.84 | [89] |
Tocopherols Fatty acids Pigments | α-tocopherol γ-tocopherol Total chlorophyll Total carotene Palmitic acid (C16:0) Oleic acid (C18:0) γ-Linolenic acid (C18:3ω6) α-Linolenic acid (C18:3ω3) Linoleic acid (C18:2ω6) | Cannabis sativa L. Genotype Fedora 17 | Seeds | F (g): 100 g P (MPa): 30 and 40 T (°C): 40 and 60 CO2 flow rate (kg/h): 1.94 | α-tocopherol: 189.08 mg/L γ-tocopherol: 134.06 mg/L Total chlorophyll: 90.65 mg/kg Total carotenoids: 34.21 mg/kg C16:0 (%): 6.92 C18:0 (%): 13.17 C18:3ω6 (%): 3.16 C18:3ω3 (%): 16.29 C18:2ω6 (%): 58.19 | [90] |
Fatty acids | Palmitic acid (C16:0) Stearic acid (C18:0) Oleic acid (C18:1) Linoleic acid (C18:2ω6) Linolenic acid (C18:3ω6) | Cannabis sativa L. | Seeds | F (g): 4 CO2 flow rate (mL/min): 3 t (min): 0–180 (kinetic experiments) T (°C): 40, 60 and 80 P (MPa): 20, 30 and 40 | EY (%): 0.442 g/g sample C16:0 (%): ~10% C18:0 (%): ~3% C18:1 (%): ~10% C18:2ω6 (%): ~17% C18:3ω6 (%): ~60% | [88] |
Fatty acids | Palmitic acid (C16:0) Stearic acid (C18:0) Oleic acid (C18:1) Linoleic acid (C18:2ω6) Linolenic acid (C18:3ω6) α-Linolenic acid (C18:3ω3) Eicosenoic acid (C20:1) Behenic acid (C22:0) | Cannabis sativa L. | Seeds | T (°C): 40, 50 and 60 P (MPa): 25, 30 and 35 PS (nm): 0.59, 0.71 and 0.83 CO2 flow rate (kg/s): 8 × 10−5 t (min): 60 F (g): 15 g | C16:0 (%): 5.85 ± 0.06 C18:0 (%): 1.45 ± 0.04 C18:1(%): 10.67 ± 0.14 C18:2ω6 (%): 59.21 ± 0.70 C18:3ω6 (%): 3.40 ± 0.09 C18:3ω3 (%): 18.47 ± 0.63 C20:1 (%): 0.12 ± 0.06 C22:0 (%): 0.84 ± 0.01 | [51] |
Fatty acids | Palmitic acid (C16:0) Stearic acid (C18:0) Oleic acid (C18:l) Linoleic acid (C18:2ω6) γ-Linolenic acid (C18:3ω6) α-Linolenic acid (C18:3ω3) Eicosenoic acid (C20:l) Behenic acid (C22:0) | Cannabis sativa L. | Seeds | F (g): 300 g CO2 flow rate (kg/h): 10 T (°C): 40, 60 and 80 P (MPa): 30 and 40 S/F: 30, 45 and 60 PS: 1.50 mm | EY (%): 22.1 ± 0.7 (72.2 ± 0.5% recovery) Main fatty acids (mean value for different conditions) C18:l (%): 11.25 C18:2ω6 (%): 59.47 C18:3ω3 (%): 18.08 | [50] |
Cannabinoids | CBD CBC THC CBG CBN CBDA THCA | Cannabis sativa L. | Industrial hemp threshing residue (stalks and leaves) | F (g): 500 CO2 flow rate (kg/h): 7 T (°C): 45 P (MPa): 10 and 45 2 Separators (S1 and S2) T (°C) S1 and S2: 45 P (MPa) S1: 8–9 P (MPa) S2: 4 | CBD (mg/100 g db): 788.0 CBDA (mg/100 g db): 1660.9 CBC (mg/100 g db): 32.3 CBG (mg/100 g db): ~15 THC (mg/100 g db): 18.6 THCA (mg/100 g db): 46.1 | [91] |
Cannabinoids | CBD CBDA | Cannabis sativa L. | Threshing residue | F (g): 10 CO2 flow rate (L/min): 2–3 (at 0.0018 g/mL CO2 density) P (MPa): 10, 30 and 50 T (°C): 35, 52.5 and 70 t (min): 60, 90 and 120 | EY (g/100 g dw): 10.36 ± 0.31 CBD: 0.23 ± 0.01 g/100 g dw (24.15 ± 0.89 mg/g extract) CBDA: 0.16 ± 0.00 g/100 g dw (239.3 ± 1.0 mg/g extract) | [92] |
Cannabinoids Lipophilic compounds | CBD Fatty acids Policosanols Fatty aldehydes Hydrocarbons Sterols Triterpenoids | Cannabis sativa L. | Dust residues | P (MPa): 8, 24, 35 and 40 T (°C): 35, 50 and 65 F (g): 100 t (h): 4 CO2 flow rate (g/min): 35 | Total fatty acids (μg/g of dust): 2252.8 ± 108.5 | [93] |
6.3. By-Products
7. SFE of Cannabis: Challenges and Prospects
8. Non-Thermal Supercritical CO2 Processing of Cannabis Biomass
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraguas-Sánchez, A.I.; Torres-Suárez, A.I. Chapter 11—Therapeutic uses of Cannabis sativa L. Current state and future perspectives. In Current Applications, Approaches, and Potential Perspectives for Hemp; García-Tejero, I.F., Durán-Zuazo, V.H., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 407–445. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on the Health Effects of Marijuana: An Evidence Review and Research Agenda. The National Academies Collection: Reports funded by National Institutes of Health. In The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research; National Academies Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Pamplona, F.A. Quais são e pra que servem os medicamentos à base de Cannabis? Rev. Biol. 2018, 13, 28–35. [Google Scholar] [CrossRef]
- Britch, S.C.; Babalonis, S.; Walsh, S.L. Cannabidiol: Pharmacology and therapeutic targets. Psychopharmacology 2021, 238, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Santiago, M.; Sachdev, S.; Arnold, J.C.; McGregor, I.S.; Connor, M. Absence of Entourage: Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Functional Activity of Δ9-THC at Human CB1 and CB2 Receptors. Cannabis Cannabinoid Res. 2019, 4, 165–176. [Google Scholar] [CrossRef]
- Schlag, A.K.; O’Sullivan, S.E.; Zafar, R.R.; Nutt, D.J. Current controversies in medical cannabis: Recent developments in human clinical applications and potential therapeutics. Neuropharmacology 2021, 191, 108586. [Google Scholar] [CrossRef]
- Finlay, D.B.; Sircombe, K.J.; Nimick, M.; Jones, C.; Glass, M. Terpenoids From Cannabis Do Not Mediate an Entourage Effect by Acting at Cannabinoid Receptors. Front. Pharmacol. 2020, 11, 359. [Google Scholar] [CrossRef]
- Aizpurua-Olaizola, O.; Elezgarai, I.; Rico-Barrio, I.; Zarandona, I.; Etxebarria, N.; Usobiaga, A. Targeting the endocannabinoid system: Future therapeutic strategies. Drug Discov. Today 2017, 22, 105–110. [Google Scholar] [CrossRef]
- Iannotti, F.A.; Di Marzo, V.; Petrosino, S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog. Lipid Res. 2016, 62, 107–128. [Google Scholar] [CrossRef]
- Berman, P.; Sulimani, L.; Gelfand, A.; Amsalem, K.; Lewitus, G.M.; Meiri, D. Cannabinoidomics—An analytical approach to understand the effect of medical Cannabis treatment on the endocannabinoid metabolome. Talanta 2020, 219, 121336. [Google Scholar] [CrossRef]
- Rasera, G.B.; Ohara, A.; de Castro, R.J.S. Innovative and emerging applications of cannabis in food and beverage products: From an illicit drug to a potential ingredient for health promotion. Trends Food Sci. Technol. 2021, 115, 31–41. [Google Scholar] [CrossRef]
- Scharf, E.L.; Ebbert, J.O. Endocannabinoids and Stroke Prevention: Review of Clinical Studies. Cannabis Cannabinoid Res. 2019, 5, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.I. The therapeutic effects of Cannabis and cannabinoids: An update from the National Academies of Sciences, Engineering and Medicine report. Eur. J. Intern. Med. 2018, 49, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.P.H. Therapeutic potential of cannabis-related drugs. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 64, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Khayat, W.; Lehmann, C. The Endocannabinoid System: A Potential Therapeutic Target for Coagulopathies. Metabolites 2022, 12, 541. [Google Scholar] [CrossRef]
- Bourke, S.L.; Schlag, A.K.; O’Sullivan, S.E.; Nutt, D.J.; Finn, D.P. Cannabinoids and the endocannabinoid system in fibromyalgia: A review of preclinical and clinical research. Pharmacol. Ther. 2022, 240, 108216. [Google Scholar] [CrossRef]
- Lavender, I.; McGregor, I.S.; Suraev, A.; Grunstein, R.R.; Hoyos, C.M. Cannabinoids, Insomnia, and Other Sleep Disorders. Chest 2022, 162, 452–465. [Google Scholar] [CrossRef]
- Pamplona, F.A.; da Silva, L.R.; Coan, A.C. Potential Clinical Benefits of CBD-Rich Cannabis Extracts Over Purified CBD in Treatment-Resistant Epilepsy: Observational Data Meta-analysis. Front. Neurol. 2018, 9, 759. [Google Scholar] [CrossRef]
- Valenti, C.; Billi, M.; Pancrazi, G.L.; Calabria, E.; Armogida, N.G.; Tortora, G.; Pagano, S.; Barnaba, P.; Marinucci, L. Biological effects of cannabidiol on human cancer cells: Systematic review of the literature. Pharmacol. Res. 2022, 181, 106267. [Google Scholar] [CrossRef]
- Whiting, P.F.; Wolff, R.F.; Deshpande, S.; Di Nisio, M.; Duffy, S.; Hernandez, A.V.; Keurentjes, J.C.; Lang, S.; Misso, K.; Ryder, S.; et al. Cannabinoids for Medical Use: A Systematic Review and Meta-analysis. JAMA 2015, 313, 2456–2473. [Google Scholar] [CrossRef]
- Weisskopf, J.-P. Breaking bad: An investment in cannabis. Financ. Res. Lett. 2020, 33, 101201. [Google Scholar] [CrossRef]
- Aguilar, S.; Gutiérrez, V.; Sánchez, L.; Nougier, M. Medicinal Cannabis Policies and Practices around the World. Available online: https://idpc.net/publications/2018/04/medicinal-cannabis-policies-and-practices-around-the-world (accessed on 11 February 2023).
- Gaoni, Y.; Mechoulam, R. Isolation, Structure, and Partial Synthesis of an Active Constituent of Hashish. J. Am. Chem. Soc. 1964, 86, 1646–1647. [Google Scholar] [CrossRef]
- Guindon, J.; Hohmann, A.G. Cannabinoid CB2 receptors: A therapeutic target for the treatment of inflammatory and neuropathic pain. Br. J. Pharmacol. 2008, 153, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, K.E.; Hagerty, S.L.; Galinkin, J.; Bryan, A.D.; Bidwell, L.C. Cannabinoids, Pain, and Opioid Use Reduction: The Importance of Distilling and Disseminating Existing Data. Cannabis Cannabinoid Res. 2019, 4, 158–164. [Google Scholar] [CrossRef]
- Benito, C.; Romero, J.P.; Tolón, R.M.; Clemente, D.; Docagne, F.; Hillard, C.J.; Guaza, C.; Romero, J. Cannabinoid CB1 and CB2 Receptors and Fatty Acid Amide Hydrolase Are Specific Markers of Plaque Cell Subtypes in Human Multiple Sclerosis. J. Neurosci. 2007, 27, 2396. [Google Scholar] [CrossRef]
- Centonze, D.; Bari, M.; Rossi, S.; Prosperetti, C.; Furlan, R.; Fezza, F.; De Chiara, V.; Battistini, L.; Bernardi, G.; Bernardini, S.; et al. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 2007, 130, 2543–2553. [Google Scholar] [CrossRef]
- Jean-Gilles, L.; Feng, S.; Tench, C.R.; Chapman, V.; Kendall, D.A.; Barrett, D.A.; Constantinescu, C.S. Plasma endocannabinoid levels in multiple sclerosis. J. Neurol. Sci. 2009, 287, 212–215. [Google Scholar] [CrossRef]
- Giacoppo, S.; Bramanti, P.; Mazzon, E. Sativex in the management of multiple sclerosis-related spasticity: An overview of the last decade of clinical evaluation. Mult. Scler. Relat. Disord. 2017, 17, 22–31. [Google Scholar] [CrossRef]
- Sallan, S.E.; Zinberg, N.E.; Frei, E. Antiemetic Effect of Delta-9-Tetrahydrocannabinol in Patients Receiving Cancer Chemotherapy. N. Engl. J. Med. 1975, 293, 795–797. [Google Scholar] [CrossRef]
- Grimison, P.; Mersiades, A.; Kirby, A.; Lintzeris, N.; Morton, R.; Haber, P.; Olver, I.; Walsh, A.; McGregor, I.; Cheung, Y.; et al. Oral THC:CBD cannabis extract for refractory chemotherapy-induced nausea and vomiting: A randomised, placebo-controlled, phase II crossover trial. Ann. Oncol. 2020, 31, 1553–1560. [Google Scholar] [CrossRef]
- Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017, 376, 2011–2020. [Google Scholar] [CrossRef]
- Hill, A.J.; Hill, T.D.M.; Whalley, B.J. The Development of Cannabinoid Based Therapies for Epilepsy. In Endocannabinoids: Molecular, Pharmacological, Behavioral and Clinical Features; Bentham Science: Oak Park, IL, USA, 2013; Volume 1, pp. 164–204. [Google Scholar]
- Kelly, B.F.; Nappe, T.M. Cannabinoid Toxicity. Available online: https://pubmed.ncbi.nlm.nih.gov/29489164/ (accessed on 15 January 2023).
- Cohen, K.; Weizman, A.; Weinstein, A. Positive and Negative Effects of Cannabis and Cannabinoids on Health. Clin. Pharmacol. Ther. 2019, 105, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Iffland, K.; Grotenhermen, F. An Update on Safety and Side Effects of Cannabidiol: A Review of Clinical Data and Relevant Animal Studies. Cannabis Cannabinoid Res. 2017, 2, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Lazarjani, M.P.; Young, O.; Kebede, L.; Seyfoddin, A. Processing and extraction methods of medicinal cannabis: A narrative review. J. Cannabis Res. 2021, 3, 32. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, D.; Scortichini, S.; Bonacucina, G.; Greco, N.G.; Mazzara, E.; Petrelli, R.; Torresi, J.; Maggi, F.; Cespi, M. Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design. Ind. Crops Prod. 2020, 154, 112688. [Google Scholar] [CrossRef]
- Matešić, N.; Jurina, T.; Benković, M.; Panić, M.; Valinger, D.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Microwave-assisted extraction of phenolic compounds from Cannabis sativa L.: Optimization and kinetics study. Sep. Sci. Technol. 2021, 56, 2047–2060. [Google Scholar] [CrossRef]
- Drinić, Z.; Vladić, J.; Koren, A.; Zeremski, T.; Stojanov, N.; Kiprovski, B.; Vidović, S. Microwave-assisted extraction of cannabinoids and antioxidants from Cannabis sativa aerial parts and process modeling. J. Chem. Technol. Biotechnol. 2020, 95, 831–839. [Google Scholar] [CrossRef]
- De Vita, D.; Madia, V.N.; Tudino, V.; Saccoliti, F.; De Leo, A.; Messore, A.; Roscilli, P.; Botto, A.; Pindinello, I.; Santilli, G.; et al. Comparison of different methods for the extraction of cannabinoids from cannabis. Nat. Prod. Res. 2020, 34, 2952–2958. [Google Scholar] [CrossRef]
- Kobus, Z.; Pecyna, A.; Buczaj, A.; Krzywicka, M.; Przywara, A.; Nadulski, R. Optimization of the Ultrasound-Assisted Extraction of Bioactive Compounds from Cannabis sativa L. Leaves and Inflorescences Using Response Surface Methodology. Appl. Sci. 2022, 12, 6747. [Google Scholar] [CrossRef]
- Esposito, M.; Piazza, L. Ultrasound-assisted extraction of oil from hempseed (Cannabis sativa L.): Part 1. J. Sci. Food Agric. 2022, 102, 732–739. [Google Scholar] [CrossRef]
- Isidore, E.; Karim, H.; Ioannou, I. Extraction of Phenolic Compounds and Terpenes from Cannabis sativa L. By-Products: From Conventional to Intensified Processes. Antioxidants 2021, 10, 942. [Google Scholar] [CrossRef] [PubMed]
- Béri, J.; Nagy, S.; Kovács, Á.K.; Vági, E.; Székely, E. Pressurized Liquid Extraction of Hemp Residue and Purification of the Extract with Liquid-Liquid Extraction. Period. Polytech. Chem. Eng. 2022, 66, 82–90. [Google Scholar] [CrossRef]
- Nuapia, Y.; Tutu, H.; Chimuka, L.; Cukrowska, E. Selective Extraction of Cannabinoid Compounds from Cannabis Seed Using Pressurized Hot Water Extraction. Molecules 2020, 25, 1335. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Formato, A.; Ciaravolo, M.; Formato, G.; Naviglio, D. Study of the Kinetics of Extraction Process for The Production of Hemp Inflorescences Extracts by Means of Conventional Maceration (CM) and Rapid Solid-Liquid Dynamic Extraction (RSLDE). Separations 2020, 7, 20. [Google Scholar] [CrossRef]
- Da Porto, C.; Decorti, D.; Tubaro, F. Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Ind. Crops Prod. 2012, 36, 401–404. [Google Scholar] [CrossRef]
- Da Porto, C.; Voinovich, D.; Decorti, D.; Natolino, A. Response surface optimization of hemp seed (Cannabis sativa L.) oil yield and oxidation stability by supercritical carbon dioxide extraction. J. Supercrit. Fluids 2012, 68, 45–51. [Google Scholar] [CrossRef]
- Devi, V.; Khanam, S. Comparative study of different extraction processes for hemp (Cannabis sativa) seed oil considering physical, chemical and industrial-scale economic aspects. J. Clean. Prod. 2019, 207, 645–657. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A.; Decorti, D. Effect of ultrasound pre-treatment of hemp (Cannabis sativa L.) seed on supercritical CO2 extraction of oil. J. Food Sci. Technol. 2015, 52, 1748–1753. [Google Scholar] [CrossRef]
- Devi, V.; Khanam, S. Optimization of the Ratio of ω-6 Linoleic and ω-3 α-Linolenic Fatty Acids of Hemp Seed Oil with Jackknife and Bootstrap Resampling. Chem. Prod. Process Model. 2020, 15, 20190028. [Google Scholar] [CrossRef]
- Drinić, Z.; Vladic, J.; Koren, A.; Zeremski, T.; Stojanov, N.; Tomić, M.; Vidović, S. Application of conventional and high-pressure extraction techniques for the isolation of bioactive compounds from the aerial part of hemp (Cannabis sativa L.) assortment Helena. Ind. Crops Prod. 2021, 171, 113908. [Google Scholar] [CrossRef]
- Kornpointner, C.; Sainz Martinez, A.; Schnürch, M.; Halbwirth, H.; Bica-Schröder, K. Combined ionic liquid and supercritical carbon dioxide based dynamic extraction of six cannabinoids from Cannabis sativa L. Green Chem. 2021, 23, 10079–10089. [Google Scholar] [CrossRef] [PubMed]
- Qamar, S.; Torres, Y.J.M.; Parekh, H.S.; Falconer, J.R. Effects of Ethanol on the Supercritical Carbon Dioxide Extraction of Cannabinoids from Near Equimolar (THC and CBD Balanced) Cannabis Flower. Separations 2021, 8, 154. [Google Scholar] [CrossRef]
- Fernández, S.; Carreras, T.; Castro, R.; Perelmuter, K.; Giorgi, V.; Vila, A.; Rosales, A.; Pazos, M.; Moyna, G.; Carrera, I.; et al. A comparative study of supercritical fluid and ethanol extracts of cannabis inflorescences: Chemical profile and biological activity. J. Supercrit. Fluids 2022, 179, 105385. [Google Scholar] [CrossRef]
- Sexton, M.; Shelton, K.; Haley, P.; West, M. Evaluation of Cannabinoid and Terpenoid Content: Cannabis Flower Compared to Supercritical CO2 Concentrate. Planta Med. 2018, 84, 234–241. [Google Scholar] [CrossRef]
- Gallo-Molina, A.C.; Castro-Vargas, H.I.; Garzón-Méndez, W.F.; Martínez Ramírez, J.A.; Rivera Monroy, Z.J.; King, J.W.; Parada-Alfonso, F. Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. J. Supercrit. Fluids 2019, 146, 208–216. [Google Scholar] [CrossRef]
- Grijó, D.R.; Vieitez Osorio, I.A.; Cardozo-Filho, L. Supercritical extraction strategies using CO2 and ethanol to obtain cannabinoid compounds from Cannabis hybrid flowers. J. CO2 Util. 2018, 28, 174–180. [Google Scholar] [CrossRef]
- Rovetto, L.J.; Aieta, N.V. Supercritical carbon dioxide extraction of cannabinoids from Cannabis sativa L. J. Supercrit. Fluids 2017, 129, 16–27. [Google Scholar] [CrossRef]
- Da Porto, C.; Decorti, D.; Natolino, A. Separation of aroma compounds from industrial hemp inflorescences (Cannabis sativa L.) by supercritical CO2 extraction and on-line fractionation. Ind. Crops Prod. 2014, 58, 99–103. [Google Scholar] [CrossRef]
- Naz, S.; Hanif, M.A.; Bhatti, H.N.; Ansari, T.M. Impact of Supercritical Fluid Extraction and Traditional Distillation on the Isolation of Aromatic Compounds from Cannabis indica and Cannabis sativa. J. Essent. Oil Bear. Plants 2017, 20, 175–184. [Google Scholar] [CrossRef]
- De Aguiar, A.C.; Viganó, J.; da Silva Anthero, A.G.; Dias, A.L.B.; Hubinger, M.D.; Martínez, J. Supercritical fluids and fluid mixtures to obtain high-value compounds from Capsicum peppers. Food Chem. X 2022, 13, 100228. [Google Scholar] [CrossRef]
- Baldino, L.; Scognamiglio, M.; Reverchon, E. Supercritical fluid technologies applied to the extraction of compounds of industrial interest from Cannabis sativa L. and to their pharmaceutical formulations: A review. J. Supercrit. Fluids 2020, 165, 104960. [Google Scholar] [CrossRef]
- Da Silva, L.C.; Viganó, J.; de Souza Mesquita, L.M.; Dias, A.L.B.; de Souza, M.C.; Sanches, V.L.; Chaves, J.O.; Pizani, R.S.; Contieri, L.S.; Rostagno, M.A. Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products. Food Chem. X 2021, 12, 100133. [Google Scholar] [CrossRef] [PubMed]
- Pizani, R.S.; Viganó, J.; de Souza Mesquita, L.M.; Contieri, L.S.; Sanches, V.L.; Chaves, J.O.; Souza, M.C.; da Silva, L.C.; Rostagno, M.A. Beyond aroma: A review on advanced extraction processes from rosemary (Rosmarinus officinalis) and sage (Salvia officinalis) to produce phenolic acids and diterpenes. Trends Food Sci. Technol. 2022, 127, 245–262. [Google Scholar] [CrossRef]
- Contieri, L.S.; de Souza Mesquita, L.M.; Sanches, V.L.; Chaves, J.; Pizani, R.S.; da Silva, L.C.; Viganó, J.; Ventura, S.P.M.; Rostagno, M.A. Recent progress on the recovery of bioactive compounds obtained from propolis as a natural resource: Processes, and applications. Sep. Purif. Technol. 2022, 298, 121640. [Google Scholar] [CrossRef]
- Marzorati, S.; Friscione, D.; Picchi, E.; Verotta, L. Cannabidiol from inflorescences of Cannabis sativa L.: Green extraction and purification processes. Ind. Crops Prod. 2020, 155, 112816. [Google Scholar] [CrossRef]
- Ferreira, W.S.; Viganó, J.; Veggi, P.C. Economic assessment of emerging extraction techniques: Hybridization of high-pressure extraction and low-frequency ultrasound to produce piceatannol-rich extract from passion fruit bagasse. Chem. Eng. Process. Process Intensif. 2022, 174, 108850. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Pataro, G.; Tiwari, B.; Gozzi, M.; Meireles, M.Á.A.; Wang, S.; Guamis, B.; Pan, Z.; Ramaswamy, H.; Sastry, S.; et al. Guidelines on reporting treatment conditions for emerging technologies in food processing. Crit. Rev. Food Sci. Nutr. 2021, 62, 5925–5949. [Google Scholar] [CrossRef]
- Pereira, C.G.; Meireles, M.A.A. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Aguiar, A.C.; Visentainer, J.V.; Martínez, J. Extraction from striped weakfish (Cynoscion striatus) wastes with pressurized CO2: Global yield, composition, kinetics and cost estimation. J. Supercrit. Fluids 2012, 71, 1–10. [Google Scholar] [CrossRef]
- Khaw, K.-Y.; Parat, M.-O.; Shaw, P.N.; Falconer, J.R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef]
- Martínez, J.; de Aguiar, A.C. Extraction of triacylglycerols and fatty acids using supercritical fluids—Review. Curr. Anal. Chem. 2014, 10, 67–77. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Zulkafli, Z.D.; Wang, H.; Miyashita, F.; Utsumi, N.; Tamura, K. Cosolvent-modified supercritical carbon dioxide extraction of phenolic compounds from bamboo leaves (Sasa palmata). J. Supercrit. Fluids 2014, 94, 123–129. [Google Scholar] [CrossRef]
- Qamar, S.; Manrique, Y.J.; Parekh, H.S.; Falconer, J.R. Development and Optimization of Supercritical Fluid Extraction Setup Leading to Quantification of 11 Cannabinoids Derived from Medicinal Cannabis. Biology 2021, 10, 481. [Google Scholar] [CrossRef] [PubMed]
- Qamar, S.; Torres, Y.J.M.; Parekh, H.S.; Falconer, J.R. Fractional Factorial Design Study for the Extraction of Cannabinoids from CBD-Dominant Cannabis Flowers by Supercritical Carbon Dioxide. Processes 2022, 10, 93. [Google Scholar] [CrossRef]
- Monton, C.; Chankana, N.; Leelawat, S.; Suksaeree, J.; Songsak, T. Optimization of supercritical carbon dioxide fluid extraction of seized cannabis and self-emulsifying drug delivery system for enhancing the dissolution of cannabis extract. J. Supercrit. Fluids 2022, 179, 105423. [Google Scholar] [CrossRef]
- Perrotin-Brunel, H.; Kroon, M.C.; van Roosmalen, M.J.E.; van Spronsen, J.; Peters, C.J.; Witkamp, G.-J. Solubility of non-psychoactive cannabinoids in supercritical carbon dioxide and comparison with psychoactive cannabinoids. J. Supercrit. Fluids 2010, 55, 603–608. [Google Scholar] [CrossRef]
- Madaka, F.; Chankana, N.; Khamthong, N.; Maha, A.; Songsak, T. Extraction and isolation of high quantities of cannabidiol, cannabinol, and delta-9-tetrahydrocannabinol from Cannabis sativa L. Malays. J. Anal. Sci. 2021, 25, 867–881. [Google Scholar]
- Karğılı, U.; Aytaç, E. Supercritical fluid extraction of cannabinoids (THC and CBD) from four different strains of cannabis grown in different regions. J. Supercrit. Fluids 2022, 179, 105410. [Google Scholar] [CrossRef]
- Moreno, T.; Montanes, F.; Tallon, S.J.; Fenton, T.; King, J.W. Extraction of cannabinoids from hemp (Cannabis sativa L.) using high pressure solvents: An overview of different processing options. J. Supercrit. Fluids 2020, 161, 104850. [Google Scholar] [CrossRef]
- Rochfort, S.; Isbel, A.; Ezernieks, V.; Elkins, A.; Vincent, D.; Deseo, M.A.; Spangenberg, G.C. Utilisation of Design of Experiments Approach to Optimise Supercritical Fluid Extraction of Medicinal Cannabis. Sci. Rep. 2020, 10, 9124. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Pizzolongo, F.; Scognamiglio, G.; Romano, A.; Masi, P.; Romano, R. Effects of supercritical and liquid carbon dioxide extraction on hemp (Cannabis sativa L.) seed oil. Int. J. Food Sci. Technol. 2020, 55, 2472–2480. [Google Scholar] [CrossRef]
- Tomita, K.; Machmudah, S.; Quitain, A.T.; Sasaki, M.; Fukuzato, R.; Goto, M. Extraction and solubility evaluation of functional seed oil in supercritical carbon dioxide. J. Supercrit. Fluids 2013, 79, 109–113. [Google Scholar] [CrossRef]
- Grijó, D.R.; Piva, G.K.; Osorio, I.V.; Cardozo-Filho, L. Hemp (Cannabis sativa L.) seed oil extraction with pressurized n-propane and supercritical carbon dioxide. J. Supercrit. Fluids 2019, 143, 268–274. [Google Scholar] [CrossRef]
- Aladić, K.; Jarni, K.; Barbir, T.; Vidović, S.; Vladić, J.; Bilić, M.; Jokić, S. Supercritical CO2 extraction of hemp (Cannabis sativa L.) seed oil. Ind. Crops Prod. 2015, 76, 472–478. [Google Scholar] [CrossRef]
- Vági, E.; Balázs, M.; Komóczi, A.; Kiss, I.; Mihalovits, M.; Székely, E. Cannabinoids enriched extracts from industrial hemp residues. Period. Polytech. Chem. Eng. 2019, 63, 357–363. [Google Scholar] [CrossRef]
- Kitrytė, V.; Bagdonaitė, D.; Rimantas Venskutonis, P. Biorefining of industrial hemp (Cannabis sativa L.) threshing residues into cannabinoid and antioxidant fractions by supercritical carbon dioxide, pressurized liquid and enzyme-assisted extractions. Food Chem. 2018, 267, 420–429. [Google Scholar] [CrossRef]
- Attard, T.M.; Bainier, C.; Reinaud, M.; Lanot, A.; McQueen-Mason, S.J.; Hunt, A.J. Utilisation of supercritical fluids for the effective extraction of waxes and Cannabidiol (CBD) from hemp wastes. Ind. Crops Prod. 2018, 112, 38–46. [Google Scholar] [CrossRef]
- Speier, G.J. Pharmaceutical Composition and Method of Manufacturing. USA Patent US9044390B1, 2 June 2015. [Google Scholar]
- Bejarano, A.; Simões, P.C.; del Valle, J.M. Fractionation technologies for liquid mixtures using dense carbon dioxide. J. Supercrit. Fluids 2016, 107, 321–348. [Google Scholar] [CrossRef]
- Baskis, P.T. Cannabidiol Extraction Plant and Processes. USA Patent US9895404B1, 20 February 2018. [Google Scholar]
- De Luca, C.; Buratti, A.; Krauke, Y.; Stephan, S.; Monks, K.; Brighenti, V.; Pellati, F.; Cavazzini, A.; Catani, M.; Felletti, S. Investigating the effect of polarity of stationary and mobile phases on retention of cannabinoids in normal phase liquid chromatography. Anal. Bioanal. Chem. 2022, 414, 5385–5395. [Google Scholar] [CrossRef]
- Silva, E.K.; Meireles, M.A.A.; Saldaña, M.D.A. Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends Food Sci. Technol. 2020, 97, 381–390. [Google Scholar] [CrossRef]
- Silva, E.K.; Bargas, M.A.; Arruda, H.S.; Vardanega, R.; Pastore, G.M.; Meireles, M.A.A. Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments. Molecules 2020, 25, 3911. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.K.; Arruda, H.S.; Eberlin, M.N.; Pastore, G.M.; Meireles, M.A.A. Effects of supercritical carbon dioxide and thermal treatment on the inulin chemical stability and functional properties of prebiotic-enriched apple juice. Food Res. Int. 2019, 125, 108561. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, A.; Iqbal, A.; Linhu, Z.; Liu, Y.; Xu, X.; Pan, S.; Hu, W. Effect of high-pressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. Innov. Food Sci. Emerg. Technol. 2019, 54, 43–50. [Google Scholar] [CrossRef]
- Cappelletti, M.; Ferrentino, G.; Endrizzi, I.; Aprea, E.; Betta, E.; Corollaro, M.L.; Charles, M.; Gasperi, F.; Spilimbergo, S. High Pressure Carbon Dioxide pasteurization of coconut water: A sport drink with high nutritional and sensory quality. J. Food Eng. 2015, 145, 73–81. [Google Scholar] [CrossRef]
- Moscariello, C.; Matassa, S.; Esposito, G.; Papirio, S. From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resour. Conserv. Recycl. 2021, 175, 105864. [Google Scholar] [CrossRef]
- Burton, R.A.; Andres, M.; Cole, M.; Cowley, J.M.; Augustin, M.A. Industrial hemp seed: From the field to value-added food ingredients. J. Cannabis Res. 2022, 4, 45. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Novel thermal and non-thermal processing of watermelon juice. Trends Food Sci. Technol. 2019, 93, 234–243. [Google Scholar] [CrossRef]
- Urango, A.C.M.; Strieder, M.M.; Silva, E.K.; Meireles, M.A.A. Impact of Thermosonication Processing on Food Quality and Safety: A Review. Food Bioprocess Technol. 2022, 15, 1700–1728. [Google Scholar] [CrossRef]
- Liu, J.; Bi, J.; McClements, D.J.; Liu, X.; Yi, J.; Lyu, J.; Zhou, M.; Verkerk, R.; Dekker, M.; Wu, X.; et al. Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable- based products: A review. Carbohydr. Polym. 2020, 250, 116890. [Google Scholar] [CrossRef]
- Allai, F.M.; Azad, Z.R.A.A.; Mir, N.A.; Gul, K. Recent advances in non-thermal processing technologies for enhancing shelf life and improving food safety. Appl. Food Res. 2023, 3, 100258. [Google Scholar] [CrossRef]
- Hesami, M.; Baiton, A.; Alizadeh, M.; Pepe, M.; Torkamaneh, D.; Jones, A.M. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int. J. Mol. Sci. 2021, 22, 5671. [Google Scholar] [CrossRef] [PubMed]
- Amaral, G.V.; Silva, E.K.; Cavalcanti, R.N.; Cappato, L.P.; Guimaraes, J.T.; Alvarenga, V.O.; Esmerino, E.A.; Portela, J.B.; Sant’ Ana, A.S.; Freitas, M.Q.; et al. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends Food Sci. Technol. 2017, 64, 94–101. [Google Scholar] [CrossRef]
- Saldaña, M.D.A.; Silva, E.K.; Olmos Cornejo, J.E.; Orozco Lopez, C.L. 2.52—Green Processes in Foodomics: Biorefineries in the Food Industry. In Comprehensive Foodomics; Cifuentes, A., Ed.; Elsevier: Oxford, UK, 2021; pp. 808–824. [Google Scholar] [CrossRef]
- Sheikh, M.A.; Saini, C.S.; Sharma, H.K. Supercritical carbon dioxide treatment of plum (Prunus domestica L) kernel protein isolate: Impact on structural, thermal, physical, and functional properties. Sustain. Chem. Pharm. 2023, 32, 100979. [Google Scholar] [CrossRef]
- Sheikh, M.A.; Saini, C.S.; Sharma, H.K. Structural modification of plum (Prunus domestica L) kernel protein isolate by supercritical carbon-dioxide treatment: Functional properties and in-vitro protein digestibility. Int. J. Biol. Macromol. 2023, 230, 123128. [Google Scholar] [CrossRef]
- Sun, Y.; Chai, X.; Han, W.; Farah, Z.; Tian, T.; Xu, Y.-J.; Liu, Y. Pickering emulsions stabilized by hemp protein nanoparticles: Tuning the emulsion characteristics by adjusting anti-solvent precipitation. Food Hydrocoll. 2023, 138, 108434. [Google Scholar] [CrossRef]
- Montemurro, M.; Verni, M.; Rizzello, C.G.; Pontonio, E. Design of a Plant-Based Yogurt-Like Product Fortified with Hemp Flour: Formulation and Characterization. Foods 2023, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.; di Carlo, E.; Gianotti, A. Prebiotic potential of hemp blended drinks fermented by probiotics. Food Res. Int. 2020, 131, 109029. [Google Scholar] [CrossRef]
- Zahari, I.; Ferawati, F.; Helstad, A.; Ahlström, C.; Östbring, K.; Rayner, M.; Purhagen, J.K. Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods 2020, 9, 772. [Google Scholar] [CrossRef]
- Rusu, I.E.; Marc, R.A.; Mureşan, C.C.; Mureşan, A.E.; Mureşan, V.; Pop, C.R.; Chiş, M.S.; Man, S.M.; Filip, M.R.; Onica, B.-M.; et al. Hemp (Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product. Plants 2021, 10, 1558. [Google Scholar] [CrossRef]
Chemotype | THCA (%) | CBDA (%) | CBDA/THCA Ratio |
---|---|---|---|
THC-type | 0.5–15 | 0.01–0.16 | <0.02 |
Hybrid | 0.5–5 | 0.9–7.3 | 0.6–4 |
CBD-type | 0.05–0.7 | 1.0–13.6 | >5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Aguiar, A.C.; Vardanega, R.; Viganó, J.; Silva, E.K. Supercritical Carbon Dioxide Technology for Recovering Valuable Phytochemicals from Cannabis sativa L. and Valorization of Its Biomass for Food Applications. Molecules 2023, 28, 3849. https://doi.org/10.3390/molecules28093849
de Aguiar AC, Vardanega R, Viganó J, Silva EK. Supercritical Carbon Dioxide Technology for Recovering Valuable Phytochemicals from Cannabis sativa L. and Valorization of Its Biomass for Food Applications. Molecules. 2023; 28(9):3849. https://doi.org/10.3390/molecules28093849
Chicago/Turabian Stylede Aguiar, Ana Carolina, Renata Vardanega, Juliane Viganó, and Eric Keven Silva. 2023. "Supercritical Carbon Dioxide Technology for Recovering Valuable Phytochemicals from Cannabis sativa L. and Valorization of Its Biomass for Food Applications" Molecules 28, no. 9: 3849. https://doi.org/10.3390/molecules28093849
APA Stylede Aguiar, A. C., Vardanega, R., Viganó, J., & Silva, E. K. (2023). Supercritical Carbon Dioxide Technology for Recovering Valuable Phytochemicals from Cannabis sativa L. and Valorization of Its Biomass for Food Applications. Molecules, 28(9), 3849. https://doi.org/10.3390/molecules28093849