Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield of the Assayed Extraction Conditions
2.2. Model Fitting
2.3. Validation of the Predictive Models Developed
2.4. Quantitative Phenolic Profile via HPLC–DAD–ESI-MS/MS
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Extraction Procedure
3.4. Experimental Design
3.5. Total Phenolics and Flavonoids
3.6. Radical Scavenging Capacity
3.7. HPLC-DAD-ESI-MS/MS Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity—A review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Queiroz, M.; Oppolzer, D.; Gouvinhas, I.; Silva, A.M.; Barros, A.I.R.N.A.; Domínguez-Perles, R. New grape stems’ isolated phenolic compounds modulate reactive oxygen species, glutathione, and lipid peroxidation in vitro: Combined formulations with vitamins C and E. Fitoterapia 2017, 120, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef] [PubMed]
- Costa-Pérez, A.; Medina, S.; Sánchez-Bravo, P.; Domínguez-Perles, R.; García-Viguera, C. The (Poly)phenolic Profile of Separate Winery By-Products Reveals Potential Antioxidant Synergies. Molecules 2023, 28, 2081. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.; Deng, G.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Soceanu, A.; Dobrinas, S.; Sirbu, A.; Manea, N.; Popescu, V. Economic aspects of waste recovery in the wine industry. A multidisciplinary approach. Sci. Total Environ. 2021, 759, 143543. [Google Scholar] [CrossRef]
- Lorrain, B.; Ky, I.; Pechamat, L.; Teissedre, P.L. Evolution of analysis of polyhenols from grapes, wines, and extracts. Molecules 2013, 18, 1076–1100. [Google Scholar] [CrossRef]
- Barros, A.; Gironés-Vilaplana, A.; Texeira, A.; Baenas, N.; Domínguez-Perles, R. Grape stems as a source of bioactive compounds: Application towards added-value commodities and significance for human health. Phytochem. Rev. 2015, 14, 921–931. [Google Scholar] [CrossRef]
- Rodríguez-Ramos, F.; Cañas-Sarazúa, R.; Briones-Labarca, V. Pisco grape pomace: Iron/copper speciation and antioxidant properties, towards their comprehensive utilization. Food Biosci. 2022, 47, 101781. [Google Scholar] [CrossRef]
- Gerardi, C.; Pinto, L.; Baruzzi, F.; Giovinazzo, G. Comparison of Antibacterial and Antioxidant Properties of Red (cv. Negramaro) and White (cv. Fiano) Skin Pomace Extracts. Molecules 2021, 26, 5918. [Google Scholar] [CrossRef] [PubMed]
- Baron, G.; Ferrario, G.; Marinello, C.; Carini, M.; Morazzoni, P.; Aldini, G. Effect of Extraction Solvent and Temperature on Polyphenol Profiles, Antioxidant and Anti-Inflammatory Effects of Red Grape Skin By-Product. Molecules 2021, 26, 5454. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; González-SanJosé, M.L.; Del Pino-García, R.; Rivero-Pérez, M.D.; Muñiz-Rodríguez, P. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. J. Agric. Food Chem. 2014, 62, 12595–12602. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. FRIN 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Optimization of the extraction of phenolic compounds from red grape marc (Vitis vinifera L.) using response surface methodology. J. Wine Res. 2018, 29, 26–36. [Google Scholar] [CrossRef]
- Casagrande, M.; Zanela, J.; Pereira, D.; de Lima, V.A.; Oldoni, T.L.C.; Carpes, S.T. Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology. J. Food Meas. Charact. 2019, 13, 1120–1129. [Google Scholar] [CrossRef]
- Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. Technological aspects and stability of polyphenols. In Polyphenols: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 295–323. [Google Scholar]
- Predescu, N.C.; Papuc, C.; Nicorescu, V.; Gajaila, A.; Goran, G.V.; Petcu, C.D.; Stefan, T.A. The Influence of Solid-to-Solvent Ratio and Extraction Methodon Total Phenolic Content, Flavonoid Content and AntioxidantProperties of Some Ethanolic Plant Extracts. Rev. Chim. Bucharest 2016, 67, 1922–1927. [Google Scholar]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Morelli, L.L.L.; Prado, M.A. Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology. Ultrason. Sonochem. 2012, 19, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Rajha, H.N.; El Darra, N.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food Nutr. Sci. 2014, 5. [Google Scholar] [CrossRef]
- Türker, N.; Erdoğdu, F. Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (Daucus carota var. L.). J. Food Eng. 2006, 76, 579–583. [Google Scholar] [CrossRef]
- Amendola, D.; De Faveri, D.M.; Spigno, G. Grape marc phenolics: Extraction kinetics, quality and stability of extracts. J. Food Eng. 2010, 97, 384–392. [Google Scholar] [CrossRef]
- Librán, C.M.; Mayor, L.; M. Garcia-Castello, E.; Vidal-Brotons, D. Polyphenol extraction from grape wastes: Solvent and pH effect. Agric. Sci. 2013, 04, 56–62. [Google Scholar] [CrossRef]
- Pop, A.; Fizeșan, I.; Vlase, L.; Rusu, M.E.; Cherfan, J.; Babota, M.; Gheldiu, A.-M.; Tomuta, I.; Popa, D.-S. Enhanced Recovery of Phenolic and Tocopherolic Compounds from Walnut (Juglans Regia L.) Male Flowers Based on Process Optimization of Ultrasonic Assisted-Extraction: Phytochemical Profile and Biological Activities. Antioxidants 2021, 10, 607. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Jakobek, L.; Šeruga, M. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. Int. J. Food Sci. Technol. 2009, 44, 2394–2401. [Google Scholar] [CrossRef]
- Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A.I.R.N.A. A Box-Behnken Design for Optimal Extraction of Phenolics from Almond By-products. Food Anal. Methods 2019, 12, 2009–2024. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Sineiro, J.; Núñez, M.J. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 2004, 85, 267–273. [Google Scholar] [CrossRef]
- Karvela, E.; Makris, D.P.; Kalogeropoulos, N.; Karathanos, V.T. Deployment of response surface methodology to optimize recovery of grape (Vitis vinifera) stem and seed polyphenols. Procedia Food Sci. 2011, 1, 1686–1693. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Özcan, M.M.; Uslu, N.; Ghafoor, K. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils. J. Food Sci. Technol. 2018, 55, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.H.; da Silva Lindemann, I.; Ferreira, C.D.; Hoffmann, J.F.; Vanier, N.L.; de Oliveira, M. Effects of drying temperature and long-term storage conditions on black rice phenolic compounds. Food Chem. 2019, 287, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Cuadrado, C.; Redondo, I.B.; Giampieri, F.; González-Paramás, A.M.; Santos-Buelga, C. Novel approaches in anthocyanin research—Plant fortification and bioavailability issues. Trends Food Sci. Technol. 2021, 117, 92–105. [Google Scholar] [CrossRef]
- Vámos-Vigyázó, L.; Haard, N.F. Polyphenol oxidases and peroxidases in fruits and vegetables. C R C Crit. Rev. Food Sci. Nutr. 1981, 15, 49–127. [Google Scholar] [CrossRef] [PubMed]
- Havlikovfi, L.; Mková, K. Heat Stability of Anthocyanins. Z. Lebensm. Unters. Forsch. 1985, 181, 427–432. [Google Scholar] [CrossRef]
- Abraão, A.S.; Fernandes, N.; Silva, A.M.; Domínguez-Perles, R.; Barros, A. Prunus lusitanica L. Fruits as a Novel Source of Bioactive Compounds with Antioxidant Potential: Exploring the Unknown. Antioxidants 2022, 11, 1738. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Rodrigues, E.; Gongaza, L.V.; Caliari, V.; Genovese, M.I.; Gonçalves, A.E.d.S.S.; Fett, R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem. 2011, 127, 174–179. [Google Scholar] [CrossRef]
- Gouveia, S.C.; Castilho, P.C. Validation of a HPLC-DAD-ESI/MS n method for caffeoylquinic acids separation, quantification and identification in medicinal Helichrysum species from Macaronesia. Food Res. Int. 2012, 45, 362–368. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Ferreira, I.C.F.R.; Maria Carvalho, A.; Santos-Buelga, C. Use of HPLC-DAD-ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chem. 2011, 127, 169–173. [Google Scholar] [CrossRef]
- Shaheen, F.; Ali, L.; Ali, S.; Erdemoglu, N.; Sener, B. Antioxidant flavonoids from Tamus communis ssp. cretica. Chem. Nat. Compd. 2009, 45, 346–349. [Google Scholar] [CrossRef]
- Potential, R.; Synergies, A.; Costa-p, A.; Medina, S.; Paola, S. The (Poly) Phenolic Profile of Separate Winery By-Products; 2023; pp. 1–26. [Google Scholar]
- Zhao, X.; Zhang, S.S.; Zhang, X.K.; He, F.; Duan, C.Q. An effective method for the semi-preparative isolation of high-purity anthocyanin monomers from grape pomace. Food Chem. 2020, 310, 125830. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, Y.; Pan, Q.; Cui, X.; Duan, C. Different Anthocyanin Profiles of the Skin and the Pulp of Yan73 (Muscat Hamburg × Alicante Bouschet) Grape Berries. Molecules 2010, 15, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four. Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Muñoz, N.; Fernández-González, M.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Red-Color Related Phenolic Composition of Garnacha Tintorera (Vitis vinifera L.) Grapes and Red Wines. J. Agric. Food Chem. 2009, 57, 7883–7891. [Google Scholar] [CrossRef] [PubMed]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 2016, 20, 332–345. [Google Scholar] [CrossRef]
- Trikas, E.D.; Melidou, M.; Papi, R.M.; Zachariadis, G.A.; Kyriakidis, D.A. Extraction, separation and identification of anthocyanins from red wine by-product and their biological activities. J. Funct. Foods 2016, 25, 548–558. [Google Scholar] [CrossRef]
- Maier, T.; Göppert, A.; Kammerer, D.R.; Schieber, A.; Carle, R. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. Eur. Food Res. Technol. 2008, 227, 267–275. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Hernanz, D.; Cifuentes-Gomez, T.; Escudero-Gilete, M.L.; Heredia, F.J.; Spencer, J.P.E. Assessment of white grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity. Food Chem. 2015, 183, 78–82. [Google Scholar] [CrossRef]
- Ferri, M.; Rondini, G.; Calabretta, M.M.; Michelini, E.; Vallini, V.; Fava, F.; Roda, A.; Minnucci, G.; Tassoni, A. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. New Biotechnol. 2017, 39, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Periago, M.J.; Martínez-Valverde, I.; Chesson, A.; Provan, G. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I.R.N.A. Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: Valorization of a by-product. Ind. Crops Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I.R.N.A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Aires, A.; Carvalho, R. Kiwi fruit residues from industry processing: Study for a maximum phenolic recovery yield. J. Food Sci. Technol. 2020, 57, 4265–4276. [Google Scholar] [CrossRef] [PubMed]
- Gouvinhas, I.; Garcia, J.; Granato, D.; Barros, A. Seed Phytochemical Profiling of Three Olive Cultivars, Antioxidant Capacity, Enzymatic Inhibition, and Effects on Human Neuroblastoma Cells (SH-SY5Y). Molecules 2022, 27, 5057. [Google Scholar] [CrossRef]
Assay | Coded Level | TPC (mg GAE/g dw) | FC (mg CE/g dw) | ABTS (mmol TEAC/g dw) | DPPH (mmol TEAC/g dw) | FRAP (mmol TEAC/g dw) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ethanol Concentration (%) | pH (% of HCl) | Temperature (°C) | Observed | Predicted | Observed | Predicted | Observed | Predicted | Observed | Predicted | Observed | Predicted | |
1 | −1 (50) | −1 (0.5) | −1 (20) | 8.84 | 8.49 | 5.93 | 5.18 | 0.09 | 0.10 | 0.09 | 0.10 | 0.11 | 0.11 |
2 | −1 (50) | −1 (0.5) | 0 (40) | 15.77 | 14.81 | 8.49 | 7.45 | 0.15 | 0.14 | 0.15 | 0.14 | 0.15 | 0.14 |
3 | −1 (50) | −1 (0.5) | 1 (60) | 31.88 | 31.72 | 15.11 | 16.77 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
4 | −1 (50) | 0 (2.0) | −1 (20) | 10.56 | 11.64 | 6.38 | 5.84 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
5 | −1 (50) | 0 (2.0) | 0 (40) | 18.34 | 19.85 | 8.83 | 8.75 | 0.15 | 0.16 | 0.15 | 0.16 | 0.17 | 0.17 |
6 | −1 (50) | 0 (2.0) | 1 (60) | 38.06 | 38.64 | 18.46 | 18.70 | 0.27 | 0.27 | 0.27 | 0.27 | 0.29 | 0.30 |
7 | −1 (50) | 1 (3.5) | −1 (20) | 11.97 | 10.21 | 6.35 | 6.87 | 0.12 | 0.11 | 0.12 | 0.11 | 0.12 | 0.12 |
8 | −1 (50) | 1 (3.5) | 0 (40) | 19.59 | 20.31 | 10.41 | 10.41 | 0.17 | 0.16 | 0.17 | 0.16 | 0.20 | 0.18 |
9 | −1 (50) | 1 (3.5) | 1 (60) | 41.64 | 40.98 | 7.40 | 21.00 | 0.28 | 0.28 | 0.28 | 0.28 | 0.31 | 0.32 |
10 | 0 (70) | −1 (0.5) | −1 (20) | 11.87 | 12.04 | 5.43 | 6.61 | 0.11 | 0.10 | 0.11 | 0.10 | 0.11 | 0.11 |
11 | 0 (70) | −1 (0.5) | 0 (40) | 16.75 | 17.53 | 7.47 | 8.44 | 0.13 | 0.13 | 0.13 | 0.13 | 0.14 | 0.14 |
12 | 0 (70) | −1 (0.5) | 1 (60) | 34.71 | 33.62 | 18.37 | 17.33 | 0.24 | 0.24 | 0.24 | 0.24 | 0.25 | 0.25 |
13 | 0 (70) | 0 (2.0) | −1 (20) | 14.63 | 15.79 | 5.24 | 6.91 | 0.11 | 0.12 | 0.11 | 0.12 | 0.12 | 0.13 |
14 | 0 (70) | 0 (2.0) | 0 (40) | 23.91 | 23.17 | 10.75 | 9.39 | 0.15 | 0.16 | 0.15 | 0.16 | 0.19 | 0.18 |
15 | 0 (70) | 0 (2.0) | 1 (60) | 41.72 | 41.14 | 20.11 | 18.90 | 0.28 | 0.27 | 0.28 | 0.27 | 0.31 | 0.30 |
16 | 0 (70) | 1 (3.5) | −1 (20) | 16.38 | 14.96 | 7.34 | 4.89 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | 0.13 |
17 | 0 (70) | 1 (3.5) | 0 (40) | 22.48 | 24.21 | 11.15 | 1070 | 0.17 | 0.18 | 0.17 | 0.18 | 0.19 | 0.18 |
18 | 1 (70) | 1 (3.5) | 1 (60) | 44.93 | 40.71 | 22.95 | 20.09 | 0.30 | 0.29 | 0.30 | 0.29 | 0.36 | 0.31 |
19 | 1 (90) | −1 (0.5) | −1 (20) | 8.74 | 9.15 | 7.38 | 7.42 | 0.06 | 0.07 | 0.06 | 0.07 | 0.08 | 0.08 |
20 | 1 (90) | −1 (0.5) | 0 (40) | 15.03 | 13.82 | 9.27 | 8.83 | 0.11 | 0.10 | 0.11 | 0.10 | 0.12 | 0.11 |
21 | 1 (90) | −1 (0.5) | 1 (60) | 26.67 | 29.08 | 17.85 | 17.28 | 0.19 | 0.21 | 0.19 | 0.21 | 0.21 | 0.22 |
22 | 1 (90) | 0 (2.0) | −1 (20) | 12.77 | 13.49 | 8.16 | 7.38 | 0.11 | 0.10 | 0.11 | 0.10 | 0.12 | 0.10 |
23 | 1 (90) | 0 (2.0) | 0 (40) | 24.9 | 20.15 | 9.53 | 9.41 | 0.16 | 0.15 | 0.16 | 0.15 | 0.15 | 0.15 |
24 | 1 (90) | 0 (2.0) | 1 (60) | 36.07 | 37.19 | 16.31 | 18.50 | 0.26 | 0.26 | 0.26 | 0.26 | 0.27 | 0.28 |
25 | 1 (90) | 1 (3.5) | −1 (20) | 13.26 | 13.25 | 9.28 | 7.70 | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.10 |
26 | 1 (90) | 1 (3.5) | 0 (40) | 18.66 | 21.69 | 7.84 | 10.38 | 0.16 | 0.17 | 0.16 | 0.17 | 0.14 | 0.17 |
27 | 1 (90) | 1 (3.5) | 1 (60) | 38.11 | 40.71 | 18.48 | 20.08 | 0.28 | 0.29 | 0.28 | 0.29 | 0.28 | 0.31 |
Variable | Statistic | X1 | X2 | X3 | X1,2 | X1,3 | X2,3 | X12 | X22 | X32 | Model F-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
TPC | p-value | 0.851 | *** | *** | 0.358 | 0.205 | * | ** | * | *** | 0.16 |
F-value | 0.04 | 39.58 | 569.91 | 0.89 | 1.74 | 8.32 | 11.26 | 6.31 | 33.61 | ||
FC | p-value | 0.41 | * | * | 0.49 | 0.40 | 0.25 | 0.66 | 0.79 | *** | 0.20 |
F-value | 0.71 | 7.41 | 209.99 | 0.51 | 0.76 | 1.45 | 0.20 | 0.08 | 27.46 | ||
ABTS | p-value | ** | *** | *** | * | 0.652 | 0.063 | 0.070 | 0.078 | *** | 0.59 |
F-value | 8.86 | 73.93 | 858.08 | 12.73 | 0.21 | 3.94 | 3.74 | 3.52 | 59.27 | ||
DPPH | p-value | *** | *** | *** | 0.539 | * | 0.088 | 0.121 | 0.287 | ** | 0.89 |
F-value | 32.34 | 208.97 | 270.04 | 0.40 | 6.79 | 3.36 | 2.72 | 1.23 | 15.82 | ||
FRAP | p-value | * | *** | *** | 0.428 | 0.998 | ** | 0.072 | 0.141 | *** | 0.05 |
F-value | 6.17 | 30.14 | 384.69 | 0.66 | 0.01 | 10.75 | 3.68 | 2.38 | 23.94 | ||
Polynomial model | R2 | MAE | |||||||||
TPC = 23.1678 + 0.0988027X1 + 3.33974X2 + 12.6736X3 − 3.21974X12 + 0.591537X1X2 − 0.825963X1X3 − 2.29359X22 + 1.88461X2X3 + 5.29474X32 | 0.962 | 0.010 | |||||||||
FC = 9.38469 + 0.333288X1 + 1.12598X2 + 5.99543X3 − 0.305237X12 − 0.355901X1X2 − 0.435901X1X3 + 0.184871X22 + 0.636473X2X3 + 3.5232X32 | 0.909 | 0.989 | |||||||||
ABTS = 0.161795 − 0.00761641X1 + 0.0226204X2 + 0.0770648X3 − 0.0092011X12 + 0.0110754X1X2 − 0.00142462X1X3 − 0.00849074X22 + 0.00643056X2X3 + 0.0348426X32 | 0.975 | 0.008 | |||||||||
DPPH = 0.2413529 − 0.0218333X1 + 0.0690476X2 + 0.0784921X3 + 0.010625X12 + 0.00308333X1X2 − 0.01275X1X3 − 0.00761905X22 + 0.0119048X2X3 + 0.027381X32 | 0.958 | 0.100 | |||||||||
FRAP = 0.178926 − 0.0105464X1 + 0.0239717X2 + 0.0856384X3 − 0.0151381X12 + 0.0041814X1X2 + 0.0000137318X1X3 − 0.0115839X22 + 0.0176242X2X3 + 0.0367495X32 | 0.945 | 0.010 |
Response | Process Variables | Predicted Values at the Optimal Conditions | ||
---|---|---|---|---|
Ethanol Concentration (%) | HCl Concentration (%) | Temperature (°C) | ||
TPC (mg GAE/g dw) | 69.6 | 3.5 | 60.0 | 44.066 |
FC (mg CE/g dw) | 55.1 | 3.5 | 60.0 | 21.022 |
ABTS (mmol TEAC/g dw) | 72.1 | 3.5 | 60.0 | 0.294 |
DPPH (mmol TEAC/g dw) | 53.0 | 3.5 | 60.0 | 0.456 |
FRAP (mmol TEAC/g dw) | 65.8 | 3.5 | 60.0 | 0.332 |
Peak | Rt | λmax | [M–H]− m/z | MS2 [M–H]− (Relative Abundance) | Tentative Identification | Concentration (mg mL−1) |
---|---|---|---|---|---|---|
1 | 4.08 | 321 | 353 | 191 (100), 179 (61), 173 (4), 161 (8), 135 (17) | 3-O-Caffeoylquinic acid | 1.082 ± 0.012 |
2 | 5.12 | 322 | 337 | 163 (100) | p-Coumaroylquinic acid | 0.072 ± 0.002 |
3 | 5.26 | 321 | 353 | 191 (100), 179 (23), 173 (31), 161 (9) | 5-O-Caffeoylquinic acid | 0.059 ± 0.001 |
4 | 5.75 | 335 | 401 | 269 (100) | Apigenin-O-pentoside | 0.104 ± 0.004 |
5 | 13.18 | 343 | 609 | 301 (100) | Quercetin-3-O-rutinoside | 0.377 ± 0.002 |
6 | 13.76 | 348 | 625 | 317 (100) | Myricetin-O-rutinoside | 0.203 ± 0.002 |
7 | 14.39 | 342 | 463 | 301 (100) | Quercetin-3-O-glucoside | 0.097 ± 0.002 |
8 | 14.94 | 336 | 577 | 431 (36), 285 (100) | Kaempferol 3′,4′-di-O-rhamnoside | 0.043 ± 0.002 |
9 | 16.24 | 347 | 433 | 301 (100) | Quercetin-O-pentoside | 0.312 ± 0.003 |
10 | 16.68 | 349 | 433 | 301 (100) | Quercetin-O-pentoside | 0.059 ± 0.002 |
11 | 18.35 | 520 | 465 | 303 (100) | Delphinidin-3-O-glucoside | 0.007 ± 0.000 |
12 | 19.57 | 520 | 463 | 301 (100) | Peonidin-3-O-glucoside | 0.016 ± 0.001 |
13 | 20.71 | 520 | 493 | 331 (100) | Malvidin-3-O-glucoside | 0.013 ± 0.001 |
14 | 25.35 | 520 | 625 | 317 (100) | Petunidin-3-(6″coumaroyl)-glucoside | 0.008 ± 0.000 |
Total Phenolic acid | 1.212 ± 0.015 | |||||
Total Flavonoids | 1.195 ± 0.017 | |||||
Total Anthocyanins | 0.044 ± 0.002 | |||||
Total Phenolic compounds | 2.407 ± 0.032 |
Independent Variables | Code | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Ethanol concentration (%) | X1 | 50 | 70 | 90 |
pH (% of HCl) | X2 | 0.5 | 2.0 | 3.5 |
Temperature (°C) | X3 | 20 | 40 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moutinho, J.; Gouvinhas, I.; Domínguez-Perles, R.; Barros, A. Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications. Molecules 2023, 28, 3885. https://doi.org/10.3390/molecules28093885
Moutinho J, Gouvinhas I, Domínguez-Perles R, Barros A. Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications. Molecules. 2023; 28(9):3885. https://doi.org/10.3390/molecules28093885
Chicago/Turabian StyleMoutinho, Joana, Irene Gouvinhas, Raúl Domínguez-Perles, and Ana Barros. 2023. "Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications" Molecules 28, no. 9: 3885. https://doi.org/10.3390/molecules28093885
APA StyleMoutinho, J., Gouvinhas, I., Domínguez-Perles, R., & Barros, A. (2023). Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications. Molecules, 28(9), 3885. https://doi.org/10.3390/molecules28093885