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Abstract: The aim of the present work is to evaluate the possibilities and limitations of reversed
hydrophilic interaction chromatography (revHILIC) mode in liquid chromatography (LC). This
chromatographic mode consists of combining a highly polar stationary phase (bare silica) with a
gradient varying from very low (1–5%) to high (40%) acetonitrile content (reversed gradient compared
to HILIC). The retention behavior of revHILIC was first compared with that of reversed-phase
LC (RPLC) and HILIC using representative mixtures of peptides and pharmaceutical compounds.
It appears that the achievable selectivity can be ranked in the order RPLC > revHILIC > HILIC
with the two different samples. Next, two-dimensional liquid chromatography (2D-LC) conditions
were evaluated by combining RPLC, revHILIC, or HILIC with RPLC in an on-line comprehensive
(LC × LC) mode. evHILIC × RPLC not only showed impressive performance in terms of peak
capacity and sensitivity, but also provided complementary selectivity compared to RPLC × RPLC
and HILIC × RPLC. Indeed, both the elution order and the retention time range differ significantly
between the three techniques. In conclusion, there is no doubt that revHILIC should be considered as
a viable option for 2D-LC analysis of small molecules and also peptides.

Keywords: comprehensive 2D-LC; on-line LC × LC; reversed HILIC; orthogonality; pharmaceuticals;
peptides

1. Introduction

Over the past two decades, hydrophilic interaction liquid chromatography (HILIC)
has emerged as a powerful technique for the separation of polar and ionizable compounds.
In contrast to reversed-phase liquid chromatography (RPLC) which employs a non-polar
stationary phase and a polar mobile phase, HILIC uses a polar stationary phase and a
less polar mobile phase for the separation, resulting in the preferential retention of polar
analytes [1–4]. Unlike normal-phase liquid chromatography (NPLC), where the mobile
phase contains only organic solvents, HILIC mobile phases are usually composed of a
mixture of water and aprotic organic solvent (primarily acetonitrile) [2]. Although this
topic has been debated for many years, the most widely accepted mechanism for HILIC
separation mainly involves hydrophilic partitioning between a water-enriched layer on the
surface of this polar stationary phase and the organic-rich mobile phase. Depending on the
target compounds, other types of interactions may also be involved, including adsorption,
ion exchange, or hydrogen bonding [2,4–8].

Extensive research has been conducted in the past on retention models in HILIC.
They revealed U-shaped curves spanning from 0 to 100% water, suggesting the existence
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of bimodal retention behaviors within this range of mobile phase compositions [1–5].
Typically, the retention of all solutes decreases as the concentration of water increases until
about 40% of water, while retention increases beyond this value. For this reason, in gradient
elution, HILIC separation is generally accomplished by elevating the concentration of water
in the mobile phase from approximately 2–5% to 30–40%, depending on the stationary
phase [2,5,9–11], while higher composition ranges are rarely explored.

In the early 2010s, a global acetonitrile shortage prompted researchers to investigate
solvents other than acetonitrile for the analysis of highly polar ionizable solutes [12]. It was
found that using common HILIC polar sorbents, such as bare silica, in combination with a
highly aqueous solvent, could provide attractive chromatographic performance for these
compounds under isocratic elution conditions. During this decade, several other groups
explored this approach and demonstrated its suitability for the analysis of various types of
compounds, including amino acids [12], peptides [13], proteins [14], pharmaceuticals [15],
synthetic pigments [16], and catecholamines [12,17], among others [12,18–23]. This alter-
native mode was called reversed HILIC or per-aqueous liquid chromatography (PALC)
and was initially proposed as a potential replacement for HILIC. Since then, the possibility
of using water-rich mobile phases on polar sorbents has been little reported and almost
exclusively under isocratic conditions.

HILIC has been proven to be a complementary technique to RPLC for the analysis
of polar and ionizable compounds that tend to be poorly retained in RPLC. In recent
years, the combination of HILIC and RPLC has thus received tremendous attention for the
separation of complex mixtures with a broad range of polarities in two-dimensional liquid
chromatography (2D-LC) [24,25]. In fact, this combination is rapidly becoming one of the
most widely used in 2D-LC, right after the use of RPLC in both dimensions [24]. In on-line
comprehensive two-dimensional liquid chromatography (LC × LC), it has been demon-
strated to be a powerful analytical approach for the separation of complex mixtures such
as (bio)-pharmaceutical products [26–31], natural products [32–35], food products [36–38],
and polymeric samples [39–41], to cite only a few. Compared to RPLC × RPLC, better
orthogonality and larger effective peak capacities have been reported [42,43]. However, em-
ploying HILIC in one of the two dimensions can be quite challenging in on-line LC× LC for
two main reasons. Firstly, HILIC mode is often unsuitable for injecting the highly aqueous
solvents that commonly surround the target sample [2,44]. Secondly, the reversed elution
strength of the two mobile phase systems used in HILIC and RPLC (i.e., highly organic in
HILIC versus highly aqueous in RPLC) typically leads to poor peak shapes in the second
dimension [45]. This phenomenon is commonly known as the solvent strength mismatch
problem. To circumvent this, many strategies Fhave been developed and reported over the
years [24,45–47]. The main techniques employed for addressing this problem involve flow
splitting, solvent dilution, trapping, and solvent evaporation between dimensions. These
approaches are specifically designed to reduce the volume of the incompatible solvent trans-
ferred between the two dimensions and/or substitute it with a more suitable alternative. In
this respect, the use of water-rich mobile phases in HILIC could be an attractive alternative.

The aim of the present work is to explore the potential and limitations of using reversed
gradients (i.e., with increasing acetonitrile concentrations) instead of normal gradients
(i.e., with increasing water concentrations) with polar HILIC stationary phases for the
separation of various pharmaceuticals and peptides. First, we deeply investigate the re-
tention behaviors of representative mixtures under reversed HILIC conditions using a
bare silica phase. Then, we compare these results, in terms of retention, selectivity, and
peak shapes, with RPLC and conventional HILIC. Finally, we present a new approach for
on-line comprehensive 2D-LC that uses reversed HILIC in the first dimension (1D) and
RPLC in the second dimension (2D) and compare its performance with RPLC × RPLC and
HILIC × RPLC for the analysis in less than 30 min of two complex mixtures of pharmaceu-
ticals and peptides, respectively.



Molecules 2023, 28, 3907 3 of 20

2. Results and Discussion
2.1. Interest in revHILIC
2.1.1. Retention in HILIC and revHILIC

In the first instance, the logarithm of the retention factor (log k) was plotted against
the percentage of water in the mobile phase for seven different peptides, with molecular
weights ranging from 555 to 1619 g/mol, and pI ranging from 6 to 12.5. A bare hybrid silica
column (Waters BEH HILIC) was used, and the mobile phase consisted of ACN and water
in the presence of 10 mM ammonium acetate. Isocratic experiments were performed with
water compositions ranging from 5 to 99%. In a few extreme conditions (peptides 6 and
7 at 99% H2O; peptide 7 at 5% H2O and peptides 3, 4, and 5 at 5% H2O), retention was too
high (k > 250) and the corresponding data are not included in Figure 1. As highlighted in
Figure 1, a significant deviation from linearity was observed over the whole composition
range, and three distinct zones can be roughly defined on the retention curves [6]. The
boundaries between the three zones are certainly not as precise, since they seem to depend
on the compounds. The first region (zone #1) corresponds to the low water content of the
mobile phase (between 5 and 40 %). Under these conditions, a layer of water is present
on the surface of the stationary phase, leading to the retention of polar analytes, which is
mainly based on hydrophilic partitioning. This corresponds to the well-known HILIC mode,
where retention decreases with an increasing amount of water in the mobile phase [3,4].
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Figure 1. Log k vs. % water for 7 different peptides on the Waters BEH HILIC column at 30 ◦C and
0.5 mL/min. The mobile phase is composed of ACN and water in the presence of 10 mM ammonium
acetate. Various isocratic experiments were performed with compositions of water ranging from 5 to
99%. The three different zones highlighted in the figure are described in Section 2.1.1.

The second region (zone #2) corresponds to the zone where the percentage of water in
the mobile phase varies from 40 to 60%. Under these conditions, hydrophilic partitioning in
the water layer cannot take place, and retention was very limited for most of the peptides
and was probably due exclusively to ionic interactions with the silanols. In this region, k
remains approximately low, with minimum k values ranging from 0.6 to 2.7 depending
on the peptide, except for peptide 7 (bradykinin, the most basic peptide with a pI of 12.5),
which had a minimum k value of about 6. Finally, when the water content exceeded
60% (zone #3), the retention increased again for most peptides, suggesting a change in the
retention mechanism. This is the reversed HILIC (revHILIC) region. At high water content,
interactions with peptides are probably mainly promoted by the presence of hydrophobic
siloxane groups at the surface of the silica material but also possibly by charged silanols
through electrostatic interactions [48]. Interestingly, the plots shown in Figure 1 appear to
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be linear within a limited range of mobile phase compositions, suggesting that the linear
solvent strength (LSS) theory [49] can be applied in both HILIC and revHILIC.

2.1.2. Measurement of LSS Parameters in RPLC, HILIC, and revHILIC

Assuming a linear relationship between log k and the mobile phase composition, C, of
the strong solvent (log k = log k0− S×C), the two coefficients, S and log k0, were calculated
for all reference compounds (peptides and pharmaceuticals) under RPLC, HILIC, and
revHILIC conditions using a procedure that was previously developed and implemented
in a commercial modeling software (Osiris 4.2, Euradif, Grenoble, France). The developed
strategy is based on two preliminary linear gradients with the same initial composition
and two different normalized gradient slopes (with a ratio of at least 3 between the two
gradients). A zero search method is then applied to a complex mathematical function
derived from the gradient elution differential equation [50]. However, for accurate retention
time predictions, it is important to have retention models that are as linear as possible
(LSS model), which seems to be only true for a limited range of compositions in HILIC
and revHILIC, as shown in Figure 1. Therefore, care should be taken when selecting the
conditions of the two preliminary gradients.

In order to assess the linearity of the models in the composition range of interest,
experimental retention times were compared to the predicted ones obtained from S and log
k0 values calculated according to the procedure described above, for the three different 1D
techniques (i.e., RPLC, HILIC, and revHILIC) with the two different samples (peptides and
small pharmaceuticals). The experimental retention times were plotted as a function of the
predicted retention times in Figure 2.
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Figure 2. Experimental vs. predicted retention times for various gradient times (tG) with pharmaceu-
ticals (A–C) and peptides (D–F) in RPLC (A,D), HILIC (B,E) and revHILIC (C,F). The color coding is
explained in the text.

Two kinds of experimental retention times were interesting: (i) those obtained with a
gradient time between the two initial gradient times (interpolation, orange dots in Figure 2),
and those obtained with a gradient time shorter or longer than the two initial gradient
times (extrapolation, blue and grey dots, respectively, in Figure 2). As shown in Figure 2,
the predicted retention times in the three different chromatographic modes were in very
good agreement with the experimental ones, with an average deviation often lower than
2% between both, highlighting the validity of the LSS retention models in RPLC, HILIC,
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and revHILIC within the investigated range of composition. The perfect linearity of the
model in revHILIC for peptides was particularly noticeable (Figure 2F).

In the present work, the overall chromatographic performance of the three chromato-
graphic modes was compared, using the average S-values calculated in the six different
analytical conditions (described in Section 3.3). The average value of S (Saverage, calculated
from all studied compounds) is shown in Figure 3A for the six different studied conditions.
In RPLC, Saverage proved to be quite different for peptides (600 to 1600 g/mol) and for small
pharmaceuticals (150 to 600 g/mol), with values of 0.18 and 0.077, respectively. This result
is consistent with the fact that a direct correlation exists between the molecular weight of the
solute and its S parameter [49]. On the other hand, Saverage in HILIC was found to be lower,
namely 0.10 for peptides and 0.055 for pharmaceuticals. This behavior has recently been
reported [51] and could be due to the different interaction mechanisms and the variable
interaction energy in HILIC vs. RPLC. Finally, in the case of revHILIC, Saverage values
were quite comparable regardless of the analyzed molecule, namely 0.085 for peptides and
0.073 for pharmaceuticals. Here, again, this behavior was due to the very specific retention
mechanism observed in revHILIC, probably mainly based on hydrophobic interactions
with non-polar siloxanes on the surface of the stationary phase in the presence of a highly
aqueous mobile phase.

Interestingly, Figure S1 shows the evolution of S as a function of log k0 for the three
chromatographic modes, with the peptides and pharmaceutical compounds. In the case
of peptides, S increases with retention in RPLC and HILIC modes, while in revHILIC, S
decreases with retention. In the latter case, this negative relationship of S vs. log k0 has
two implications: (i) peak broadening will increase with retention (less compression effect
in linear gradient elution mode) and (ii) it might be difficult to elute the most retained
compounds before they reach zone #2. To avoid this problem, a shallow gradient should be
preferred in revHILIC. For the pharmaceutical compounds, there is no clear trend between
S and log k0 values in RPLC and HILIC modes. However, similarly to peptides, a clear
decrease in S with retention was observed in revHILIC, leading to potential issues on peak
broadening and on elution of most retained compounds.

2.1.3. Assessing the Selectivity of revHILIC vs. RPLC and HILIC

The peak capacity, n, in gradient elution can be assessed according to the foll-
owing relationship:

n = 1 + 2.3S∆Ce ×
1

1 + 2.3b
×
√

N
4

(1)

where ∆Ce is the range of compositions of the strong solvent in the mobile phase at analyte
elution covered by the sample, N is the plate count (efficiency), and b is the LSS gradient
steepness (b = S × s, with s being the normalized gradient slope)

This equation is very similar to the Purnell equation, which describes the resolution
under isocratic conditions. Indeed, these two equations can describe in an independent
way the influence of three factors, selectivity, retention, and efficiency, on the quality of the
separation either between two consecutive peaks in isocratic elution or between the last
and the first peak in gradient elution mode.

In Equation (1), the overall selectivity can be described by the first term of the equation
(S∆Ce) [52], while the second term ( 1

1+2.3b ) represents the retention and the last term (
√

N
4 ),

is the efficiency.
A simple way to directly compare, for a given sample, the achievable selectivity

between different chromatographic conditions is therefore to calculate S × ∆Ce, provided
that the ki (retention factor under initial gradient composition) is sufficiently large. Such a
calculation was carried out for b values close to 0.2 in all conditions.

The calculated ∆Ce and Saverage × ∆Ce values are shown in Figure 3B,C, respectively,
for the two different samples (peptides and pharmaceuticals) with the three different chro-
matographic modes (RPLC, HILIC, and revHILIC). For peptides, the highest Saverage × ∆Ce
value was obtained in RPLC conditions, followed by revHILIC, and finally HILIC. The
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superiority of RPLC in terms of selectivity is due to higher S-values in RPLC (in average
0.18) compared to the other chromatographic modes (in average 0.1 and 0.085 in HILIC
and revHILIC, respectively) and higher S-values resulting in a larger change in retention
for any small change in mobile phase composition. The remarkable differences in the
composition ranges covered by the peptides (∆Ce), which varies from 20% in HILIC, 31% in
RPLC and up to 41% in revHILIC mode (Figure 3B), also explain the higher Saverage × ∆Ce
values (Figure 3C). In terms of selectivity achieved for peptides, the HILIC conditions
are clearly the worst (Saverage × ∆Ce equal to 2.0), due to both small Saverage and above
all the limited ∆Ce window. revHILIC, therefore, appears as a valuable alternative to
HILIC (Saverage × ∆Ce equal to 3.5) for 2D-LC application in combination with RPLC
(Saverage × ∆Ce equal to 5.6). Besides the lower selectivity observed in HILIC, there are
two additional issues related to the use of HILIC for peptides: (i) some peptides cannot
be eluted in HILIC if the b-value is too high, (ii) in the context of proteomics, peptides
are generally diluted in water, leading to strong injection effects under HILIC conditions
(elution in the breakthrough volume, peak distortion, etc.). It should be noted that the
selectivity might change in other conditions (stationary phase, mobile phase pH, additive,
etc.) and hence the above values may be different.
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Figure 3. Saverage, ∆Ce, and Saverage × ∆Ce values (cf. Equation (1)) for six different chromatographic
conditions, including RPLC, HILIC, and revHILIC applied to the separation of a wide range of
peptides and small pharmaceutical compounds. (A) Saverage values for the different samples in RPLC
and HILIC, (B) ∆Ce values for the different samples in RPLC and HILIC, (C) Saverage × ∆Ce values
for the different samples in RPLC and HILIC.

For small drugs, RPLC remains the most selective chromatographic mode, followed by
revHILIC and HILIC, with S × ∆Ce values of 3.8, 1.5, and 0.9, respectively. Whatever the
chromatographic mode, selectivity was found to always be superior for peptides vs. small
drugs. For small drugs, the ranking was mostly attributed to significant differences between
the composition ranges covered by the pharmaceuticals, namely 17% in HILIC, 20% in
revHILIC, and 49% in RPLC. It is also important to mention that some drugs were not
sufficiently retained under HILIC conditions, which is another significant limitation of
this chromatographic mode. On the other hand, the S values were not responsible for
the changes in S × ∆Ce values under the different chromatographic modes, as they were
comparable for all chromatographic modes (0.055, 0.073, and 0.077 in HILIC, revHILIC,
and RPLC, respectively). Similarly to the observations made with peptides, our results
confirm that revHILIC should be preferred over HILIC when analyzing small drugs. In the
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case of a multidimensional setup, revHILIC should also be preferentially combined with
RPLC, rather than HILIC, to maximize achievable selectivity.

2.1.4. Evaluation of Peak Shapes in revHILIC vs. RPLC and HILIC

Besides selectivity, it is also important to consider the peak shapes obtained under
the different chromatographic modes. Figures 4 and S2 show the chromatograms obtained
in RPLC, HILIC, and revHILIC for the selected peptides and small drugs, respectively,
allowing us to evaluate the peak shapes (i.e., width, asymmetry, shouldering). For a reliable
comparison, the gradient times were adjusted according to the composition range and
mobile phase flow rates to obtain comparable gradient steepness (b close to 0.2) and hence
comparable retention, regardless of the chromatographic mode. In Figure 4, the extracted
ion chromatograms (EIC) obtained with MS detection are superimposed for more than
30 representative peptides in each chromatographic mode. These chromatograms clearly
show the superiority of RPLC in terms of peak distribution, peak shapes, and peak widths.
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Figure 4. Overlay of numerous representative EICs of peptides in the three different modes. (A) RPLC
analysis with a 1–99% B gradient in 4 min (bav = 0.25); mobile phase composed of water with 0.1% FA
as solvent A and ACN with 0.1% FA as solvent B. (B) HILIC analysis with a 2–42% A gradient in
4 min (bav = 0.24). (C) revHILIC analysis with a 1–51% B gradient in 4.8 min (bav = 0.21); mobile
phase composed of water with 10 mM AA as solvent A and acetonitrile as solvent B. A given color
corresponds to a given EIC.

The excellent RPLC results can be attributed to the specific conditions used in this
work, including the use of a CSH C18 stationary phase to limit ionic interactions, combined
with elevated temperature (80 ◦C) to increase solute diffusivity. On the contrary, HILIC
gives broad and distorted peaks for the selected peptides. This behavior was mostly
attributed to the use of an inappropriate sample diluent (water). Finally, the chromatograms
obtained with peptides in revHILIC were quite good even in the presence of an aqueous
sample diluent. The observed peaks are sharp, symmetrical, and well-distributed over the
chromatogram. For small drugs, similar conclusions can be drawn in terms of performance
for the three modes, but it appears that retention in HILIC mode was too limited for a wide
range of drugs (elution close to the column dead time in Figure S2). This behavior can be
attributed to the fact that several drugs are not sufficiently polar to be retained in HILIC
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through hydrophilic partitioning, but also to the electrostatic repulsions that can take place
between negatively charged drugs and residual silanols.

Even if the chromatograms obtained in revHILIC are not equivalent to those ob-
tained in RPLC, revHILIC seems to be a useful alternative to HILIC for both peptides
and pharmaceuticals.

2.1.5. Comparison of Orthogonality between RPLC, HILIC, and revHILIC

In the previous sections, the different modes were compared for one-dimensional
liquid chromatography (1D-LC) applications. In this section, the orthogonality between the
different modes was assessed to perform 2D-LC analyses.

A wide variety of orthogonality metrics (quantitative measures of the efficacy of
separation space utilization) have been proposed in the context of two-dimensional
chromatography [53]. In the present case, we have considered one of the simplest and
most direct approaches, which consists of plotting the elution composition of the different
compounds (peptides or small drugs) in one chromatographic mode against another one
and measuring the corresponding correlation coefficient. This approach can be considered
as acceptable for systems without data clustering and data outliers, which is our case, as
shown in Figure 5 [54].
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Figure 5. Orthogonality plots expressed as the composition Ce (%) of strong solvent at analyte
elution for various combinations of chromatographic dimensions. (A) HILIC and RPLC for peptides,
(B) revHILIC and RPLC for peptides, (C) HILIC and RPLC for pharmaceutical compounds, and
(D) revHILIC and RPLC for pharmaceutical compounds.

Unlike the degree of orthogonality proposed earlier [52], the chosen metric does not
consider the selectivity, S × ∆Ce. Since RPLC was found to be superior to the other two
chromatographic modes in terms of selectivity and peak shapes, it was systematically
considered as one of the possible dimensions in Figure 4. RPLC combined with HILIC was
therefore compared to RPLC combined with revHILIC for the same b-value of 0.2.

Figure 5A shows the elution composition of the peptides in HILIC vs. RPLC. The
orthogonality between the two modes was found to be excellent, with no correlation
between the elution compositions in RPLC and HILIC (R2 equal to 0.02). Interestingly,
the peptides were well-distributed over a wide composition range in RPLC (from 2.1 to
32.9% B), whereas the elution window was narrower in HILIC (no elution before 16% B).
On the contrary, the orthogonality between RPLC and revHILIC was lower, with an R2



Molecules 2023, 28, 3907 9 of 20

value of 0.44. There was indeed a positive correlation between the retention observed
in revHILIC and RPLC. This behavior is logical as the retention in both revHILIC and
RPLC can be attributed to hydrophobic interactions, either with siloxane groups at the
surface of the silica or with C18 alkyl chains. In Figure 5B, it is also clear that retention in
revHILIC was quite limited for a wide range of peptides that were eluted with less than
15% B, whereas the most retained peptides in RPLC were eluted at higher mobile phase
compositions in revHILIC (up to 30%).

In the case of small molecules, the situation was quite different. Indeed, revHILIC was
found to be much more orthogonal to RPLC than HILIC. The correlation coefficients were
equal to 0.02 (revHILIC vs. RPLC) and 0.34 (HILIC vs. RPLC). The small drugs were eluted
in a wide composition range in RPLC (between 7 and 29% B), whereas the elution range
was thinner in revHILIC (3–22% B) and very narrow in HILIC (12–23% B).

In conclusion, the combination of RPLC and HILIC was found to be the most orthogo-
nal in terms of R2 for the analysis of peptides, but the combination of revHILIC and RPLC
was more interesting when analyzing small drugs.

2.2. Applicability of revHILIC in Comprehensive 2D-LC

In the final part of this study, the potential and limitations of utilizing reversed HILIC
in on-line comprehensive 2D-LC for the analysis of complex samples of peptides and
pharmaceuticals were explored. To accomplish this, six different on-line LC × LC methods,
including RPLC × RPLC, HILIC × RPLC, and revHILIC × RPLC, for both peptides and
pharmaceuticals were developed and compared, building on the 1D-LC observations made
above in Section 2.1. The operating conditions for these two-dimensional (2D) systems
were optimized using an in-house calculation tool previously developed in our lab [55]. In
brief, the optimization procedure combines predictive calculations and a Pareto-optimality
approach to define the best set of conditions for a given analysis time, taking into account
both the effective peak capacity and the dilution factor as key performance descriptors. In all
cases, the operating conditions were always optimized with the objective of minimizing the
dilution factor (thereby maximizing detection sensitivity), while maintaining a sufficiently
high peak capacity for the separation. The optimized conditions included the flow rates
in both dimensions, the gradient conditions in 2D, and the sampling rate of the 1D, while
certain conditions, such as the 1D-gradient time (fixed at 30 min in this study), the mobile
phase natures and compositions, the column dimensions, and the column temperatures
in both dimensions, were established before optimization. The selection of the latter was
heavily based on past research [55–60], but this aspect will not be discussed in this work.
The optimized conditions were applied to perform on-line RPLC × RPLC, HILIC × RPLC,
and revHILIC × RPLC-UV-HRMS analyses of two representative mixtures of peptide or
pharmaceutical samples, and the operating conditions for the six developed 2D systems
are provided in Tables 1 and 2, respectively.

Figure 6 shows a comparison of the resulting contour plots obtained for the analyses of
the peptide mixture, while Figure 7 depicts the ones obtained for the pharmaceutical mixture.
Initially, it can be noted that the three separations show marked differences, highlighting
the distinct selectivity of the three LC modes investigated. Furthermore, it is evident that
both the size and the peak occupation of the 2D retention space exhibit significant variations
between the different LC × LC configurations, as well as between the two samples.

As anticipated and previously noted [59–61], the chromatographic peaks in the
RPLC × RPLC separations of peptides (Figure 6A) and pharmaceuticals (Figure 7A) are
confined to a narrow region and are mainly distributed along an invisible diagonal line
that traverses the contour plot. In contrast, the separation space in HILIC × RPLC
(Figures 6B and 7B) is more effectively utilized, particularly for peptides, as underlined in pre-
vious work [43]. Conversely, in the two revHILIC × RPLC separations (Figures 6C and 7C),
the chromatographic peaks appear to be concentrated in the bottom right-hand side of the
2D space, while the upper left corner is empty.
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Figure 6. Two-dimensional contour plots (HRMS detection, base peak chromatogram BPC) obtained
for the on-line LC × LC separations of the representative peptide sample. (A) RPLC × RPLC,
(B) HILIC × RPLC, and (C) revHILIC × RPLC. Chromatographic conditions are given in Table 1.

Table 1. Experimental conditions used in on-line RPLC× RPLC, HILIC× RPLC, and revHILIC × RPLC
for the analysis of the representative peptide sample.

RPLC × RPLC HILIC × RPLC revHILIC × RPLC

First dimension
Injection volume 5.8 µL 1.8 µL 3.1 µL
Stationary phase Acquity CSH C18 Viridis BEH HILIC Viridis BEH HILIC

Column geometry 30 × 2.1 mm; 1.7 µm 50 × 2.1 mm; 1.7 µm 50 × 2.1 mm; 1.7 µm
Temperature 30 ◦C 30 ◦C 30 ◦C

Mobile phase A Water + 10 mM AA Water + 10 mM AA Water + 10 mM AA
Mobile phase B ACN ACN ACN

Flow rate 0.20 mL/min 0.05 mL/min 0.14 mL/min
Gradient 1–36% B in 30 min 10–52% A in 30 min 1–40% B in 30 min

Modulation
Loop volume 60 µL 60 µL 80 µL

Sampling time 0.25 min 0.41 min 0.26 min

Second
dimension

Stationary phase Acquity CSH C18 Acquity CSH C18 Acquity CSH C18
Column geometry 30 × 2.1 mm; 1.7 µm 30 × 2.1 mm; 1.7 µm 30 × 2.1 mm; 1.7 µm

Temperature 80 ◦C 80 ◦C 80 ◦C
Mobile phase A Water + 0.1% FA Water + 0.1% FA Water + 0.1% FA
Mobile phase B ACN + 0.1 % FA ACN + 0.1 % FA ACN + 0.1 % FA

Flow rate 2.6 mL/min 2.6 mL/min 2.6 mL/min
Gradient 1–45% B in 0.13 min 1–45% B in 0.33 min 1–45% B in 0.15 min
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for the on-line LC × LC separations of the representative pharmaceutical sample. (A) RPLC × RPLC,
(B) HILIC × RPLC, and (C) revHILIC × RPLC. Chromatographic conditions are given in Table 1.
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Table 2. Experimental conditions used in on-line RPLC× RPLC, HILIC× RPLC, and revHILIC × RPLC
for the analysis of the representative pharmaceutical sample.

RPLC × RPLC HILIC × RPLC revHILIC × RPLC

First dimension
Injection volume 8.3 µL 4.5 µL 5.5 µL
Stationary phase Acquity CSH FP Viridis BEH HILIC Viridis BEH HILIC

Column geometry 30 × 2.1 mm; 1.7 µm 50 × 2.1 mm; 1.7 µm 50 × 2.1 mm; 1.7 µm
Temperature 30 ◦C 30 ◦C 30 ◦C

Mobile phase A Water + 10 mM AA Water + 10 mM AA Water + 10 mM AA
Mobile phase B MeOH ACN ACN

Flow rate 0.17 mL/min 0.04 mL/min 0.17 mL/min
Gradient 1–79% B in 30 min 2–30% A in 30 min 1–31% B in 30 min

Modulation
Loop volume 60 µL 60 µL 80 µL

Sampling time 0.27 min 0.9 min 0.26 min

Second
dimension

Stationary phase Acquity CSH C18 Acquity CSH C18 Acquity CSH C18
Column geometry 30 × 2.1 mm; 1.7 µm 30 × 2.1 mm; 1.7 µm 30 × 2.1 mm; 1.7 µm

Temperature 80 ◦C 80 ◦C 80 ◦C
Mobile phase A Water + 0.1% FA Water + 0.1% FA Water + 0.1% FA
Mobile phase B ACN + 0.1 % FA ACN + 0.1 % FA ACN + 0.1 % FA

Flow rate 2.6 mL/min 2.6 mL/min 2.6 mL/min
Gradient 1–99% B in 0.15 min 1–99% B in 0.78 min 1–99% B in 0.14 min

The 2D retention space coverage obtained for these six separations was estimated using
the Stoll–Gilar bin–box method [54,62,63]. In short, this method entails partitioning the 2D
separation space into a grid containing n bins of equal size before counting the number of
bins that contain at least one chromatographic peak. The coverage of the retention space
is subsequently calculated by dividing the number of bins occupied by the total number
of bins in the 2D space. In the current study, the total number of bins was not chosen
arbitrarily but rather determined based on the number of analytes present in the mixture,
as recommended by Gilar et al. [42,54] (i.e., n ~ 67 for the pharmaceutical mixture and
n ~ 196 for the peptide mixture). A visual illustration of the determination of the retention
space coverage for the six separations can be found in Figures S3 and S4. For peptides, the
coverages were estimated to be 0.51, 0.83, and 0.43 for the RPLC × RPLC, HILIC × RPLC,
and revHILIC × RPLC, respectively. For pharmaceuticals, they were estimated to be 0.58,
0.56, and 0.66, respectively, which is in good agreement with the previous observations
made in Section 2.1.5 based on orthogonality diagrams.

All the performance metrics in terms of separation power calculated for these six
separations are given in Tables 3 and 4. They include the under-sampling correction factors
(α), the retention space coverages (γ), the ranges of retention times in both dimensions
(1∆t and 2∆t), the average peak widths at 4σ in both dimensions (1w4σ and 2w4σ), and the
effective peak capacities of the 2D separations (n2D,effective). All the theory supporting these
calculations has been previously described in detail [43,56], and the equations used in this
study can be found in the table’s footnotes. It should be noted that the peak widths in the
second dimension were all determined from HRMS data (extracted ion chromatograms)
and not from UV data, due to the chromatogram’s complexity. For this reason, the effective
peak capacity values given in this work are expected to be much lower than in reality.
The peak widths measured in HRMS are indeed larger than in UV, due to additional
extra-column dispersion [60].
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Table 3. Performance metrics for the on-line LC × LC separations shown in Figure 6 including
effective peak capacities (n2D,effec), under-sampling correction factors (α), retention space coverages
(γ), ranges of retention times in both dimensions (1∆t and 2∆t), and average peak widths at 4σ in
both dimensions (1w4σ and 2w4σ).

αa γb 1∆t (min) 2∆t (s) 1w4σ (min) 2w4σ (s) n2D,effec

RPLC × RPLC 0.25 0.51 30 10.6 0.07 0.40 571
HILIC × RPLC 0.38 0.83 25.4 15.9 0.18 0.26 971

revHILIC × RPLC 0.34 0.43 26.8 11.8 0.10 0.31 560
a Calculated using α = 1√

1+0.21( 6
τ )

2 according to [64], with τ, the sampling rate. b Estimated using the Gilar–Stoll

bin box method [54,62,63]. c Calculated using n2D,e f f ec = α× γ×
(

1 +
1t

1w4σ

)
×
(

1 +
2t

2w4σ

)
.

Table 4. Performance metrics for the on-line LC × LC separations shown in Figure 7, including
effective peak capacities (n2D,effect), under-sampling correction factors (α), retention space coverages
(γ), ranges of retention times in both dimensions (1∆t and 2∆t), and average peak widths at 4σ in
both dimensions (1w4σ and 2w4σ).

α γ 1∆t (min) 2∆t (s) 1w4σ (min) 2w4σ (s) n2D,effec

RPLC × RPLC 0.35 0.58 30 12.5 0.11 0.29 886
HILIC × RPLC 0.48 0.56 27 40 0.53 0.60 341

revHILIC× RPLC 0.47 0.66 23.5 10.8 0.15 0.34 593

As expected, HILIC × RPLC gave the highest peak capacity values for peptides
(i.e., 970), while RPLC× RPLC and revHILIC× RPLC gave comparable results (i.e., 571 and
560, respectively). This can be explained by the larger surface coverage and very sharp
peaks obtained under total breakthrough conditions [43,65,66] in 2D for HILIC × RPLC.
On the other hand, the effective peak capacities were the lowest in HILIC × RPLC for
pharmaceuticals (i.e., 341) as a result of the small surface coverage and large peak widths
in 2D, due to injection solvent effects arising from the severe solvent-strength mismatch
between dimensions. Despite a larger surface coverage, the effective peak capacity achieved
in revHILIC × RPLC for pharmaceuticals (i.e., 593) was lower than the one achieved in
RPLC × RPLC (i.e., 886). This is due to a much lower separation space in 1D (i.e., 23 min in
revHILIC vs. 30 min in RPLC) and larger peak widths in 2D (i.e., 0.34 min vs. 0.29 min).
Again, these results are consistent with the observations made in Section 2.1.

Figures 8 and 9 show a comparison between 2D-chromatograms overlays and 3D
plots obtained in HILIC × RPLC vs. revHILIC × RPLC for the peptide mixture and the
pharmaceutical mixture, respectively.

As can be seen, for both samples, the method sensitivity was much higher in rev-
HILIC× RPLC (Figures 8A,C and 9A,C) compared to HILIC× RPLC (Figures 8B,D and 9B,D).
It should be noted that the intense peaks observed in the light blue fraction in Figure 9A
were not considered for the comparison, as this fraction corresponds to the 1D-breakthrough
peak. In this work, the peak intensities were on average 6-fold higher in revHILIC × RPLC
compared to HILIC × RPLC for peptides, and more than 8-fold higher for pharmaceuticals.
There are two main reasons for these differences. Firstly, in 1D-revHILIC, larger volumes
of aqueous samples could be injected without encountering issues with peak shape, in
contrast to 1D-HILIC, where poor peak shapes and breakthrough occurred, despite lower
injected volumes. A good example of this can be found in Figures 7B and 9B, in which
we can see the occurrence of breakthrough phenomena in both dimensions. Secondly,
the fairly good compatibility of solvents between dimensions in revHILIC × RPLC led
to relatively good peak shapes in 2D, unlike in HILIC × RPLC, where poor peak shapes
and breakthrough were observed. Those results highlight undoubtedly the great potential
of (1) using revHILIC instead of HILIC for the analysis of aqueous samples in the first
dimension and (2) employing revHILIC instead of HILIC prior to RPLC to prevent solvent
strength mismatch between dimensions.
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revHILIC × RPLC not only delivered impressive performance in terms of peak ca-
pacity and sensitivity but also provided complementary selectivity when compared to
RPLC × RPLC and HILIC × RPLC. Figure 10 shows a comparison of 2D contour plots
obtained for eight selected extracted ion chromatograms in RPLC × RPLC (Figure 10A,D),
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HILIC × RPLC (Figure 10B,E), and revHILIC × RPLC (Figure 10C,F) for both the peptide
sample (Figure 10A–C) and the pharmaceutical sample (Figure 10D–F).
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Figure 10. Two dimensional contour plots (HRMS detection) of selected extracted ion chromatograms
(EICs) in (A,D) RPLC × RPLC, (B,E) HILIC × RPLC, and (C,F) revHILIC × RPLC for the separation
of the representative (A–C) peptide and (D–F) pharmaceutical samples. Extracted ion chromatograms
(EICs): 1: 1636.8220, 2: 908.8799, 3: 1383.7090, 4: 1112.5860, 5: 1548.2860, 6: 1585.7750, 7: 260.1651,
8: 272.2015.

The first observation that can be made is that, for the two samples, both the elution
order and the retention time range differ significantly between the three techniques. For
instance, in the pharmaceutical sample, the elution order is reversed when comparing
peaks #7 and #8 in RPLC × RPLC (Figure 10D) versus HILIC × RPLC (Figure 10E) and
revHILIC × RPLC (Figure 10F). In fact, while the two peaks are coeluted and eluted be-
tween 20 and 25 min in RPLC × RPLC and HILIC × RPLC, they are well-resolved and
eluted between 5 and 10 min in revHILIC × RPLC. Similarly, the six highlighted pep-
tides elute within a narrow range in 1D and exhibit several coelutions in RPLC × RPLC
(Figure 10A) and HILIC × RPLC (Figure 10B) but are conversely nicely spread and sepa-
rated in revHILIC × RPLC (Figure 10C). It is also noteworthy that in revHILIC × RPLC,
the 1D-peak widths do not seem to increase significantly with increasing retention times,
contrary to what was suggested in Section 2.1. A better understanding of the aforemen-
tioned statement can be achieved by referring to Figure 10C, in which the six highlighted
peptides clearly exhibit constant peak widths in both dimensions. This once again proves
the good chromatographic performance of revHILIC in gradient elution conditions and
its suitability for the analysis of complex pharmaceutical and peptide mixtures in on-line
LC × LC.

3. Materials and Methods
3.1. Chemicals and Reagents

Ultra-pure water (Milli-Q®) was produced in the laboratory using an Elga Purelab
Classic UV purification system from Veolia Water STI (Décines-Charpieu, France). Methanol
(MeOH, LC-MS grade), acetonitrile (ACN, LC-MS grade), formic acid (FA, LC-MS grade),
and ammonium acetate (AA, analytical reagent grade) were purchased from Fisher Scien-
tific (Illkirch, France). Seven reference standards of peptides, including leucine encephalin,
bombesin, [arg8]-Vasopressin, [ile]-angiotensin, bradykinin fragment 1–5, substance P, and
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bradykinin, were purchased from Merck (Molsheim, France). A detailed list of their physi-
cal properties can be found in Table S1. DL-1,4-dithiothreitol (DTT, 99%) and iodoacetamide
(98%), used in the enzymatic digestion of the six model proteins as reducing and alkylated
agents, respectively, were purchased from Acros Organics (Geel, Belgium). Trypsin, human
serum albumin (HSA), bovine serum albumin (BSA), β-casein, myoglobin, lysozyme, and
cytochrome C were all purchased from Sigma-Aldrich (Steinheim, Germany). The sixty-
seven reference standards of pharmaceuticals mentioned in this study were purchased
from Sigma-Aldrich. A detailed list can be found in Table S2.

3.2. Sample Preparation

The representative peptide sample analyzed in this work was obtained by tryptic
digestion of six proteins (HSA, BSA, β-casein, myoglobin, lysozyme, and cytochrome C)
using a protocol described in detail in another paper [1,2]. For all experiments, the su-
pernatant of the reaction was injected in the column without dilution after filtration on
a 0.22-µm PVDF (polyvinylidene fluoride) membrane. For the standard peptide mixture
used to follow the HILIC retention modes, stock solutions of each reference standard were
prepared in pure water at a concentration of 500 mg/L for bombesin, [arg8]-vasopressin,
[ile]- angiotensin, and substance P, 1000 mg/L for bradykinin fragment 1–5, 2500 for
bradykinin, and 5000 mg/L for leucine enkephalin. The final mixture was obtained by mix-
ing appropriate volumes of each stock solution with water and ACN to obtain a 16 µg/mL
concentration in 50:50 ACN/water (v/v%).

For the representative pharmaceutical sample, stock solutions of sixty-seven standard
drugs (cf. Table S2) were prepared in pure MeOH at a concentration of 2 mg/mL. The
final sample was made by mixing appropriate volumes of the stock solutions with water to
obtain a 40 µg/mL concentration in 11:89 MeOH/water (v/v%).

3.3. Instrumentation

The 1D-LC and 2D-LC analytical measurements described in this work were all
carried out on a 1290 Infinity II series 2D-LC system from Agilent Technologies (Waldbronn,
Germany). For the 1D-LC measurements, only the first dimension of this system was
used. The system consisted of two 1290 high-pressure binary pumps, a 1290 auto-sampler
with a flow-through needle injector and a 20 µL storage loop, two column oven with
low-dispersion preheaters, and two diode-array ultra-violet (UV) absorbance detectors
(DAD) with 0.6 µL flow-cells. UV data were acquired at a rate of 5 Hz and 80 Hz in the first
and second dimensions for the 2D-LC experiments, respectively, and 80 Hz for the 1D-LC
experiments. The first and second dimensions were connected using a 2-position/4-port
duo valve configured in back-flush (also called counter-current or first-in–first-out) mode
and mounted with a set of two identical storage loops, whose volume was adapted to the
volume of the transferred fractions and depended on the 2D-conditions (cf. Table 1). A
pressure release kit (PRK) was installed between the 1D-outlet and the 2D-LC valve inlet
to protect the 1D-detector flow cell from the pressure pulses arising from the successive
valve switching. The dwell volumes in the first and second dimensions were, respectively,
estimated to be 170 µL and 80 µL (loop volume excluded), while the extra-column volumes
were estimated to be 22 µL and 8.5 µL. Agilent OpenLab CDS Chemstation edition (version
2.3.0468) software with Agilent 1290 Infinity 2D-LC add-on (version A.01.04 [025]) was
used to operate the 2D-LC system, control the 2D-LC valve, and acquire both the 1D-LC-UV
and 2D-LC-UV data.

The chromatographic instrument was coupled to a quadrupole-time-of-flight (Q-TOF)
high-resolution mass spectrometer (G6560B series) with a Jet Stream electrospray ionization
(ESI) source from the same provider. A homemade flow splitter, consisting of a zero-dead
volume tee-piece and appropriate PEEK tubing dimensions, was used to split the effluent
from the second dimension (2:1) between the 2D-DAD and the Q-TOF instrument. Agilent
Mass Hunter software (version 7.1.7133) was used to control the Q-TOF instrument and
acquire both the 1D-LC-HRMS and 2D-LC-HRMS data. The latter were acquired in 2 GHz



Molecules 2023, 28, 3907 16 of 20

extended dynamic mode with a scan range of from 100 Da to 3200 Da in ESI positive (+)
ion mode. Mass spectra were acquired at a scan rate of 20 spectra/s. The drying gas was
set to a temperature of 300 ◦C and a flow rate of 11 L/min, while the sheath gas was set to
a temperature of 350 ◦C and a flow rate of 11 L/min. The nebulizer gas pressure was set at
40 psi. The capillary, nozzle, fragmentor, and Oct 1 RV voltages were set at 3500, 300, 150,
and 750 V, respectively.

Data were analyzed, processed, and visualized using Microsoft Excel, Agilent Mass-
Hunter qualitative analysis software (version B.08.00), and an in-house script developed
on MATLAB.

3.4. Analytical Methods
3.4.1. 1D-LC Methods

HILIC retention curves were obtained by injecting a standard peptide mixture of seven
compounds on an Acquity BEH HILIC column (50 mm × 2.1 mm; 1.7 µm) from Waters
Technologies (Milford, MA, USA). The column temperature and the flow rate were set at
30 ◦C and 0.5 mL/min, respectively, and the injected volume was 1 µL. Several isocratic
mobile phase elution runs were performed from 5:95 (v/v%) A/B to 1:99 (v/v%) A/B with
10 mM AA in water used as solvent A and ACN as solvent B.

For the 1D-RPLC experiments conducted with the representative peptide and phar-
maceutical samples, the separations were performed on an Acquity CSH C18 column
(50 mm × 2.1 mm; 1.7 µm) from Waters. The column temperature and flow rates were
80 ◦C and 2.1 mL/min, respectively. The mobile phase was composed of water with
0.1% FA as solvent A and ACN with 0.1% FA as solvent B. Gradient runs were carried out
from 1 to 99% of solvent B in various gradient times including 0.4, 0.6, 0.8, 1.6, 2.4, 4.0,
and 8.0 min.

For the 1D-HILIC experiments, an Acquity BEH HILIC column (50 mm × 2.1 mm;
1.7 µm) from Waters was used, with a column temperature and a flow rate set at 30 ◦C and
0.5 mL/min, respectively. The mobile phase was composed of water with 10 mM AA as
solvent A and acetonitrile as solvent B. Gradient runs were carried out from 2 to 42% of
solvent A in similar gradient times as for the 1D-RPLC experiments.

For the 1D-revHILIC experiments, the experimental conditions were the same as for
1D-HILIC, except that the gradient runs were carried out from 1 to 51% of solvent B in 0.8,
1.6, 3.2, 4.8, 8.0, and 16 min, respectively.

For all six experiments, the volumes injected with each gradient time were set accord-
ing to the calculated peak variance, as described in previous work [59,60] and were equal
to 1.6, 2.0, 2.9, 3.7, 5.4, and 9.6 µL.

3.4.2. On-Line LC × LC Methods

The chromatographic conditions used in the first and second dimensions in the six
on-line LC × LC methods developed in this work for the analysis of the representative
peptide and pharmaceutical samples are summarized in Tables 1 and 2, respectively.

4. Conclusions

This work highlights the potential of revHILIC as an alternative strategy for the
analysis of small drugs and peptides. This chromatographic mode was systematically
compared with RPLC and HILIC modes.

In the first part of this work, revHILIC was investigated on the basis of solute retention
behavior. The retention models in revHILIC appear to be linear in a large range of composi-
tions, but this was sufficient to accurately measure the LSS parameters (S and log k0). For
peptides, S values were found to be slightly lower than those in HILIC and significantly
lower than those in RPLC but comparable in the three modes for small molecules. The
achievable selectivity in gradient elution was evaluated based on the product of S values
and ∆Ce. Irrespective of the two samples analyzed, revHILIC always provides higher
selectivity than HILIC.
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In the second part of this work, several comprehensive 2D-LC analyses were per-
formed, in less than 30 min, using either RPLC, HILIC, or revHILIC in the first dimension,
combined with RPLC in the second dimension. Taking into account all the metrics for
the fon-line LC × LC, namely undersampling correction factor, retention space coverage,
retention range in both dimensions, and average peak widths, the effective peak capacity
could be easily estimated. HILIC × RPLC gave the highest peak capacity for peptides,
followed by RPLC × RPLC and revHILIC × RPLC, which gave comparable results. On
the other hand, HILIC × RPLC gave the lowest effective peak capacity for small drugs.
revHILIC× RPLC and RPLC× RPLC offer an increase in peak capacity of around 70% and
160%, respectively. Sensitivity was also improved by 6 to 8 times for revHILIC × RPLC
compared to HILIC × RPLC. Last but not least, revHILIC × RPLC also provides comple-
mentary selectivity when compared to RPLC × RPLC and HILIC × RPLC (elution order
and retention time range are very different between the three techniques). Finally, it is
clear that revHILIC under gradient conditions is an interesting strategy for the analysis
of small drugs and peptides and should be considered more and more in the future in
on-line LC × LC.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28093907/s1. Figure S1: S vs. log k0 values plots for
various conditions. (A) Pharmaceutical compounds in RPLC, (B) pharmaceutical compounds in
HILIC, (C) pharmaceutical compounds in revHILIC, (D) peptides in RPLC, (E) peptides in HILIC,
(F) peptides in revHILIC; Figure S2: Overlay of numerous representative chromatograms of small
drugs in three different chromatographic modes. (A) RPLC analysis with a 1–99 %B gradient in 2.4 min
(bav = 0.18). (B) HILIC analysis with a 2–42 %B gradient in 2.4 min (bav = 0.22). (A) revHILIC analysis
with a 1–51 %B gradient in 4.8 min (bav = 0.18); Figure S3: Determination of the retention space
coverage for the three separations obtained for the representative peptide sample. (A) RPLC × RPLC,
(B) HILIC × RPLC, (C) revHILIC × RPLC; Figure S4: Determination of the retention space coverage
for the three separations obtained for the representative pharmaceutical sample. (A) RPLC × RPLC,
(B) HILIC × RPLC, (C) revHILIC × RPLC; Table S1: Physical properties of the ten seven standards
used in this study; Table S2: List of sixty-seven reference standard pharmaceuticals used in this study.
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