Effect of Enhanced Hydrolytic Acidification Process on the Treatment of Azo Dye Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Strengthening Effect of Fructose Co-Matrix on Hydrolysis and the Acidification Process
2.1.1. Decolorization and Degradation Effect of Bacteria without Fructose Co-Substrate
2.1.2. Strengthening Effect of Fructose Co-Matrix on the Hydrolysis-Acidification Process
2.2. Strengthening Effect of Immobilization Technology on Hydrolysis and the Acidification Process
2.3. Strengthening Effect of Co-Matrix Composite Immobilization Technology on Hydrolysis and the Acidification Process
2.4. Practical Application of Composite Bioaugmentation Technology
2.4.1. Influence of Temperature on the Effect of Hydrolysis and the Acidification Process
2.4.2. Influence of Salt Concentration on the Effect of Hydrolysis and the Acidification Process
2.4.3. Effects of Different Dyestuffs Treated by Hydrolysis and the Acidification Process
3. Materials and Methods
3.1. Chemicals, Bacteria, and Cultivation Medium
3.2. Description of the Dye Wastewater Treatment System and Its Operations
3.3. Intensification of the Hydrolysis-Acidification Process by a Fructose Co-Matrix
3.4. Strengthening Immobilization Technology
3.4.1. Enhancement of Hydrolysis and the Acidification Process by Functional Flora Immobilization
3.4.2. Study on the Hydrolysis and Acidification Effect of Functional Flora DDMZ1 Enhanced by Co-Matrix Composite Immobilization Technology
3.5. Exploration of the Practical Application of Compound Bioaugmentation Technology
3.5.1. The Effect of Temperature on the Effect of Enhanced Hydrolysis and Acidification of Immobilized Functional Flora DDMZ1
3.5.2. Effect of Salt Concentration on the Effect of Enhanced Hydrolysis and Acidification of Immobilized Functional Bacteria DDMZ1
3.5.3. Research on the Decolorization Effect of Fructose Co-Matrix Composite Immobilization Technology on Other Dye Wastewater
3.6. Experimental Evaluation Index
3.6.1. Decolorization Studies
3.6.2. COD Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sequin-Frey. The chemistry of plant and animal dyes. J. Chem. Educ. 1981, 58, 301. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Spent tea leaves as a potential low-cost adsorbent for the removal of azo dyes from wastewater. Chem. Eng. 2013, 32, 19–24. [Google Scholar]
- Forgacs, E.; Cserhati, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 2013, 193–194, 24–34. [Google Scholar] [CrossRef]
- Elizalde-González, M.P.; Arroyo-Abad, U.; García-Díaz, E.; Brillas, E.; Sirés, I.; Dávila-Jiménez, M.M. Formation of sulfonyl aromatic alcohols by electrolysis of a bisazo reactive dye. Molecules 2012, 17, 14377–14392. [Google Scholar] [CrossRef]
- Gičević, A.; Hindija, L.; Karačić, A. Toxicity of azo dyes in pharmaceutical industry. In Proceedings of the International Conference on Medical and Biological Engineering, Banja Luka, Bosnia and Herzegovina, 16–18 May 2019; Springer: Cham, Switzerland, 2019; pp. 581–587. [Google Scholar]
- Zeng, Q.; Wang, Y.; Zan, F.; Khanal, S.K.; Hao, T. Biogenic Sulfide for Azo Dye Decolorization from Textile Dyeing Wastewater. Chemosphere 2021, 283, 131158. [Google Scholar] [CrossRef]
- Petrucci, E.; Di Palma, L.; Lavecchia, R.; Zuorro, A. Treatment of diazo dye Reactive Green 19 by anodic oxidation on a boron-doped diamond electrode. J. Ind. Eng. Chem. 2015, 26, 116–121. [Google Scholar] [CrossRef]
- Khaled, J.M.; Alyahya, S.A.; Govindan, R.; Chelliah, C.K.; Maruthupandy, M.; Alharbi, N.S.; Kadaikunnan, S.; Issac, R.; Murugan, S.; Li, W.-J. Laccase producing bacteria influenced the high decolorization of textile azo dyes with advanced study. Environ. Res. 2022, 207, 112211. [Google Scholar] [CrossRef]
- Xu, H.; Yang, B.; Liu, Y.; Li, F.; Shen, C.; Ma, C.; Tian, Q.; Song, X.; Sand, W. Recent advances in anaerobic biological processes for textile printing and dyeing wastewater treatment: A mini-review. World J. Microbiol. Biotechnol. 2018, 34, 165. [Google Scholar] [CrossRef]
- Vojnović, B.; Cetina, M.; Franjković, P.; Sutlović, A. Influence of initial pH value on the adsorption of reactive black 5 dye on powdered activated carbon: Kinetics, mechanisms, and thermodynamics. Molecules 2022, 27, 1349. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, K.; Zheng, Y.; Wang, H.; Dong, G.; He, N.; Li, Q. The effect of recycling flux on the performance and microbial community composition of a biofilm hydrolytic-aerobic recycling process treating anthraquinone reactive dyes. Molecules 2011, 16, 9838–9849. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; He, N.; Wang, Y.; Sun, D.; Shao, W.; Yang, K.; Lu, Y. Removal of anthraquinone reactive dye from wastewater by batch hydrolytic–aerobic recycling process. Sep. Purif. Technol. 2009, 67, 180–186. [Google Scholar] [CrossRef]
- Na, L.; Xuehui, X.; Fang, Y.; Lewei, S.; Chengzhi, Y.; Jianshe, L. Effect of bacterial agent strengthening on hydrolysis acidification treatment of simulated printing and dyeing wastewater. J. Environ. Eng. 2016, 10, 2245–2251. [Google Scholar]
- Khan, Z.; Jain, K.; Soni, A.; Madamwar, D. Microaerophilic degradation of sulphonated azo dye—Reactive Red 195 by bacterial consortium AR1 through co-metabolism. Int. Biodeterior. Biodegrad. 2014, 94, 167–175. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Jiang, W.; Yang, P. Study on the efficacy of sodium alginate gel particles immobilized microorganism SBBR for wastewater treatment. J. Environ. Chem. Eng. 2022, 10, 107134. [Google Scholar] [CrossRef]
- Balapure, K.H.; Jain, K.; Chattaraj, S.; Bhatt, N.S.; Madamwar, D. Co-metabolic degradation of diazo dye—Reactive blue 160 by enriched mixed cultures BDN. J. Hazard. Mater. 2014, 279, 85–95. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, X.; Xu, D.; Hong, R.; Wu, J.; Zeng, X.; Liu, N.; Liu, J. Accelerated azo dye biodegradation and detoxification by Pseudomonas aeruginosa DDMZ1-2 via fructose co-metabolism. Environ. Technol. Innov. 2021, 24, 101878. [Google Scholar] [CrossRef]
- Zhang, X.; You, S.; Ma, L.; Chen, C.; Li, C. The application of immobilized microorganism technology in wastewater treatment. In Proceedings of the 2015 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology, Chongqing, China, 28–29 November 2015; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 103–106. [Google Scholar]
- D’Souza, S. Trends in immobilized enzyme and cell technology. Indian J. Biotechnol. 2002, 1, 321–338. [Google Scholar]
- Lei, G.; Ren, H.; Ding, L.; Wang, F.; Zhang, X. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park. Bioresour. Technol. 2010, 101, 5852–5861. [Google Scholar] [CrossRef]
- Liu, N. Study on the Change of Microbial Community Structure and Its Optimal Regulation in the Process of Hydrolysis Acidification Treatment of Printing and Dyeing Wastewater. Ph.D. Thesis, Donghua University, Shanghai, China, 2016. [Google Scholar]
- Liu, N.; Lin, Z.; Xie, X.; Sun, P.; Wang, L.; Su, H. Effect of oxygen on decolorization and degradation of azo dyes by mixed bacteria. Bull. Microbiol. 2020, 47, 2359–2371. [Google Scholar]
- Wang, L.; Luo, Q.-F. Biodegradation of dibutyl phthalate by diatomite adsorptive immobilized microorganism. Wei Sheng Yan Jiu J. Hyg. Res. 2006, 35, 23–25. [Google Scholar]
- Junnan, S.; Kai, C.; Haiyan, L. Winter Operation and Management Practice of Comprehensive Sewage Treatment Plant in Chemical Industry Park. Water Supply Drain. 2021, 47, 5. [Google Scholar]
- Meng, C.; Ruifen, M. Analysis of biological nitrogen and phosphorus removal effect of WWTP in winter operation. China Water Supply Drain. 2016, 32, 5. [Google Scholar]
- Fidaleo, M.; Lavecchia, R.; Petrucci, E.; Zuorro, A. Application of a novel definitive screening design to decolorization of an azo dye on boron-doped diamond electrodes. Int. J. Environ. Sci. Technol. 2016, 13, 835–842. [Google Scholar] [CrossRef]
- Imran, M.; Crowley, D.E.; Khalid, A.; Hussain, S.; Mumtaz, M.W.; Arshad, M. Microbial biotechnology for decolorization of textile wastewaters. Rev. Environ. Sci. Biol. Technol. 2015, 14, 73–92. [Google Scholar] [CrossRef]
- He, H.; Chen, Y.; Li, X.; Cheng, Y.; Yang, C.; Zeng, G. Influence of salinity on microorganisms in activated sludge processes: A review. Int. Biodeterior. Biodegrad. 2017, 119, 520–527. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, J.; Wang, D.; Tian, C.; Wang, P.; Uddin, M.S. A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 2008, 19, 15–19. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Hu, X.; Zhang, Y.; Hu, L. Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. J. Membr. Sci. 2014, 471, 118–129. [Google Scholar] [CrossRef]
- Méndez-Paz, D.; Omil, F.; Lema, J.M. Anaerobic treatment of azo dye Acid Orange 7 under batch conditions. Enzym. Microb. Technol. 2005, 36, 264–272. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, L.; Li, S. Photocatalytic degradation of reactive brilliant blue KN-R by TiO2/UV process. Desalination 2010, 258, 48–53. [Google Scholar] [CrossRef]
- Yang, C.; Tong, Z.; Gang, C.; Jiang, T. Study on the treatment process of printing and dyeing wastewater. J. Northwest Text. Inst. Technol. 1999, 13, 201–207. [Google Scholar]
- Xiaolei, W.; Jianguang, L.; Xiang, H.; Yuxin, Y. Studies on Sodium Alginate and Polyvinyl Alcohol as Immobilized Microbial Embedding Agents. Environ. Sci. 1993, 14, 28–31. [Google Scholar]
- Nallathambi, A.; Rengaswami, G.D.V. Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent. Carbohydr. Polym. 2016, 152, 1–11. [Google Scholar] [CrossRef]
- Buscio, V.; López-Grimau, V.; Álvarez, M.D.; Gutiérrez-Bouzán, C. Reducing the environmental impact of textile industry by reusing residual salts and water: ECUVal system. Chem. Eng. J. 2019, 373, 161–170. [Google Scholar] [CrossRef]
- Hu, E.; Shang, S.; Tao, X.M.; Jiang, S.; Chiu, K.L. Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. J. Clean. Prod. 2016, 137, 1055–1065. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Qin, Y.; Yang, S.; Sun, Y.; Mo, H.; Zheng, H.; Liu, N.; Zhang, Q. Effect of Enhanced Hydrolytic Acidification Process on the Treatment of Azo Dye Wastewater. Molecules 2023, 28, 3930. https://doi.org/10.3390/molecules28093930
Xie X, Qin Y, Yang S, Sun Y, Mo H, Zheng H, Liu N, Zhang Q. Effect of Enhanced Hydrolytic Acidification Process on the Treatment of Azo Dye Wastewater. Molecules. 2023; 28(9):3930. https://doi.org/10.3390/molecules28093930
Chicago/Turabian StyleXie, Xuehui, Yiting Qin, Shanshan Yang, Yao Sun, Haonan Mo, Hangmi Zheng, Na Liu, and Qingyun Zhang. 2023. "Effect of Enhanced Hydrolytic Acidification Process on the Treatment of Azo Dye Wastewater" Molecules 28, no. 9: 3930. https://doi.org/10.3390/molecules28093930
APA StyleXie, X., Qin, Y., Yang, S., Sun, Y., Mo, H., Zheng, H., Liu, N., & Zhang, Q. (2023). Effect of Enhanced Hydrolytic Acidification Process on the Treatment of Azo Dye Wastewater. Molecules, 28(9), 3930. https://doi.org/10.3390/molecules28093930