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Abstract: This paper investigates the effect of equivalence ratio on pollutant formation characteristics
of CH4O/H2/NH3 ternary fuel combustion and analyzes the pollutant formation mechanisms of CO,
CO2, and NOX at the molecular level. It was found that lowering the equivalence ratio accelerates the
decomposition of CH4O, H2, and NH3 in general. The fastest rate of consumption of each fuel was
found at φ = 0.33, while the rates of CH4O and NH3 decomposition were similar for the φ = 0.66 and
φ = 0.4. CO shows an inverted U-shaped trend with time, and peaks at φ = 0.5. The rate and amount
of CO2 formation are inversely proportional to the equivalence ratio. The effect of equivalence ratio
on CO2 is obvious when φ > 0.5. NO2 is the main component of NOX. When φ < 0.66, NOX shows a
continuous increasing trend, while when φ ≥ 0.66, NOX shows an increasing and then stabilizing
trend. Reaction path analysis showed that intermediates such as CH3 and CH4 were added to the
CH4O to CH2O conversion stage as the equivalence ratio decreased with φ ≥ 0.5. New pathways,
CH4O→CH3→CH2O and CH4O→CH3→CH4→CH2O, were added. At φ ≤ 0.5, new intermediates
CHO2 and CH2O2 were added to the CH2O to CO2 conversion stage, and new pathways are
added: CH2O→CO→CHO2→CO2, CH2O→CO→CO2, CH2O→CHO→CO→CHO2→CO2, and
CH2O→CH2O2→CO2. The reduction in the number of radical reactions required for the conversion
of NH3 to NO from five to two directly contributes to the large amount of NOX formation. Equivalent
ratios from 1 to 0.33 corresponded to 12%, 21.4%, 34%, 46.95%, and 48.86% of NO2 remaining,
respectively. This is due to the fact that as the equivalence ratio decreases, more O2 collides to form
OH and some of the O2 is directly involved in the reaction forming NO2.

Keywords: ternary blend combustion; equivalent ratio; NOX; ReaxFF MD; reaction mechanism

1. Introduction

Currently, the global transportation industry relies mainly on fossil energy sources [1],
but the combustion of these traditional fossil energy sources causes a lot of pollution. Clean,
efficient, and sustainable are the current trends in energy development [2,3]. Hydrogen and
ammonia are both ideal clean and renewable fuels, which have received extensive attention
from scholars at home and abroad. Hydrogen is renewable and characterized by good
combustibility, low ignition energy, and fast combustion speed [4,5]. However, the difficul-
ties in storing and transporting hydrogen, the premature ignition and backfire caused by
overly fast combustion speeds, and the high combustion temperature that produces NOX
pollution have all limited the practical popularization of the use of pure hydrogen fuel [6].
Ammonia, as a good zero-carbon hydrogen storage carrier, can be obtained from biomass
or other renewable sources. It is considered a sustainable fuel that can be transported
and applied remotely [7]. Currently, ammonia is widely used as a fuel in automobile
engines [8], marine engines [9], and generator internal combustion engines [10], where
the low viscosity of ammonia helps in fuel atomization and droplet formation during fuel
injection [11]. Ammonia also has a high octane rating, which makes it suitable for engines
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with high compression ratios and reduced detonation [12]. However, the disadvantages
of ammonia’s low combustion rate [13] and high auto-ignition temperature [14], as well
as narrow combustible limits, tend to lead to incomplete combustion, which results in
poor engine performance. Therefore, it is difficult to use as a single fuel for direct com-
bustion [15,16]. The use of hydrogen as a combustion aid and ammonia miscombustion
was found to be one of the ways to improve ammonia combustion efficiency [17]. This
not only leads to improved in-cylinder combustion [18] but also reduces the requirement
for engine modifications (material compatibility), thus ensuring a cost-effective transi-
tion to hydrogen energy [19]. Wang et al. [20] found that engine exhaust heat can crack
some of the ammonia into hydrogen and nitrogen to form reformed gases, making this
method much more maneuverable. A study by Alam et al. [21] indicated that although
hydrogen–ammonia blending can reduce carbon emissions including CO and others in
diesel internal combustion engines, incomplete combustion of the fuel and higher NOX
emission phenomena were observed.

Blending oxygenated fuels as a combustion aid is also an effective way to improve
combustion performance and pollutant emissions in diesel engines [22,23]. Methanol, as
the saturated monohydric alcohol with the simplest structure, is inexpensive and simple
to synthesize. It is a high-quality representative for studying the combustion-enhancing
effect of oxygenated fuels [24,25]. Methanol is ideal for fuel-lean combustion. However,
obtaining high energy and reliable ignition is one of the biggest challenges of fuel-lean
combustion [26]. The reformed gas in the engine can provide exactly this energy due to the
presence of H2. Li et al. [27] investigated the ignition delay time of ammonia/methanol
blends with equivalence ratios of 0.5, 1.0, and 2.0 and temperatures in the temperature range
of 1250–2150 K. The results showed that the ignition delay time of ammonia/methanol
blends was mainly affected by free radicals such as OH, O, HO2, and H. Li et al. [28] found
that blending a small amount of methanol into ammonia combustion made the blend more
reactive due to the fact that the addition of methanol introduced a new reaction sequence,
CH3OH→CH2OH/CH3O→CH2O→CHO, which enriched the O/H radical library.

However, there are very few studies on CH4O/H2/NH3 blend combustion. Given
the complexity of engine in-cylinder combustion and pollutant formation characteristics, it
is not conducive to the isolated exploration of chemical reaction kinetics and mixed fuel
combustion pollutant laws under different operating parameters [29]. This leads to the fact
that the mechanism of blended combustion action is not yet well clarified.

2. Results and Discussion
2.1. Effect of Equivalent Ratio on Combustion Components of Ternary Carbon-Neutral Fuel Blends

Figure 1 shows the effect of different equivalence ratios on the four reactant com-
ponents, CH4O, NH3, H2, and O2, during the blended combustion process of ternary
carbon-neutral fuels. Lowering the equivalence ratio accelerates the decomposition of
CH4O, NH3, and H2 in general. As the equivalence ratio is lowered, the decomposition
rate of CH4O is the fastest at φ = 0.33 throughout the reaction. As the reaction proceeds,
the decomposition rate of the φ = 0.5 condition becomes progressively higher, gradually
replacing the φ = 0.4 condition. At this time, the decomposition rate of CH4O was similar
between φ = 0.4 and φ = 0.66. The decomposition rate of NH3 increased linearly with
the decrease in the equivalence ratio, and the consumption rate of O2 increased with the
increase in the equivalence ratio when φ ≤ 0.5, and its consumption rate was the smallest
when φ = 0.4. The curves of H2 showed a similar trend to that of CH4O, and the highest
consumption rate was found in the case of φ = 0.33; this was next to that in the case of
φ = 0.5, but it was different from that of φ = 0.4. φ = 0.4 is not notably different.
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Figure 1. Changes in reactants during combustion of carbon-neutral fuels with different equivalence
ratios. (a) CH4O; (b) NH3; (c) H2; (d) O2.

Figure 2 shows the variation of major products and radicals during combustion of
ternary carbon-neutral fuels at different equivalence ratios. Figure 2a indicates that there
is almost no change in N2 with time for different equivalence ratios. Only N2 at φ = 1
has an increase, and the decreasing trend of N2 becomes more and more obvious as the
equivalence ratio decreases at φ ≤ 0.66. This is because at a reaction temperature of 2000 K,
oxygen becomes more and more abundant as the equivalence ratio decreases, and more N2
reacts with O to produce more thermodynamic NOX. Figure 2b shows the trend of H2O
over time. There is no strict linear relationship between the amount of H2O generated and
the equivalence ratio. The maximum amount of H2O is generated at φ = 0.66, and there is
little difference between φ = 1 and φ = 0.5.

Figure 2c,d show the effect of different equivalence ratios on the formation of OH and
H during the blending process of ternary carbon-neutral fuels, respectively. Comparing the
two figures, it can be seen that the effect of equivalence ratio on OH is more pronounced.
OH increases rapidly and then decreases slowly as time progresses. The higher the equiva-
lence ratio, the higher the amount of low OH. OH may be the key radical leading to the
depletion of CH4O, H2, and NH3. This conclusion will be confirmed in Section 2.3. The H
curve shows a tendency to rise and then fall, with a small but fluctuating overall number.
The peak occurs at φ = 0.66. H also assumes an important role in the reaction.
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2.2. Effect of Equivalence Ratio on Pollutant Formation in Blended Combustion of Ternary
Carbon-Neutral Fuels
2.2.1. Effect of Equivalent Ratio on CO and CO2 Formation in Blended Combustion of
Ternary Carbon-Neutral Fuels

Figure 3a shows the formation of CO during the blending process of ternary carbon-
neutral fuels at different equivalence ratios. CO shows an inverted U-shape trend with time,
the peak value of CO shifts backward with the increase in the equivalence ratio, and the
rate of CO formation increases with the decrease in the equivalence ratio in the early stage
of the reaction. The CO peaks were 9.33, 8.67, 9.67, 9.33, and 8.67 for the equivalence ratios
from 1 to 0.33, respectively. The maximum CO peak was observed at φ = 0.5. This may be
due to the fact that there is more CO production and less CO consumption at φ = 0.5. The
detailed pathway analysis will be carried out at the molecular level in Section 2.3 for the
specific causes.

Figure 3b shows the CO2 formation during the combustion of ternary carbon-neutral
fuel blends with different equivalence ratios. The CO2 formation rate and amount are
inversely proportional to the size of the equivalence ratio. The equivalence ratio has little
effect on the amount of CO2 when φ ≤ 0.5. When the equivalence ratio φ > 0.5, the effect
of the equivalence ratio on CO2 is more obvious.
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Figure 3. CO and CO2 formation with time for blended combustion. (a) CO; (b) CO2.

2.2.2. Effect of Equivalent Ratio on NOX Formation in Blended Combustion of Ternary
Carbon-Neutral Fuels

Figure 4 shows the effect of equivalence ratio on the formation of NOX (NO, NO2, and
NO3) in the combustion of ternary carbon-neutral fuel blends. From Figure 4a, it can be
seen that as the combustion proceeds, NO shows a trend of rapid increase followed by a
slow decrease. The peak value of NO increases with the decrease in the equivalence ratio.
From Figure 4b,c, it can be seen that both NO2 and NO3 gradually increase with the reaction;
NO2 is the main component of NOX. NO3 shows an overall trend of increasing and then
slowly decreasing, and the peak value increases with the decrease in the equivalence ratio,
and the peak time is also delayed. In the middle and late stages of the reaction, NO3 at
φ = 0.33 was significantly higher than other working conditions.

As can be seen from Figure 4d, when φ ≥ 0.66, NOX shows a tendency to increase
and then stabilize as the reaction proceeds. When φ < 0.66, NOX shows a continuous
growth trend. and the growth rate decreases around 200ps. However, the NOX growth rate
in the middle and late stages when φ < 0.44 is significantly higher than that in the case
of φ ≥ 0.44.
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2.3. Mechanism Analysis of CO, CO2, and NOX Formation in the Combustion of Ternary Blended
Fuel as Affected by Equivalence Ratio

In order to further discuss the impact of ternary blended fuel combustion on the
mechanism of CO, CO2, and NOX formation as affected by the equivalence ratios, this
paper generates reaction network diagrams for five operating conditions and discusses
the N and C migration paths of ternary blended fuel combustion at different equivalence
ratios as simulated using ReaxFF MD. Figure 5 represents the network diagrams of CO and
CO2 formation paths during the combustion of ternary carbon-neutral fuels at equivalence
ratios of 1, 0.66, 0.5, 0.4, and 0.33, respectively. The percentage in the network diagram
indicates the reactant conversion rate in order to highlight the main paths of the reaction
network, and the reaction paths with a conversion rate of less than 15% are ignored in all
network diagrams in this study.
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As can be seen in Figure 5a, all of the CH4O is converted to CH2O at φ = 1. A
proportion of 40% of the CH2O is generated as CO, and 77% of the CH2O is converted
to CO2. This is consistent with the numerical ratios of CO and CO2 in Section 2.2. From
Figure 5b, it can be seen that all CH4O is also converted to CH2O at φ = 0.66. The difference
with φ = 1 is that, in this case, CH4O undergoes a direct reduction reaction with H, and this
reaction produces CH3. The conversion of CH2O to CO and CO2 in this case is both 20%.

As can be seen from Figure 5c, the complexity of the reaction path at φ = 0.5 is mainly re-
flected in the transition from CH4O to CH2O. There are three main paths in this part, which
are: CH4O→CH3O→CH2O, CH4O→CH3→CH2O, and CH4O→CH3→CH4→CH2O.
Among them, CH3 and CH4 can also be converted to each other. In terms of conver-
sion rate, only 80% of CH4O is converted to CH2O through intermediates such as CH3O,
CH3, and CH4. Statistically, 69% of CH4O is converted to CO. A total of 37% of CH4O
is converted to CO2. From Figure 5d, it can be seen that all of the CH4O is converted to
CH2O when φ = 0.4. The conversion rates of CH2O to CO and CO2 are 60.2% and 46.5%,
respectively. From Figure 5e, it can be seen that at φ = 0.33, 80% of CH4O is converted
to CH2O from CH3O. The conversion rates of CH4O to CO and CO2 are 32% and 80%,
respectively. The path diagram for this case is also complex, unlike at φ = 0.5, where
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the complexity is mainly in the conversion phase of CH2O to CO and CO2. There are
four main reaction paths in this stage, namely CH2O→CHO2→CO2, CH2O→CO→CO2,
CH2O→CHO→CO→CO2, and CH2O→CH2O2→CO2.

Comparing with Figure 5, it is found that the number of pre-reaction paths increases
as the equivalence ratio decreases for φ ≥ 0.5. At φ = 1, there are only two paths from
CH4O to CH2O, CH4O→CH2O and CH4O→CH3O→CH2O. At φ = 0.66, the path of
direct conversion of CH4O to CH2O disappears, and the new path CH4O→CH3→CH2O
is added. At φ = 0.5, the new path CH4O→CH3→CH4→CH2O is added compared with
φ = 0.66. Combined with Figure 2d, this is because there is more H at φ = 0.5 and
φ = 0.66. For φ ≤ 0.5, the variety of paths in the later stages of the reaction increases as
the equivalence ratio decreases. The intermediate CHO2 is added at φ = 0.5 compared to
φ > 0.5. The reaction paths from CH2O to CO2 are only CH2O→CHO→CO→CO2 and
CH2O→CHO2→CO2. The new paths CH2O→CO→CHO2→CO2, CH2O→CO→CO2, and
CH2O→CHO→CO→CHO2→CO2 are added at φ = 0.4 compared with φ = 0.5. The new
paths CH2O→CO→CO2 and CH2O→CH2O2→CO2 are added at φ = 0.33. Statistics show
that the highest CO production rate is achieved at φ = 0.5. This validates the conclusion
in Section 2.1 that the peak CO occurs at φ = 0.5. The equivalence ratios from 0.66 to
0.33 correspond to CO2 production rates of 20%, 36.9%, 46.5%, and 80%, respectively.
The increase with decreasing equivalence ratio is in line with the trend of CO2 formation
observed in Section 2.2. It was also found that the lowest CO and CO2 production rates
were both 20% at φ = 0.66, and their consumption rates were also the lowest. The combined
analysis reveals that the lowest percentage of total CO and CO2 remaining is found at
φ = 0.66. Analyzed in conjunction with Figure 2c,d, this is the result of the higher H/OH
ratio at φ = 0.66.

Figure 6 represents the network diagram of NOX formation reaction paths in the
combustion process of ternary fuels at equivalence ratios of 0.1, 0.66, 0.5, 0.4, and 0.33,
respectively. As can be seen from the figure, all NOX in the reaction is converted from
NO. As can be seen from Figure 6a, the reaction generates more N2 at φ = 1. There are
four main paths of N2 formation. They are NH3→N2H5→N2, NH3→NH2→N2H→N2,
NH3→NH2→HNO→N2, and NH3→NH2→NH→N2. This is a result of the fact that less
OH radicals are generated by the lower O2 at the high equivalence ratios. NO→HNO2→NO2
is the main path in this case. From Figure 6b, 60% of NH3 is converted to NO at φ = 0.66.
NH3→NH2→NH→HNO→NO→HNO2→NO2 is the main conversion path. Compared
with φ = 1, a new pathway of NO3 formation and consumption is added: NH3→NH2→NH
→HNO→NO→HNO2→NO2→HNO3→NO3→NO2. From Figure 6c, it can be seen that at
φ = 0.5, NH3 is fully converted to NO through two different pathways: NH3→NH2→HNO
→NO and NH3→NH→HNO→NO. This also leads to the subsequent production of more
NOX. As can be seen from Figure 6d, the conversion of NH3 to NO is reduced to 65% at
φ = 0.4. There are also two main paths: NH3→NH2→HNO→NO and NH3→HNO→NO.
The path from NH3 to NO is shorter compared to that at φ = 0.5. From Figure 6e, the
main path is NH3→NH2→H2NO→NO→HNO2→NO2→NO3 at φ = 0.33. The con-
version rate of NH3 to NO is 80%. The two conversion paths are NH3→NH2→NO
and NH3→HNO→NO. Fewer intermediates are required for the conversion of NH3 to
NO in this case than in other cases, and the conversion of NO to NO3 is more direct:
NO→NO2→NO3.
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A comparison of Figure 6 shows that the main conversion path of NH3 to NO shifts from
NH3→NH2→NH→NO, NH3→NH2→NH→HNO→NO, and NH3→NH2→HNO→NO
to NH3→HNO→NO and NH3→NH2→NO as the equivalence ratio decreases. The reaction
path becomes progressively shorter, which is caused by more O2 in the reaction as the equiva-
lence ratio decreases. With more O2, more OH and O radicals are produced in the reaction, and
at low equivalence ratios, O2 also participates directly in the reaction as a free radical. NO2 is the
main component of NOX. Statistics show that the remaining proportions of NO2 corresponding
to equivalence ratios from 1 to 0.33 are 12%, 21.4%, 34%, 46.95%, and 48.86%, respectively. The
remaining proportion of NO2 increases with decreasing equivalence ratios, which explains
the conclusion of Section 3.1 that the amount of NO2 increases with decreasing equivalence
ratios. The main reaction paths for each case are NH3→NH2→NH→NO→HNO2→NO2,
NH3→NH2→NH→HNO→NO→HNO2→NO2→NO, NH3→NH2→HNO→NO→NO2→NO,
NH3→HNO→NO→HNO2→NO2→NO, and NH3→NH2→H2NO→NO→HNO2→NO2→NO3.
Only φ = 0.33 contains NO3 production in the main pathway. Combined with the conversion
analysis, the conversion of NH3 to NO3 is 0, 2.9%, 8.5%, 0, and 19.95%, respectively. This is due
to the fact that there are more OH radicals in the tether at low equivalence ratios. It explains the
observation in Section 2.1 that NO3 is much higher at φ = 0.33 than other cases.

3. Materials and Methods
3.1. Reactive Force Field Molecular Dynamics (ReaxFF MD)

ReaxFF MD is a molecular dynamics simulation combined with the calculation of
reaction force fields. Its reactive force field potential function is derived from experimental
data and density functional theory, so the accuracy is close to quantum computation and
does not require the predetermination of chemical reaction paths in the system [30]. ReaxFF
MD has been widely used in the study of pyrolysis [31], combustion [32], explosions [33],
oxidation [34], catalytic [35], and other systems involving physical chemistry. It provides
a promising means of exploring the chemical behavior of complex molecular systems.
Bond-order-dependent characterization is achieved through detailed parameterization of
the atomic, bonding, angular, and torsional properties of each particle, and the interactions
within the system [36]. The total energy of the system can be calculated by summing all
partial energy terms as described in R1:

Esystem = Ebond + Eover + Eunder + Eval + Epen + Etors + Econj + EvdWaals + Ecoulomb (1)

where Ebond, Eover, Eunder, Eval, Epen, Etors, and Econj correspond to bond energy, over-
coordination energy, under-coordination energy, bond angle energy, compensation energy,
torsion energy, and four-body conjugation energy. The non-bonding terms mainly consist
of van der Waals force energy (EvdWaals) and Coulomb force energy (Ecoulomb). When
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calculating non-bonding interactions, the charged atoms cross the truncation radius of the
non-bonding interactions, thus leading to a jump in energy. Therefore, the ReaxFF force
field is additionally corrected by introducing a seventh-order polynomial Taper function,
which ensures that at the truncation radius, the non-bonding interaction’s first-, second-,
and third-order derivatives of the energy term are all zero [37]. The ReaxFF force field also
takes better account of charge polarization by employing the electronegativity equalization
method [38] and updates the atomic charges at each time step [39]. The detailed meaning of
the ReaxFF force field parameters, the setup of the molecular structure, and the applicability
of the reaction force field have been described in detail in a previous study [40].

3.2. Case Set-Ups

Table 1 lists all the CH4O/H2/NH3 blended combustion ReaxFF MD simulation cases
under the high-pressure environment in this paper. The system density (ρ), temperature
(T), and simulation time are 0.1 g/cm3, 2000 K, and 1.25 ns, respectively. Cases 1 to 5
denote the combustion of CH4O/H2/NH3 blends at fuel equivalent ratios (φ) of 0.5, 1,
0.66, 0.4, and 0.33, respectively. Each condition is calculated three times, keeping the initial
settings constant. All results in this paper are averaged over three simulations. Through
further comparative analyses, the mechanisms of CO, CO2, and NOX pollutant formation
at different equivalence ratios are analyzed at the molecular level.

Table 1. ReaxFF MD cases of the CH4O/H2/NH3 blended combustion.

Case CH4O H2 NH3 O2 N2 ρ, g/cm3 T, K Φ

1 40 40 40 220 832 0.1 2000 0.5
2 40 40 40 110 416 0.1 2000 1
3 40 40 40 165 624 0.1 2000 0.66
4 40 40 40 375 1040 0.1 2000 0.4
5 40 40 40 330 1248 0.1 2000 0.33

3.3. Computational Details and Post-Processing

All the cases listed in Table 1 were carried out in the ReaxFF module of AMS [41–43].
In this study, the HE2.ff force field [44] and the regular system with constant atomic number,
volume, and temperature (NVT) were used. To ensure the overall stability of hydrocarbon
fuel combustion, the energy, and configuration of all simulated cases were first optimized
using the “Geometry Optimization” and “Energy Optimization” plug-ins. Figure 7 shows
the optimized systematic for case 1, which shows that the fuel and oxidant are uniformly
blended, similar to a premixed flame, and similar to the cyclone burner we previously
employed [45]. A Berendsen thermostat was used to control the temperature with a time
step of 0.25 fs. Periodic boundary conditions were applied in all three xyz directions,
and the soot intermediate components and product distributions were analyzed from
trajectories using a 0.3 Å bond level cut-off.
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3.4. Validation of the ReaxFF MD Method

The reliability and validity of the ReaxFF MD method have been widely used and
verified in previous studies [36,37,46–49]. Among them, Wang et al. [36] constructed the
reaction pathway of high-pressure combustion by tracking the trajectories of reacting
atoms through ReaxFF MD. To understand the NOX formation mechanism of NH3/CH4
combustion at different temperatures and pressures. The results showed that the high
temperature accelerated the rate of NH3 consumption, which was consistent with the
experimental results. The high pressure complicated the reaction pathway of NH3/CH4
combustion through the emergence of new intermediates and primitive reactions. In
addition, they pointed out that ReaxFF MD is a valuable tool for revealing the reaction
mechanisms of combustion and pollutant formation in depth. Liu et al. [49] investigated the
chemical reactivity effects of NO on the oxidation of CH4 using ReaxFF MD simulations and
found that increasing the blending ratio of NO accelerated the rate of CH4 consumption.
This is mainly due to the fact that, on the one hand, the conversion of NO to NO2 generates
OH radicals, which accelerates the CH4 consumption; on the other hand, NO can also inhibit
the CH4 consumption by combining with reactive radicals. Wang et al. [46] applied ReaxFF
MD and Py-GC/MS to investigate the characteristics of the soot particulate formation in the
process of hydrogen-doped combustion of methane and ethylene, and both experimental
and numerical results reflected that PAHs and ethylene were not the most important
pollutants in the combustion process of CH4. The experimental and numerical results
reflect the evolution of PAHs and initial soot particles, as well as the different chemical
effects of hydrogen doping on PAHs and soot formation.

4. Conclusions

In this paper, the effects of different reactant equivalence ratios on the combustion
reaction rates and the formation characteristics of CO, CO2, and NOX pollutants during
the combustion of CH4O/H2/NH3 ternary carbon-neutral blended fuels have been in-
vestigated for the first time using ReaxFF MD. The mechanisms of CO, CO2, and NOX
formation in ternary blended fuels with different equivalence ratios were investigated at
the molecular level. The conclusions of this paper are summarized as follows:

(1) Reducing the equivalence ratio accelerates the decomposition of CH4O, NH3, and H2
in general. The rate of consumption of each fuel is fastest at φ = 0.33. The rates of
CH4O and NH3 decomposition are similar at φ = 0.66 and φ = 0.4.

(2) CO showed an “inverted U” shaped trend of increasing and then decreasing over
time. The CO peak appeared at φ = 0.5. CO2 shows a continuous increase as the
reaction proceeds. The rate and amount of CO2 formation are inversely proportional
to the magnitude of the equivalence ratio. When φ > 0.5, the effect of equivalence
ratio on CO2 is more obvious. NO2 is the main component of NOX. When φ ≥ 0.66,
NOX shows a tendency to increase and then stabilize as the reaction proceeds. When
φ < 0.66, NOX shows a continuous increasing trend.

(3) C migration path analysis showed that for φ ≥ 0.5, the intermediates CH3 and CH4
are added to the CH4O to CH2O conversion stage as the equivalence ratio decreases.
The new pathways are CH4O→CH3→CH2O and CH4O→CH3→CH4→CH2O. At
φ ≤ 0.5, new intermediates CHO2 and CH2O2 are added to the CH2O to CO2 phase
as the equivalence ratio decreases. The added paths are CH2O→CO→CHO2→CO2,
CH2O→CO→CO2, CH2O→CHO→CO→CHO2→CO2, and CH2O→CH2O2→CO2.

(4) N migration pathway analysis showed that the conversion pathway of NH3 to NO
shifted from the long reaction chains of NH3→NH2→NH→NO, NH3→NH2→NH
→HNO→NO, and NH3→NH2→HNO→NO, to the shorter reaction chains of NH3→
HNO→NO and NH3→NH2→NO as the equivalence ratio decreased. This is due
to the fact that as the equivalence ratio decreases, more O2 collides to form OH and
some of the O2 is directly involved in the reaction. NO2 is the main component of
NOX. Statistics show that the equivalence ratios from 1 to 0.33 correspond to 12%,
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21.4%, 34%, 46.95%, and 48.86% of NO2 remaining, respectively. This is also caused
by the influence of the equivalence ratio on the OH radical concentration.
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