Design, Synthesis and Antitumor Activity of Quercetin Derivatives Containing a Quinoline Moiety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Anti-Tumor Activity In Vitro
2.3. Compound 3e Induces HepG-2 Cell Apoptosis
2.4. Structure–Activity Relationship (SAR) Analysis
2.5. Discussion
3. Experimental Section
3.1. Chemistry
3.2. General Synthesis Procedure for Intermediates 1 and 2
3.3. General Synthesis Procedure for Target Product 3
3.4. Cell Proliferative Assay
3.4.1. Cell Growth Conditions and Antiproliferative Assay for Human Cancer Cell Lines
3.4.2. Cell Apoptosis Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guven, H.; Arici, A.; Simsek, O. Flavonoids in our foods: A short review. J. Basic Clin. Health Sci. 2019, 3, 96–106. [Google Scholar] [CrossRef]
- Williamson, G.; Kay, C.D.; Crozier, A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Yousefi, B.; Velaei, K.; Safa, A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 2020, 248, 117463. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother. 2020, 121, 109604. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, J.; Liu, T.; Li, S.; Feng, J.; Yu, Q.; Zhang, J.; Chen, J.; Zhou, Y.; Ji, J.; et al. Quercetin shows anti-tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med. 2019, 8, 4806–4820. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef]
- Hou, D.D.; Zhang, W.; Gao, Y.L.; Sun, Y.Z.; Wang, H.X.; Qi, R.Q.; Chen, H.D.; Gao, X.H. Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis. Int. Immunopharmacol. 2019, 74, 105676. [Google Scholar] [CrossRef]
- Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. 2022, 36, 266–278. [Google Scholar] [CrossRef]
- Shohan, M.; Nashibi, R.; Mahmoudian-Sani, M.R.; Abolnezhadian, F.; Ghafourian, M.; Alavi, S.M.; Sharhani, A.; Khodadadi, A. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial. Eur. J. Pharmacol. 2022, 914, 174615. [Google Scholar] [CrossRef]
- Zaragozá, C.; Monserrat, J.; Mantecón, C.; Villaescusa, L.; Álvarez-Mon, M.Á.; Zaragozá, F.; Álvarez-Mon, M. Binding and antiplatelet activity of quercetin, rutin, diosmetin, and diosmin flavonoids. Biomed. Pharmacother. 2021, 141, 111867. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Jiang, W.B.; Xie, M.X. Flavonoids: Recent advances as anticancer drugs. Recent Pat. Anticancer Drug Discov. 2010, 52, 152–164. [Google Scholar] [CrossRef]
- Vue, B.; Zhang, S.; Chen, Q.H. Synergistic Effects of Dietary Natural Products as Anti-Prostate Cancer Agents. Nat. Prod. Commun. 2015, 10, 2179–2188. [Google Scholar] [CrossRef] [PubMed]
- Vue, B.; Zhang, S.; Chen, Q.H. Flavonoids with Therapeutic Potential in Prostate Cancer. Anticancer Agents Med. Chem. 2016, 16, 1205–1229. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, P.; Jiang, Z.; Chen, G.; Rivera, A.; Phasakda, A.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. Nitrogen-containing derivatives of O-tetramethylquercetin: Synthesis and biological profiles in prostate cancer cell models. Bioorg. Chem. 2019, 87, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wong, I.L.; Jiang, T.; Wang, S.W.; Liu, T.; Wen, B.J.; Chow, L.M.; Wan, S.B. Synthesis of methylated quercetin derivatives and their reversal activities on P-gp- and BCRP-mediated multidrug resistance tumour cells. Eur. J. Med. Chem. 2012, 54, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Zizkova, P.; Stefek, M.; Rackova, L.; Prnova, M.; Horakova, L. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases. Chem. Biol. Interact. 2017, 265, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Magar, R.T.; Sohng, J.K. A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives. J. Microbiol. Biotechnol. 2020, 30, 11–20. [Google Scholar] [CrossRef]
- Aboelnaga, A.; EL-Sayed, T.H. Click synthesis of new 7-chloroquinoline derivatives by using ultrasound irradiation and evaluation of their biological activity. Green Chem. Lett. Rev. 2018, 11, 254–263. [Google Scholar] [CrossRef]
- Amoozgar, Z. Design, synthesis, and biological evaluation of novel quinoline-based molecules with potential anticancer activity. Chem. Biol. Drug. Des. 2016, 88, 585–591. [Google Scholar]
- Abadi, A.H.; Hegazy, G.H.; El-Zaher, A.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and antiinflammatory agents. Bioorg. Med. Chem. 2005, 13, 5759–5765. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem. 2006, 14, 4373–4378. [Google Scholar] [CrossRef] [PubMed]
- Lenoci, A.; Tomassi, S.; Conte, M.; Benedetti, R.; Rodriguez, V.; Carradori, S.; Secci, D.; Castellano, S.; Sbardella, G.; Filetici, P.; et al. Quinoline-based p300 histone acetyltransferase inhibitors with pro-apoptotic activity in human leukemia U937 cells. Chem. Med. Chem. 2014, 9, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Dorababu, A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch. Pharm. 2021, 354, e2000232. [Google Scholar] [CrossRef] [PubMed]
- de la Guardia, C.; Stephens, D.E.; Dang, H.T.; Quijada, M.; Larionov, O.V.; Lleonart, R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules 2018, 23, 672. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Pham, H.T.; Xu, H.; Quan, Y.; Mesplède, T. Antimalarial drugs and their metabolites are potent Zika virus inhibitors. J. Med. Virol. 2019, 91, 1182–1190. [Google Scholar] [CrossRef]
- Kos, J.; Ku, C.F.; Kapustikova, I.; Oravec, M.; Zhang, H.-J.; Jampilek, J. 8-hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus. Chem. Sel. 2019, 4, 4582–4587. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr. 2020, 14, 241–246. [Google Scholar] [CrossRef]
- Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 2020, 14, 72–73. [Google Scholar] [CrossRef]
- Al-Jabban, S.M.; Zhang, X.; Chen, G.; Mekuria, E.A.; Rakotondraibe, L.H.; Chen, Q.H. Synthesis and Anti-Proliferative Effects of Quercetin Derivatives. Nat. Prod. Commun. 2015, 10, 2113–2118. [Google Scholar] [CrossRef]
- Liu, T.; Peng, F.; Cao, X.; Liu, F.; Wang, Q.; Liu, L.; Xue, W. Design, Synthesis, Antibacterial Activity, Antiviral Activity, and Mechanism of Myricetin Derivatives Containing a Quinazolinone Moiety. ACS Omega 2021, 6, 30826–30833. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Song, B.A.; Zhao, H.J.; Qi, X.B.; Huang, Y.J.; Liu, X.H. Novel myricetin derivatives: Design, synthesis and anticancer activity. Eur. J. Med. Chem. 2015, 97, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Su, S.; Chen, M.; Peng, F.; Zhou, Q.; Liu, T.; Liu, L.; Xue, W. Antibacterial Activities of Novel Dithiocarbamate-Containing 4H-Chromen-4-one Derivatives. J. Agric. Food Chem. 2020, 68, 5641–5647. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Tang, X.; Chen, M.; He, J.; Su, S.; Liu, L.; He, M.; Xue, W. Design, synthesis and antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas axonopodis pv. Citri and Ralstonia solanacearum of novel myricetin derivatives containing sulfonamide moiety. Pest Manag. Sci. 2020, 76, 853–860. [Google Scholar] [CrossRef]
- Liu, F.; Cao, X.; Zhang, T.; Xing, L.; Sun, Z.; Zeng, W.; Xin, H.; Xue, W. Synthesis and Biological Activity of Myricetin Derivatives Containing Pyrazole Piperazine Amide. Int. J. Mol. Sci. 2023, 24, 10442. [Google Scholar] [CrossRef]
No. | Compd. | n | OH | IC50/(μmol·L−1) a | ||||
---|---|---|---|---|---|---|---|---|
HepG-2 | THLE-2 | A549 | HBE | MCF-7 | ||||
1 | 3a | 5 | 2-OH | 10.600 | 35.552 | 7.384 | 8.120 | 1.607 |
2 | 3b | 5 | 3-OH | 26.003 | 115.084 | >100 | >100 | 6.793 |
3 | 3c | 5 | 4-OH | >100 | >100 | >100 | >100 | >100 |
4 | 3d | 5 | 6-OH | 36.621 | 83.421 | >100 | >100 | >100 |
5 | 3e | 5 | 7-OH | 6.722 | 92.836 | 26.614 | 0.873 | 3.004 |
6 | 3f | 3 | 2-OH | >100 | >100 | >100 | >100 | >100 |
7 | 3g | 3 | 3-OH | >100 | >100 | >100 | >100 | >100 |
8 | 3h | 3 | 4-OH | >100 | >100 | 31.678 | 8.432 | >100 |
9 | 3i | 3 | 6-OH | 5.074 | >100 | >100 | >100 | 6.464 |
10 | 3j | 3 | 7-OH | >100 | 23.442 | >100 | >100 | 48.001 |
11 | 3k | 4 | 2-OH | 5.193 | 46.792 | >100 | >100 | 6.856 |
12 | 3l | 4 | 3-OH | >100 | >100 | >100 | >100 | >100 |
13 | 3m | 4 | 4-OH | >100 | >100 | >100 | >100 | >100 |
14 | 3n | 4 | 6-OH | >100 | >100 | >100 | >100 | >100 |
15 | 3o | 4 | 7-OH | >100 | >100 | >100 | >100 | >100 |
16 | Quercetin | >100 | >100 | >100 | >100 | >100 | ||
17 | DDP b | 26.981 | 48.523 | 2.940 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Sun, J.; Zhang, P.; Yue, R.; Zhang, Y.; Niu, F.; Zhu, H.; Ma, C.; Deng, S. Design, Synthesis and Antitumor Activity of Quercetin Derivatives Containing a Quinoline Moiety. Molecules 2024, 29, 240. https://doi.org/10.3390/molecules29010240
Zhang W, Sun J, Zhang P, Yue R, Zhang Y, Niu F, Zhu H, Ma C, Deng S. Design, Synthesis and Antitumor Activity of Quercetin Derivatives Containing a Quinoline Moiety. Molecules. 2024; 29(1):240. https://doi.org/10.3390/molecules29010240
Chicago/Turabian StyleZhang, Wenting, Jian Sun, Peng Zhang, Ruixue Yue, Yi Zhang, Fuxiang Niu, Hong Zhu, Chen Ma, and Shaoying Deng. 2024. "Design, Synthesis and Antitumor Activity of Quercetin Derivatives Containing a Quinoline Moiety" Molecules 29, no. 1: 240. https://doi.org/10.3390/molecules29010240
APA StyleZhang, W., Sun, J., Zhang, P., Yue, R., Zhang, Y., Niu, F., Zhu, H., Ma, C., & Deng, S. (2024). Design, Synthesis and Antitumor Activity of Quercetin Derivatives Containing a Quinoline Moiety. Molecules, 29(1), 240. https://doi.org/10.3390/molecules29010240