Catalytic Conversion of Levulinic Acid into 2-Methyltetrahydrofuran: A Review
Abstract
:1. Introduction
2. 2-Methyltetrahydrofuran (2-MTHF)
2.1. Preparation of 2-MTHF from LA
2.2. Properties of 2-MTHF
2.3. Applications of 2-MTHF
3. Catalytic Conversion of LA to 2-MTHF
- In batch reaction conditions, the conversion of Gvl to 2-MTHF shows an 84% yield (96% of sel.) using CuO/Al2O3 catalyst (Table 1, entry 48).
- In fixed-bed reaction conditions (continuous process), the conversion of Gvl to 2-MTHF shows a 93% yield (98% of sel.) using CuO/Al2O3 catalyst (Table 1, entry 49).
S. No | Catalyst | Reactant | Reaction Conditions (Temp., H2 Pressure, Time in Hours) | Conv. (%) | 2-MTHF sel. (%) | Ref. |
---|---|---|---|---|---|---|
1 | 5 wt% Cu/Al2O3 | LA | 265 °C, H2 (10 bar), time (5 h), p-dioxane, fixed-bed reactor (vapour phase) | 100 | 0.1 | [53] |
2 | 30 wt% Cu/Al2O3 | LA | 265 °C, H2 (10 bar), time (5 h), p-dioxane, fixed-bed reactor (vapour phase) | 100 | 3 | [53] |
3 | 50 wt% Cu/Al2O3 | LA | 265 °C, H2 (10 bar), time (5 h), p-dioxane, fixed-bed reactor (vapour phase) | 100 | 43 | [53] |
4 | 80 wt% Cu/Al2O3 | LA | 265 °C, H2 (10 bar), time (5 h), p-dioxane, fixed-bed reactor (vapour phase) | 100 | 64 | [53] |
5 | 8 wt% Ni-72 wt% Cu/SiO2 | LA | 265 °C, H2 (10 bar), time (5 h), p-dioxane, fixed-bed reactor (vapour phase) | 100 | 89 | [53] |
6 | Ru-Starbon® | LA | 150 °C, time (30 min), 300 W (microwave irradiation), FA as H2 source | 30 | 50 | [96] |
7 | Rh-Starbon® | LA | 150 °C, time (30 min), 300 W (microwave irradiation), FA as H2 source | 69 | 90 | [96] |
8 | Pd-Starbon® | LA | 150 °C, time (30 min), 300 W (microwave irradiation), FA as H2 source | 64 | 88 | [96] |
9 | Cu-MINT | LA | 150 °C, time (30 min), 300 W (microwave irradiation), FA as H2 source | 90 | 75 | [96] |
10 | Pd/C | LA | 150 °C, time (30 min), 300 W (microwave irradiation), FA as H2 source | 78 | 92 | [96] |
11 | Ru[H2CON(PPh2)3] | LA | 150 °C, H2 (65 bar), 25 h, THF, batch reactor | 100 | 87 | [97] |
12 | Ni/Al2O3 | LA | 250 °C, H2 (70 bar), 5 h, H2O, batch reactor | 100 | 1.4 | [52] |
13 | Ni/Al2O3 | LA | 250 °C, H2 (70 bar), 5 h, ethanol, batch reactor | 100 | 0.5 | [52] |
14 | Ni/Al2O3 | LA | 250 °C, H2 (70 bar), 5 h, 1-butanol, batch reactor | 93 | 10 | [52] |
15 | Ni/Al2O3 | LA | 250 °C, H2 (70 bar), 5 h, 2-propanol, batch reactor | 100 | 46 | [52] |
16 | Cu/Al2O3 | LA | 250 °C, H2 (70 bar), 24 h, 2-propanol, batch reactor | 100 | 75 | [52] |
17 | Ni-Cu/Al2O3 | LA | 250 °C, H2 (70 bar), 5 h, 2-propanol, batch reactor | 100 | 56 | [52] |
18 | Pd-Cu/ZrO2 | LA | 200 °C, 50 bar H2, 24 h, H2O, batch reactor | 100 | 25% 1,4-PDO 5% 2-MTHF | [98] |
19 | Pd-Cu/HT | LA | 200 °C, 50 bar H2, 24 h, H2O, batch reactor | 100 | Not observed | [98] |
20 | Pd-Cu/Al2O3 | LA | 200 °C, 50 bar H2, 24 h, H2O, batch reactor | 100 | Not observed | [98] |
21 | Pd-Cu/HMS | LA | 200 °C, 50 bar H2, 24 h, H2O, batch reactor | 100 | Not observed | [98] |
22 | Pt−Mo/H-β | LA | 150 °C, 50 bar H2, 12 h, H2O, batch reactor | >99 | 86 | [99] |
23 | Pt−Mo/H-β (reused—1st Cycle) | LA | 150 °C, 50 bar H2, 12 h, H2O, batch reactor | >99 | 85 | [99] |
24 | Pt−Mo/H-β ((reused—2nd Cycle) | LA | 150 °C, 50 bar H2, 12 h, H2O, batch reactor | >99 | 85 | [99] |
25 | 5% Ru/GO | Gvl (obtained from LA) | 265 °C, 25 bar H2, 1,4-dioxane in fixed-bed reactor | 100 | 92% (77% 2-MTHF and 15% THF) | [100] |
26 | 5% Ru/GO | Gvl (obtained from LA) | 265 °C, 10 bar H2, 1,4-dioxane in fixed-bed reactor | 69 | 83% PDO | [100] |
27 | 5% Ru/GO | Gvl (obtained from LA) | 265 °C, 1 bar H2, 1,4-dioxane in fixed-bed reactor | 48 | 92% PDO | [100] |
28 | Ni-Cu/Al2O3 | LA | 250 °C, 40 bar H2, 5 h, 2-Propanol, batch reactor | 100 | 40 | [50] |
29 | Ni-Cu/Al2O3 | LA | 250 °C, 40 bar N2, 5 h, 2-Propanol, batch reactor | 100 | <5 | [50] |
30 | Ni-Cu/Al2O3 | LA | 250 °C, 40 bar H2, 20 h, 2-Propanol, batch reactor | 100 | 80 | [50] |
31 | Cu/Al2O3-SiO2 | EL | 140 °C, 15 bar H2, ethanol, fixed-bed reactor | 79 | Nil | [101] |
32 | Cu/Al2O3-SiO2 | EL | 150 °C, 15 bar H2, ethanol, fixed-bed reactor | 98 | 0.25 | [101] |
33 | Cu/Al2O3-SiO2 | EL | 200 °C, 15 bar H2, ethanol, fixed-bed reactor | 99 | 9 | [101] |
34 | Cu/Al2O3-SiO2 | EL | 250 °C, 15 bar H2, ethanol, fixed-bed reactor | 100 | 65 | [101] |
35 | Ru/C + Re/C + NBP | Gvl | 200 °C, 90 bar H2, 3 h, H2O, batch reactor | 40 | 65 | [102] |
36 | Ru/C + Re/C + NBP | LA | 180 C, 50 bar H2, 3 h, H2O, batch reactor | 100 | 28 | [102] |
37 | Co/SiO2 | LA | 200 °C, 30 bar H2, No solvent, fixed-bed reactor | 100 | trace | [103] |
38 | Co/SiO2 | LA | 225 °C, 30 bar H2, No solvent, fixed-bed reactor | 100 | 70 | [103] |
39 | 5% Pd/C | LA | 220 °C, 30 bar H2, 10 h, 2-butanol, batch reactor | 100 | 6.4 | [104] |
40 | 5% Pt/C | LA | 220 °C, 30 bar H2, 10 h, 2-butanol, batch reactor | 100 | 10 | [104] |
41 | 5% Ru/C | LA | 220 °C, 30 bar H2, 10 h, 2-butanol, batch reactor | 100 | 2.6 | [104] |
42 | Cu (5%)-Ni (10%)/Al2O3-ZrO2 (9) | LA | 220 °C, 30 bar H2, 10 h, 2-butanol, batch reactor | 100 | 92.3 | [104] |
43 | Cu (10%)-Ni (10%)/Al2O3-ZrO2 (9) | LA | 220 °C, 30 bar H2, 10 h, 2-butanol, batch reactor | 100 | 99.8 | [104] |
44 | Ni-Co/γ-Al2O3 | LA | 250 °C, H2 (50 bar), 5 h, isopropanol, batch reactor | 99.9 | 73 | [105] |
45 | Co/γ-Al2O3 | LA | 250 °C, H2 (50 bar), 5 h, isopropanol, batch reactor | 99.9 | 62 | [105] |
46 | Ni/γ-Al2O3 | LA | 250 °C, H2 (50 bar), 5 h, isopropanol, batch reactor | 99.9 | 17 | [105] |
47 | Zr-β-zeolite | LA | 170 °C, H2 (50 bar), 4 h, isopropanol, batch reactor | - | 97 (88% yield) * | [46] |
48 | CuO/Al2O3 | Gvl (obtained in 1st step) | 200 °C, H2 (15 bar), 2 h, batch reactor | - | 96 (84% yield) | [46] |
49 | CuO/Al2O3 | Gvl (obtained in 1st step) | 200 °C, time (residence) of 2.5 h, and a feed rate 10 mol% excess H2, 2-propanol, fixed-bed reactor | - | 98 (93% yield) | [46] |
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romashov, L.V.; Kucherov, F.A.; Kozlov, K.S.; Ananikov, V.P. Bio-Derived Furanic Compounds with Natural Metabolism: New Sustainable Possibilities for Selective Organic Synthesis. Int. J. Mol. Sci. 2023, 24, 3997. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Qiang, Q.; Liu, S.; Song, K.; Zhou, X.; Guo, J.; Zhang, B.; Li, C. Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy. Fuel 2021, 306, 121765. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Z. One-Pot Conversion of Carbohydrates into Furan Derivatives via Furfural and 5-Hydroxylmethylfurfural as Intermediates. ChemSusChem 2016, 9, 2015–2036. [Google Scholar] [CrossRef] [PubMed]
- Takkellapati, S.; Li, T.; Gonzalez, M.A. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Environ. Policy 2018, 20, 1615–1630. [Google Scholar] [CrossRef] [PubMed]
- Karuppasamy, K.; Theerthagiri, J.; Selvaraj, A.; Vikraman, D.; Parangusan, H.; Mythili, R.; Choi, M.Y.; Kim, H.-S. Current trends and prospects in catalytic upgrading of lignocellulosic biomass feedstock into ultrapure biofuels. Environ. Res. 2023, 226, 115660. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Feng, Y.; Fu, J.; Guo, H.; Guo, Y.; Han, B.; Jiang, Z.; Kong, L.; Li, C.; Liu, H.; et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ. 2023, 8, 10–114. [Google Scholar] [CrossRef]
- Liu, X.; Yu, D.; Luo, H.; Li, C.; Li, H. Efficient Reaction Systems for Lignocellulosic Biomass Conversion to Furan Derivatives: A Minireview. Polymers 2022, 14, 3671. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.B.; Kalam, M.A.; Zhang, Z.; Masjuki, H.H. Sustainable production of furan-based oxygenated fuel additives from pentose-rich biomass residues. Energy Convers. Manag. X 2022, 14, 100222. [Google Scholar] [CrossRef]
- Kucherov, F.A.; Romashov, L.V.; Galkin, K.I.; Ananikov, V.P. Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. ACS Sustain. Chem. Eng. 2018, 6, 8064–8092. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; Ortiz-Sanchez, M.; Inocencio-García, P.-J.; Cardona Alzate, C.A. Sustainable Biorefineries Based on Catalytic Biomass Conversion: A Review. Catalysts 2023, 13, 902. [Google Scholar] [CrossRef]
- Jiang, Z.; Zeng, Y.; Hu, D.; Guo, R.; Yan, K.; Luque, R. Chemical transformations of 5-hydroxymethylfurfural into highly added value products: Present and future. Green Chem. 2023, 25, 871–892. [Google Scholar] [CrossRef]
- Adhami, W.; Richel, A.; Len, C. A review of recent advances in the production of furfural in batch system. Mol. Catal. 2023, 545, 113178. [Google Scholar] [CrossRef]
- Trapasso, G.; Mazzi, G.; Chícharo, B.; Annatelli, M.; Dalla Torre, D.; Aricò, F. Multigram Synthesis of Pure HMF and BHMF. Org. Process Res. Dev. 2022, 26, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Aranha, D.J.; Gogate, P.R. A Review on Green and Efficient Synthesis of 5-Hydroxymethylfurfural (HMF) and 2,5-Furandicarboxylic Acid (FDCA) from Sustainable Biomass. Ind. Eng. Chem. Res. 2023, 62, 3053–3078. [Google Scholar] [CrossRef]
- Jiang, Z.; Hu, D.; Zhao, Z.; Yi, Z.; Chen, Z.; Yan, K. Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass. Processes 2021, 9, 1234. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, K.; Xu, H.; Zhu, L.; Wang, S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renew. Sustain. Energy Rev. 2021, 139, 110706. [Google Scholar] [CrossRef]
- Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 2020, 49, 4273–4306. [Google Scholar] [CrossRef]
- Bazoti, S.F.; Bonatto, C.; Scapini, T.; Camargo, A.F.; Treichel, H.; de Oliveira, D. Recent advances, perspectives and challenges on levulinic acid production from residual biomass. Biofuels Bioprod. Biorefin. 2023, 17, 1068–1084. [Google Scholar] [CrossRef]
- Antonetti, C.; Licursi, D.; Fulignati, S.; Valentini, G.; Galletti, A.M.R. New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts 2016, 6, 196. [Google Scholar] [CrossRef]
- Gundekari, S.; Kalusulingam, R.; Dakhara, B.; Mani, M.; Mitra, J.; Srinivasan, K. Levulinic Acid- and Furan-Based Multifunctional Materials: Opportunities and Challenges. In Catalysis for Clean Energy and Environmental Sustainability: Biomass Conversion and Green Chemistry; Pant, K.K., Gupta, S.K., Ahmad, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 1, pp. 291–343. [Google Scholar]
- Liu, C.; Lu, X.; Yu, Z.; Xiong, J.; Bai, H.; Zhang, R. Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems. Catalysts 2020, 10, 1006. [Google Scholar] [CrossRef]
- Rackemann, D.W.; Doherty, W.O.S. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefin. 2011, 5, 198–214. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, F.; Wang, J.; Cao, L.; Han, Q. A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives. Bioresour. Technol. 2021, 342, 125977. [Google Scholar] [CrossRef] [PubMed]
- Pileidis, F.D.; Titirici, M.-M. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. ChemSusChem 2016, 9, 562–582. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Farooq, U.; Bary, G.; Azim, M.M.; Zhao, X. Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: Progress, challenges, and prospects. Green Chem. 2021, 23, 9198–9238. [Google Scholar] [CrossRef]
- Signoretto, M.; Taghavi, S.; Ghedini, E.; Menegazzo, F. Catalytic Production of Levulinic Acid (LA) from Actual Biomass. Molecules 2019, 24, 2760. [Google Scholar] [CrossRef] [PubMed]
- Gundekari, S.; Srinivasan, K. Chemo- and Regioselective Synthesis of Arylated γ-Valerolactones from Bio-based Levulinic Acid with Aromatics Using H-β Zeolite Catalyst. ChemCatChem 2019, 11, 1102–1111. [Google Scholar] [CrossRef]
- Gundekari, S.; Srinivasan, K. In situ generated Ni(0)@boehmite from NiAl-LDH: An efficient catalyst for selective hydrogenation of biomass derived levulinic acid to gamma-valerolactone. Catal. Commun. 2017, 102, 40–43. [Google Scholar] [CrossRef]
- Xue, Z.; Liu, Q.; Wang, J.; Mu, T. Valorization of levulinic acid over non-noble metal catalysts: Challenges and opportunities. Green Chem. 2018, 20, 4391–4408. [Google Scholar] [CrossRef]
- Rodiansono; Astuti, M.D.; Mustikasari, K.; Husain, S.; Ansyah, F.R.; Hara, T.; Shimazu, S. Unravelling the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol catalysed by supported RANEY® Ni–Sn alloy catalysts. RSC Adv. 2022, 12, 241–250. [Google Scholar] [CrossRef]
- Al-Shaal, M.G.; Dzierbinski, A.; Palkovits, R. Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: A reaction network analysis. Green Chem. 2014, 16, 1358–1364. [Google Scholar] [CrossRef]
- Gundekari, S.; Srinivasan, K. Hydrous ruthenium oxide: A new generation remarkable catalyst precursor for energy efficient and sustainable production of γ-valerolactone from levulinic acid in aqueous medium. Appl. Catal. A Gen. 2019, 569, 117–125. [Google Scholar] [CrossRef]
- Martínez Figueredo, K.G.; Virgilio, E.M.; Segobia, D.J.; Bertero, N.M. Valeric Biofuel Production from γ-Valerolactone over Bifunctional Catalysts with Moderate Noble-Metal Loading. ChemPlusChem 2021, 86, 1342–1346. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Fu, Y.; Guo, Q.-X. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass. Bioresour. Technol. 2012, 114, 740–744. [Google Scholar] [CrossRef]
- Bond, J.Q.; Alonso, D.M.; Wang, D.; West, R.M.; Dumesic, J.A. Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels. Science 2010, 327, 1110–1114. [Google Scholar] [CrossRef] [PubMed]
- Gundekari, S.; Srinivasan, K. Screening of Solvents, Hydrogen Source, and Investigation of Reaction Mechanism for the Hydrocyclisation of Levulinic Acid to gamma-Valerolactone Using Ni/SiO2-Al2O3 Catalyst. Catal. Lett. 2019, 149, 215–227. [Google Scholar] [CrossRef]
- Vobecka, Z.; Wei, C.; Tauer, K.; Esposito, D. Poly(α-methylene-γ-valerolactone) 1. Sustainable monomer synthesis and radical polymerization studies. Polymer 2015, 74, 262–271. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Z.; Arai, M.; Zhang, C.; Liu, K.; Shi, R.; Wu, P.; Wang, Z.; Lin, W.; Cheng, H.; et al. Transformation of γ-valerolactone into 1,4-pentanediol and 2-methyltetrahydrofuran over Zn-promoted Cu/Al2O3 catalysts. Catal. Sci. Technol. 2020, 10, 4412–4423. [Google Scholar] [CrossRef]
- Lang, M.; Li, H. Sustainable Routes for the Synthesis of Renewable Adipic Acid from Biomass Derivatives. ChemSusChem 2022, 15, e202101531. [Google Scholar] [CrossRef]
- Strappaveccia, G.; Ismalaj, E.; Petrucci, C.; Lanari, D.; Marrocchi, A.; Drees, M.; Facchetti, A.; Vaccaro, L. A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chem. 2015, 17, 365–372. [Google Scholar] [CrossRef]
- Petricci, E.; Risi, C.; Ferlin, F.; Lanari, D.; Vaccaro, L. Avoiding hot-spots in Microwave-assisted Pd/C catalysed reactions by using the biomass derived solvent gamma-Valerolactone. Sci. Rep. 2018, 8, 10571. [Google Scholar] [CrossRef]
- Benisvy-Aharonovich, E.; Zandany, A.; Saady, A.; Kinel-Tahan, Y.; Yehoshua, Y.; Gedanken, A. An efficient method to produce 1,4-pentanediol from the biomass of the algae Chlorella ohadi with levulinic acid as intermediate. Bioresour. Technol. Rep. 2020, 11, 100514. [Google Scholar] [CrossRef] [PubMed]
- Pace, V.; Hoyos, P.; Castoldi, L.; Domínguez de María, P.; Alcántara, A.R. 2-Methyltetrahydrofuran (2-MeTHF): A Biomass-Derived Solvent with Broad Application in Organic Chemistry. ChemSusChem 2012, 5, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.; Lee, C.; Fernandes, R.X.; Olivier, H.; Curran, H.J.; Mani Sarathy, S.; Pitsch, H. Ignition characteristics of 2-methyltetrahydrofuran: An experimental and kinetic study. Proc. Combust. Inst. 2017, 36, 587–595. [Google Scholar] [CrossRef]
- Alorku, K.; Shen, C.; Li, Y.; Xu, Y.; Wang, C.; Liu, Q. Biomass-derived 2-methyltetrahydrofuran platform: A focus on precious and non-precious metal-based catalysts for the biorefinery. Green Chem. 2022, 24, 4201–4236. [Google Scholar] [CrossRef]
- Peske, E.A.; Foerster, I.M.; Seames, W.S. Scale-Up for the Conversion of Corn Stover-Derived Levulinic Acid into 2-Methyltetrahydrofuran. Catalysts 2023, 13, 972. [Google Scholar] [CrossRef]
- Victor, A.; Sharma, P.; Pulidindi, I.N.; Gedanken, A. Levulinic Acid Is a Key Strategic Chemical from Biomass. Catalysts 2022, 12, 909. [Google Scholar] [CrossRef]
- Liu, P.; Sun, L.; Jia, X.; Zhang, C.; Zhang, W.; Song, Y.; Wang, H.; Li, C. Efficient one-pot conversion of furfural into 2-methyltetrahydrofuran using non-precious metal catalysts. Mol. Catal. 2020, 490, 110951. [Google Scholar] [CrossRef]
- Date, N.S.; Hengne, A.M.; Huang, K.-W.; Chikate, R.C.; Rode, C.V. One Pot Hydrogenation of Furfural to 2-Methyl Tetrahydrofuran over Supported Mono- and Bi-metallic Catalysts. ChemistrySelect 2020, 5, 9590–9600. [Google Scholar] [CrossRef]
- Obregón, I.; Gandarias, I.; Al-Shaal, M.G.; Mevissen, C.; Arias, P.L.; Palkovits, R. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid. ChemSusChem 2016, 9, 2488–2495. [Google Scholar] [CrossRef]
- Gan, L.; Deng, J. Catalytic hydrodeoxygenation of neat levulinic acid into 2-methyltetrahydrofuran using a cobalt phosphine complex and Sc(OTf)3 co-catalytic system. Green Chem. 2023, 25, 4536–4543. [Google Scholar] [CrossRef]
- Obregón, I.; Gandarias, I.; Miletić, N.; Ocio, A.; Arias, P.L. One-Pot 2-Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Ni-Cu/Al2O3 Catalysts. ChemSusChem 2015, 8, 3483–3488. [Google Scholar] [CrossRef] [PubMed]
- Upare, P.P.; Lee, J.-M.; Hwang, Y.K.; Hwang, D.W.; Lee, J.-H.; Halligudi, S.B.; Hwang, J.-S.; Chang, J.-S. Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts. ChemSusChem 2011, 4, 1749–1752. [Google Scholar] [CrossRef] [PubMed]
- Sicaire, A.G.; Vian, M.; Fine, F.; Joffre, F.; Carre, P.; Tostain, S.; Chemat, F. Alternative bio-based solvents for extraction of fat and oils: Solubility prediction, global yield, extraction kinetics, chemical composition and cost of manufacturing. Int. J. Mol. Sci. 2015, 16, 8430–8453. [Google Scholar] [CrossRef] [PubMed]
- Aycock, D.F. Solvent Applications of 2-Methyltetrahydrofuran in Organometallic and Biphasic Reactions. Org. Process Res. Dev. 2007, 11, 156–159. [Google Scholar] [CrossRef]
- Sicaire, A.-G.; Vian, M.A.; Filly, A.; Li, Y.; Bily, A.; Chemat, F. 2-Methyltetrahydrofuran: Main Properties, Production Processes, and Application in Extraction of Natural Products. In Alternative Solvents for Natural Products Extraction; Chemat, F., Vian, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 253–268. [Google Scholar]
- Monticelli, S.; Castoldi, L.; Murgia, I.; Senatore, R.; Mazzeo, E.; Wackerlig, J.; Urban, E.; Langer, T.; Pace, V. Recent advancements on the use of 2-methyltetrahydrofuran in organometallic chemistry. Monatsh. Chem. 2017, 148, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Fenard, Y.; Boumehdi, M.A.; Vanhove, G. Experimental and kinetic modeling study of 2-methyltetrahydrofuran oxidation under engine-relevant conditions. Combust. Flame 2017, 178, 168–181. [Google Scholar] [CrossRef]
- Li, S.; Huang, C.; Yang, C.; Yu, W.; Liu, J.; Zhang, T. A Reduced Reaction Mechanism for Diesel/2-Methyltetrahydrofuran Dual-Fuel Engine Application. Energies 2022, 15, 7677. [Google Scholar] [CrossRef]
- Jad, Y.E.; Acosta, G.A.; Govender, T.; Kruger, H.G.; El-Faham, A.; de la Torre, B.G.; Albericio, F. Green Solid-Phase Peptide Synthesis 2. 2-Methyltetrahydrofuran and Ethyl Acetate for Solid-Phase Peptide Synthesis under Green Conditions. ACS Sustain. Chem. Eng. 2016, 4, 6809–6814. [Google Scholar] [CrossRef]
- Khoo, H.H.; Wong, L.L.; Tan, J.; Isoni, V.; Sharratt, P. Synthesis of 2-methyl tetrahydrofuran from various lignocellulosic feedstocks: Sustainability assessment via LCA. Resour. Conserv. Recycl. 2015, 95, 174–182. [Google Scholar] [CrossRef]
- Kar, Y.; Deveci, H. Importance of P-Series Fuels for Flexible-Fuel Vehicles (FFVs) and Alternative Fuels. Energy Sources Part A Recovery Util. Environ. Eff. 2006, 28, 909–921. [Google Scholar] [CrossRef]
- Wan Osman, W.N.A.; Badrol, N.A.I.; Samsuri, S. Biodiesel Purification by Solvent-Aided Crystallization Using 2-Methyltetrahydrofuran. Molecules 2023, 28, 1512. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Zeng, P.; Li, Z.; Zhao, L.; Fu, X. Combustion performance and emissions of 2-methylfuran diesel blends in a diesel engine. Fuel 2016, 175, 157–163. [Google Scholar] [CrossRef]
- Obregón, I.; Gandarias, I.; Arias, P.L. 2-Methyl Tetrahydrofuran (MTHF) and its Use as Biofuel. In Furfural (Chapter 3.5); World Scientific: Chennai, India, 2018; pp. 137–155. [Google Scholar]
- Zhang, N.; Sun, C.; Huang, Y.; Zhu, C.; Wu, Z.; Lv, L.; Zhou, X.; Wang, X.; Xiao, X.; Fan, X.; et al. Tuning electrolyte enables microsized Sn as an advanced anode for Li-ion batteries. J. Mater. Chem. A 2021, 9, 1812–1821. [Google Scholar] [CrossRef]
- Koch, V.R.; Young, J.H. 2-Methyltetrahydrofuran—Lithium Hexafluoroarsenate: A Superior Electrolyte for the Secondary Lithium Electrode. Science 1979, 204, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, M.; Tobishima, S.; Hirai, T.; Yamaki, J. Effect of purification of 2-methyltetrahydrofuran/ethylene carbonate mixed solvent electrolytes on cyclability of lithium metal anodes for rechargeable cells. J. Appl. Electrochem. 1999, 29, 1191–1196. [Google Scholar] [CrossRef]
- Lei, P.; Ling, Y.; An, J.; Nolan, S.P.; Szostak, M. 2-Methyltetrahydrofuran (2-MeTHF): A Green Solvent for Pd−NHC-Catalyzed Amide and Ester Suzuki-Miyaura Cross-Coupling by N−C/O−C Cleavage. Adv. Synth. Catal. 2019, 361, 5654–5660. [Google Scholar] [CrossRef]
- Rajkiewicz, A.A.; Skowerski, K.; Trzaskowski, B.; Kajetanowicz, A.; Grela, K. 2-Methyltetrahydrofuran as a Solvent of Choice for Spontaneous Metathesis/Isomerization Sequence. ACS Omega 2019, 4, 1831–1837. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, A.R.; de Maria, P.D. Recent Advances on the Use of 2-methyltetrahydrofuran (2-MeTHF) in Biotransformations. Curr. Green Chem. 2018, 5, 86–103. [Google Scholar] [CrossRef]
- Jad, Y.E.; Acosta, G.A.; Khattab, S.N.; de la Torre, B.G.; Govender, T.; Kruger, H.G.; El-Faham, A.; Albericio, F. 2-Methyltetrahydrofuran and cyclopentyl methyl ether for green solid-phase peptide synthesis. Amino Acids 2016, 48, 419–426. [Google Scholar] [CrossRef]
- Parris, P.; Duncan, J.N.; Fleetwood, A.; Beierschmitt, W.P. Calculation of a permitted daily exposure value for the solvent 2-methyltetrahydrofuran. Regul. Toxicol. Pharmacol. 2017, 87, 54–63. [Google Scholar] [CrossRef]
- Antonucci, V.; Coleman, J.; Ferry, J.B.; Johnson, N.; Mathe, M.; Scott, J.P.; Xu, J. Toxicological Assessment of 2-Methyltetrahydrofuran and Cyclopentyl Methyl Ether in Support of Their Use in Pharmaceutical Chemical Process Development. Org. Process Res. Dev. 2011, 15, 939–941. [Google Scholar] [CrossRef]
- Cue, B.W.; Zhang, J. Green process chemistry in the pharmaceutical industry. Green Chem. Lett. Rev. 2009, 2, 193–211. [Google Scholar] [CrossRef]
- Pace, V.; Hoyos, P.; Fernández, M.; Sinisterra, J.V.; Alcántara, A.R. 2-Methyltetrahydrofuran as a suitable green solvent for phthalimide functionalization promoted by supported KF. Green Chem. 2010, 12, 1380–1382. [Google Scholar] [CrossRef]
- Musarurwa, H.; Tavengwa, N.T. Supramolecular solvent-based micro-extraction of pesticides in food and environmental samples. Talanta 2021, 223, 121515. [Google Scholar] [CrossRef] [PubMed]
- Cañadas, R.; González-Miquel, M.; González, E.J.; Díaz, I.; Rodríguez, M. Evaluation of bio-based solvents for phenolic acids extraction from aqueous matrices. J. Mol. Liq. 2021, 338, 116930. [Google Scholar] [CrossRef]
- Tobishima, S.-I.; Hayashi, K.; Nemoto, Y.; Yamaki, J.-I. Ethylene carbonate/propylene carbonate/2-methyl-tetrahydrofuran ternary mixed solvent electrolyte for rechargeable lithium/amorphous V2O5-P2O5 cells. Electrochim. Acta 1997, 42, 1709–1716. [Google Scholar] [CrossRef]
- Sasaki, Y.; Hosoya, M.; Handa, M. Lithium cycling efficiency of ternary solvent electrolytes with ethylene carbonate—Dimethyl carbonate mixture. J. Power Sources 1997, 68, 492–496. [Google Scholar] [CrossRef]
- Hu, J.Z.; Jaegers, N.R.; Hahn, N.T.; Hu, W.; Han, K.S.; Chen, Y.; Sears, J.A.; Murugesan, V.; Zavadil, K.R.; Mueller, K.T. Understanding the Solvation-Dependent Properties of Cyclic Ether Multivalent Electrolytes Using High-Field NMR and Quantum Chemistry. JACS Au 2022, 2, 917–932. [Google Scholar] [CrossRef] [PubMed]
- Geysens, P.; Lin, P.-C.; Fransaer, J.; Binnemans, K. Electrodeposition of neodymium and dysprosium from organic electrolytes. Phys. Chem. Chem. Phys. 2021, 23, 9070–9079. [Google Scholar] [CrossRef]
- Pan, F.; Wang, Q. Redox Species of Redox Flow Batteries: A Review. Molecules 2015, 20, 20499–20517. [Google Scholar] [CrossRef]
- Huang, R.; Yu, C.; Patureau, F.W. Electrochemical Dehydrogenative Acetalization Protection of Alcohols with Tetrahydrofuran. ChemElectroChem 2021, 8, 3943–3946. [Google Scholar] [CrossRef]
- Englezou, G.; Kortsen, K.; Pacheco, A.A.C.; Cavanagh, R.; Lentz, J.C.; Krumins, E.; Sanders-Velez, C.; Howdle, S.M.; Nedoma, A.J.; Taresco, V. 2-Methyltetrahydrofuran (2-MeTHF) as a versatile green solvent for the synthesis of amphiphilic copolymers via ROP, FRP, and RAFT tandem polymerizations. J. Polym. Sci. 2020, 58, 1571–1581. [Google Scholar] [CrossRef]
- Bednarek, M.; Kubisa, P. Cationic polymerization of 2-hydroxymethyltetrahydrofuran. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 6484–6493. [Google Scholar] [CrossRef]
- Stadler, B.M.; Tin, S.; Kux, A.; Grauke, R.; Koy, C.; Tiemersma-Wegman, T.D.; Hinze, S.; Beck, H.; Glocker, M.O.; Brandt, A.; et al. Co-Oligomers of Renewable and “Inert” 2-MeTHF and Propylene Oxide for Use in Bio-Based Adhesives. ACS Sustain. Chem. Eng. 2020, 8, 13467–13480. [Google Scholar] [CrossRef]
- Narasimhan, V.; Lloyd, D.R.; Burns, C.M. Phase equilibra of polystyrene/polybutadiene/tetrahydrofuran using gel permeation chromatography. J. Appl. Polym. Sci. 1979, 23, 749–754. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Kimura, K.; Fujimura, S. The gel permeation chromatography of phenolic compounds. J. Appl. Polym. Sci. 1971, 15, 2513–2520. [Google Scholar] [CrossRef]
- Mrkvičková, L.; Lopour, P.; Pokorný, S.; Janča, J. Gel permeation chromatography of polyisobutylene in tetrahydrofuran. Die Angew. Makromol. Chem. 1980, 90, 217–221. [Google Scholar] [CrossRef]
- Samorì, C.; Pitacco, W.; Vagnoni, M.; Catelli, E.; Colloricchio, T.; Gualandi, C.; Mantovani, L.; Mezzi, A.; Sciutto, G.; Galletti, P. Recycling of multilayer packaging waste with sustainable solvents. Resour. Conserv. Recycl. 2023, 190, 106832. [Google Scholar] [CrossRef]
- Anderson, L.; Yu, E.; Chen, W.-T. Chemical Recycling of Mixed Plastics in Electronic Waste Using Solvent-Based Processing. Processes 2021, 10, 66. [Google Scholar] [CrossRef]
- Bernardoni, F.; Halsey, H.M.; Hartman, R.; Nowak, T.; Regalado, E.L. Generic gas chromatography flame ionization detection method using hydrogen as the carrier gas for the analysis of solvents in pharmaceuticals. J. Pharm. Biomed. Anal. 2019, 165, 366–373. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Ferreira, G.F.; Moreira, L.S.; Wolf Maciel, M.R.; Maciel Filho, R. Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renew. Energy 2019, 143, 130–141. [Google Scholar] [CrossRef]
- Laitinen, A.T.; Parsana, V.M.; Jauhiainen, O.; Huotari, M.; van den Broeke, L.J.P.; de Jong, W.; Vlugt, T.J.H.; Ramdin, M. Liquid–Liquid Extraction of Formic Acid with 2-Methyltetrahydrofuran: Experiments, Process Modeling, and Economics. Ind. Eng. Chem. Res. 2021, 60, 5588–5599. [Google Scholar] [CrossRef]
- Bermudez, J.M.; Menendez, J.A.; Romero, A.A.; Serrano, E.; Garcia-Martinez, J.; Luque, R. Continuous flow nanocatalysis: Reaction pathways in the conversion of levulinic acid to valuable chemicals. Green Chem. 2013, 15, 2786–2792. [Google Scholar] [CrossRef]
- Phanopoulos, A.; White, A.J.P.; Long, N.J.; Miller, P.W. Catalytic Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Using Ruthenium–N-Triphos Complexes. ACS Catal. 2015, 5, 2500–2512. [Google Scholar] [CrossRef]
- Patankar, S.C.; Yadav, G.D. Cascade engineered synthesis of γ-valerolactone, 1,4-pentanediol and 2-methyltetrahydrofuran from levulinic acid using novel Pd-Cu/ZrO2 catalyst and water as solvent. ACS Sustain. Chem. Eng. 2015, 3, 2619–2630. [Google Scholar] [CrossRef]
- Mizugaki, T.; Togo, K.; Maeno, Z.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. One-Pot Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Catalyzed by Pt–Mo/H-β in Water. ACS Sustain. Chem. Eng. 2016, 4, 682–685. [Google Scholar] [CrossRef]
- Upare, P.P.; Lee, M.; Lee, S.-K.; Yoon, J.W.; Bae, J.; Hwang, D.W.; Lee, U.H.; Chang, J.-S.; Hwang, Y.K. Ru nanoparticles supported graphene oxide catalyst for hydrogenation of bio-based levulinic acid to cyclic ethers. Catal. Today 2016, 265, 174–183. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, J.; Xu, X.; Wang, W.; Li, J.; Zhao, Y.; Tang, K.; Song, Q.; Qi, X.; Kong, D.; et al. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: The potential of commercialization. Sci. Rep. 2016, 6, 28898. [Google Scholar] [CrossRef] [PubMed]
- Licursi, D.; Antonetti, C.; Fulignati, S.; Giannoni, M.; Raspolli Galletti, A.M. Cascade Strategy for the Tunable Catalytic Valorization of Levulinic Acid and γ-Valerolactone to 2-Methyltetrahydrofuran and Alcohols. Catalysts 2018, 8, 277. [Google Scholar] [CrossRef]
- Novodárszki, G.; Solt, H.E.; Valyon, J.; Lónyi, F.; Hancsók, J.; Deka, D.; Tuba, R.; Mihályi, M.R. Selective hydroconversion of levulinic acid to γ-valerolactone or 2-methyltetrahydrofuran over silica-supported cobalt catalysts. Catal. Sci. Technol. 2019, 9, 2291–2304. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, B.; Wu, H.; Liu, M.; Liu, H.; Zhang, J.; Yang, G.; Han, B. Highly efficient hydrogenation of levulinic acid into 2-methyltetrahydrofuran over Ni–Cu/Al2O3–ZrO2 bifunctional catalysts. Green Chem. 2019, 21, 606–613. [Google Scholar] [CrossRef]
- Gu, C.; Chen, L.; Liu, Y.; Zhang, X.; Liu, J.; Zhang, Q.; Wang, C.; Ma, L. One-pot conversion of biomass-derived levulinic acid to furanic biofuel 2-methyltetrahydrofuran over bimetallic NiCo/γ-Al2O3 catalysts. Mol. Catal. 2022, 524, 112317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gundekari, S.; Karmee, S.K. Catalytic Conversion of Levulinic Acid into 2-Methyltetrahydrofuran: A Review. Molecules 2024, 29, 242. https://doi.org/10.3390/molecules29010242
Gundekari S, Karmee SK. Catalytic Conversion of Levulinic Acid into 2-Methyltetrahydrofuran: A Review. Molecules. 2024; 29(1):242. https://doi.org/10.3390/molecules29010242
Chicago/Turabian StyleGundekari, Sreedhar, and Sanjib Kumar Karmee. 2024. "Catalytic Conversion of Levulinic Acid into 2-Methyltetrahydrofuran: A Review" Molecules 29, no. 1: 242. https://doi.org/10.3390/molecules29010242
APA StyleGundekari, S., & Karmee, S. K. (2024). Catalytic Conversion of Levulinic Acid into 2-Methyltetrahydrofuran: A Review. Molecules, 29(1), 242. https://doi.org/10.3390/molecules29010242