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Abstract: To improve the traditional energy production and consumption of resources, the accel-
eration of the development of a clean and green assembly line is highly important. Hydrogen is
considered one of the most ideal options. The method of production of hydrogen through water
splitting constitutes the most attractive research. We synthesized CoMoO4 nanofibers by electro-
spinning along with post-heat treatment at different temperatures. CoMoO4 nanofibers show a
superior activity for hydrogen evolution reaction (HER) and only demand an overpotential of 80 mV
to achieve a current density of 10 mA cm–2. In particular, the CoMoO4 catalyst also delivers excellent
performances of oxygen evolution reaction (OER) in 1 M KOH, which is a more complicated process
that needs extra energy to launch. The CoMoO4 nanofibers also showed a superior stability in
multiple CV cycles and maintained a catalytic activity for up to 80 h through chronopotentiometry
tests. This is attributed mainly to a synergistic interaction between the different metallic elements that
caused the activity of CoMoO4 beyond single oxides. This approach proved that bimetallic oxides
are promising for energy production.

Keywords: CoMoO4; OER; HER; CNFs; electrospinning

1. Introduction

Addressing climate change and reducing carbon emissions is conducive to promot-
ing the green transformation of the economic structure, accelerating the production and
development of green energy, mitigating the adverse effects of climate change, and reduc-
ing the losses caused to the economy and society [1–3]. As the foundation of hydrogen
energy, electrocatalytic water splitting, which is involved in its production and utilization,
has naturally become the focus of attention. For cathodic hydrogen evolution reactions,
the notable material (such as Pt-based ones) catalysts are confirmed to have an excellent
performance [4,5]. On the other hand, the huge potential created by the OER is what affects
the production capacity. Noble-metal-based materials (Ru/IrO2) still show the highest
catalytic activity toward the generation of oxygen [6–8]. However, the huge consumption
of notable raw materials was blocking the splitting of water. Because of their abundance
and excellent performance, transition metal compounds (TMCs) have been intensively
studied as bifunctional electrocatalysts, especially co-based materials, such as Co-NRCNTs,
Co-NCNT, CoP, Co2P, CoP/CNT, Co@N-C, Ni0.33Co0.67S2 nanowire, CoOx@CN, CoP/rGO-
400, CoO/MoOx, etc. [9–18].

Different electrodes influence the reaction of water splitting, and using an alkaline
solution as a condition to evolve energy is the most commercialized and feasible strat-
egy. During the past years, transition-metal-based catalysts, such as nickel, cobalt, iron,
copper, and molybdenum, have been shown to possess tunable electronic, morphological,
adsorption, and structural properties, making them promising substitutes for noble metal
catalysts [19,20]. In particular, metal molybdate compounds have significant desirable
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properties, such as non-toxicity, a low cost, and good electrochemical activity, and they
have been used in some fields [21–23]. As shown in past reports, processed CoMoO4
obtained by the CoO/MoOx catalyst only needs a low overpotential at a current density
of 10 mA cm−2. As bifunctional catalysis is important in water splitting, CoMoO4 is also
considered one of the choices, due to the above merits [24,25]. From a commercialization
point of view, developing a cost-efficient strategy synthesis catalyst is imperative [26,27].
Electrospinning is a controllable method and involves the process of forming jets of poly-
mers and dissolvable materials under the action of an electric field and spinning. After
heat treatment, the polymer template is sacrificed to obtain a material with a uniform fiber
structure; the ordering of the crosslink structure route for charge and gas transportation
can enhance the efficiency of water splitting [28–31].

Based on the above consideration, we synthesized CoMoO4 nanofibers by electro-
spinning along with post-heat treatment. The CMO-650 catalyst has a stable performance
through long electrochemical tests, showing a low overpotential of 80 mV to achieve a
current density of 10 mA cm–2 in HER. Significantly, the catalysis performance of the CMO-
650 nanofibers needs an overpotential of 370 mV at 50 mA cm−2, which is smaller than
other simple oxides. Furthermore, it applies an excellent stability at a current density of
50 mA cm−2 on the alkaline electrode for 80 h. This is mainly due to the synergy between
the different metal elements, resulting in the activity of CMO exceeding that of single
oxides. This work proves that bimetallic oxides show promise in water splitting.

2. Results and Discussion

Figure 1 shows the X-ray diffraction (XRD) patterns of the prepared catalysts. The
special peaks of CMO-650 can be attributed to the (−201), (021), (002), (−311), (−131),
(−222), (400), and (040) phases of CoMoO4 (JCPDS No. 21-0868), respectively. The other
samples (CMO-550, CMO-750) showed an XRD pattern similar to that of CoMoO4 with no
peaks. There is a clear tendency for the crystallinity of the materials to decrease, obeying
the improved temperature. This phenomenon might be attributed to the grains overlapping
with the melting nanofibers and aggregating, causing the unapparent fiber structure under
the high treatment.
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Figure 1. XRD patterns of CMO-550, CMO-650, and CMO-750.

The morphology and detailed structural information on CoMoO4 nanofibers were
determined by SEM and TEM (Figure 2a–f). Figure 2a–c show SEM images of CMO-550,
CMO-650, and CMO-750. The nanofibers crossed to form a network, which is clearly shown
to be distinct, along with boundaries, in Figure 2a,b. The diameter of CMO-650 is around
200 nm. For CMO-750, because the temperature increases in the annealing program, the
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surface of nanofibers was rougher and the structure of fibers showed a state involving little
melting. The CMO-650 nanofibers look like they were obtained through the right condition
in order to be an electrode, with the appropriate appearance. For a definitive analysis
of the surface and intrinsic composition of the CMO-650, TEM analysis was performed
(Figure 2d,f). The sole nanofiber showed a uniform diameter, and the size of the fiber
was same as in the shown SEM. A representative high-resolution TEM image is shown in
Figure 2f, with the lattice fringe with a distance of around 0.243 nm corresponding to the
(400) plane of CoMoO4, which confirms the fact that the catalyst synthesized successfully.
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Figure 2. SEM images of (a) CMO-550, (b) CMO-650, and (c) CMO-750. (d,e) TEM images of
CMO-650; (f) HR-TEM lattice image of CMO-650.

The analysis of valence bond changes in the surface components of the material by
X-ray photoelectron spectroscopy (XPS) can demonstrate the phase transition process of
the materials. As shown in Figure 3a, the peaks of Co, Mo, and O exist in the spectrum for
CoMoO4. In Figure 3b, the peaks of Co 2p3/2 and Co 2p1/2 have binding energies of 780.5
and 796.6 eV, which are the characteristics of Co-O species [32–34]. The other peaks of Co
2p at 786.8 and 802.8 eV are shake-up satellites. As Figure 3c shows, the binding energies of
232 and 235.2 eV are matched to Mo 3d5/2 and Mo 3d3/2, which confirms the presence of the
Mo VI oxidation state, which is consistent with MoO4

2−. As Figure 3d shows, two peaks
with binding energies of 530.3 eV and 531.9 eV are matched to metal-oxygen bonds and
OH- groups for O 1s [30,35,36]. These standard characteristic peaks with the right binding
energies are deeply obvious, proving that the sample was successfully produced. We also
tested the XPS survey spectrum of CMO-550 and CMO-750, and we found that the binding
energies of Co and Mo do not have differences. We think that the calcination temperature
did not impact the bonding of elements and the values of metals in the test results.

The performance of the generated hydrogen of CMO-650 (the weight of samples on
the carbon paper: 2.5 mg cm–2) was examined in 1.0 M KOH. To equally detect CMO-550,
CMO-750, CMO-650 powder, Co3O4, and MoO3, all the above catalysts are calculated
under the same conditions and possess the same loading on the substrate. In Figure 4a, the
CMO-650 electrode reaches a current density of 10 mA cm−2 with a low overpotential of
80 mV, which is better than that of the CMO-550 (130 mV), CMO-750 (103 mV), powder
(139 mV), CMO-650 powder, Co3O4 (206 mV) and MoO3 (390 mV). The results indicate that
the Mo oxides have strong synergic effects derived from the introduction of Co elements.
The correlation Tafel values are calculated to be 183.43, 128.53, 172.37, 157.49, 254.69, and
300 mV dec−1 for CMO-550, CMO-650, CMO-750, CMO-650 powder, Co3O4, and MoO3,
respectively (Figure 4b), which means that only a tiny overpotential change is required
to meet the rapid increase in current density of CMO-650. Furthermore, electrochemical
impedance spectroscopy (EIS) in Figure 4c shows that CMO-650 has the smallest charge
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transfer resistance (Rct), 17.67 Ω, which is an order of magnitude smaller than CMO-550
(58.7 Ω), CMO-750 (44.544 Ω), CMO-650 powder (113.78 Ω), Co3O4 (173.575 Ω) and MoO3
(403.582 Ω), indicating a fast Faradic process due to the presence of the CMO-650 interface.
As shown in Figure 4d, 5000 cycles of CV are performed at a hydrogen evolution potential
at a scan rate of 100 mV s−1. Testing the polarization curve of the CMO-650 after cycling
shows that the potential change is almost acceptable. It is negligible and can be observed by
the chronopotentiometry test by applying a current density of 50 mA cm−2 on the electrode
for 80 h. CMO-650 exhibits an excellent electrochemical stability when tested for stability
in alkaline environments. Figure 4e shows the different CV curves of CMO-650 at scan
rates ranging from 20 to 100 mV s–1, respectively. The corresponding electric double-layer
capacitance (Cdl) value is estimated by linearly fitting the change of current density with
the above graph of the corresponding sweep speed. It can be noted from Figure 4f that the
best Cdl value of CMO-650 is 81 mF cm–2. The CMO-550 is 54.9 mF cm–2, the CMO-750 is
25.94 mF cm–2, the powder is 60.4 mF cm–2, the Co3O4 is 28.41 mF cm–2, and the MoO3 is
2.92 mF cm–2. This result demonstrates that CMO-650 has a much higher surface area than
others, which improves the efficiency of HER.
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The CMO-650 catalyst displays an extraordinary performance in the HER test, but the
sluggish OER kinetics still hinder commercial applications. Hence, the OER was replaced
with the potential range but with the alkaline electrolyte. As Figure 5a shows, the CMO-650
electrode shows a low overpotential at a current density of 50 mA cm−2 (370 mV), which
is smaller than that of the CMO-550 (410 mV), CMO-750 (416 mV), CMO-650 powder
(390 mV), Co3O4 (423 mV) at 50 mA cm−2, and MoO3 (668 mV) at 25 mA cm−2. CMO-650
reaches a high current density and only needs a small overpotential, which proves that
the bimetallic catalyst is better than single oxides. The Tafel slopes are calculated from
the correlative LSV results, which are 78.55, 53, 78.53, 75.31, 105.77 and 170.42 mV dec−1

for CMO-550, CMO-650, CMO-750 and CMO-650 powder, respectively (Figure 5b). The
smallest value of CMO-650 means that the catalyst only needs low energy to offer the
current changes. The electrochemical impedance spectroscopy (EIS) renders Nyquist plots,
which are fitted with a Randles circuit (Figure 5c). Herein, CMO-650 exhibited the smallest
charge transfer resistance (Rct), 12.48 Ω, which is smaller than CMO-550 (21.79 Ω), CMO-
750 (25.0214 Ω), CMO-650 powder (25.012 Ω), Co3O4 (150.14 Ω), and MoO3 (184.606 Ω),
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indicating a fast Faradic process due to the presence of the CMO-650 interface. To separate
the surface area effects from the intrinsic activity, Figure 5d shows the ECSA-normalized
LSV curves of materials. Interestingly, CMO nanofibers exhibited a higher intrinsic activity
than the single oxides. As shown in Figure 5e, the stability of CMO-650 was tested by
8000 CV cycling, and the after-reaction LSV curve was very close to the initial curve, which
shows the strong stability of CMO-650. As the chronopotentiometry test of CMO-650
shows, it can be seen that the overpotentials at a current density of 50 mA cm−2 do not
show significant attenuation after 80 h (Figure 5f).

Molecules 2023, 28, x FOR PEER REVIEW 5 of 9 
 

 

 

Figure 4. (a) LSV curves for CMO-550, CMO-750, CMO-650 powder, Co3O4, and MoO3 for HER with 

a scan speed of 5 mV s−1. (b) Tafel slopes for CMO-550, CMO-750, CMO-650 powder, Co3O4, and 

MoO3. (c) EIS pattern of the above catalysts. (d) The stability of CMO-650 initially and after 5000 

cycles with the inline diagram of the chronopotentiometry test with a current density of 50 mA cm−2 

for 80 h. (e) The different CV curves of CMO-650 ranging from 20–100 mV s−1. (f) The line fitter 

between the scan rates and current densities of the above samples. 

The CMO-650 catalyst displays an extraordinary performance in the HER test, but 

the sluggish OER kinetics still hinder commercial applications. Hence, the OER was 

replaced with the potential range but with the alkaline electrolyte. As Figure 5a shows, 

the CMO-650 electrode shows a low overpotential at a current density of 50 mA cm−2 (370 

mV), which is smaller than that of the CMO-550 (410 mV), CMO-750 (416 mV), CMO-650 

powder (390 mV), Co3O4 (423 mV) at 50 mA cm−2, and MoO3 (668 mV) at 25 mA cm−2. 

CMO-650 reaches a high current density and only needs a small overpotential, which 

proves that the bimetallic catalyst is better than single oxides. The Tafel slopes are 

calculated from the correlative LSV results, which are 78.55, 53, 78.53, 75.31, 105.77 and 

170.42 mV dec−1 for CMO-550, CMO-650, CMO-750 and CMO-650 powder, respectively 

(Figure 5b). The smallest value of CMO-650 means that the catalyst only needs low energy 

to offer the current changes. The electrochemical impedance spectroscopy (EIS) renders 

Nyquist plots, which are fitted with a Randles circuit (Figure 5c). Herein, CMO-650 

exhibited the smallest charge transfer resistance (Rct), 12.48 Ω, which is smaller than 

CMO-550 (21.79 Ω), CMO-750 (25.0214 Ω), CMO-650 powder (25.012 Ω), Co3O4 (150.14 Ω), 

and MoO3 (184.606 Ω), indicating a fast Faradic process due to the presence of the CMO-

650 interface. To separate the surface area effects from the intrinsic activity, Figure 5d 

shows the ECSA-normalized LSV curves of materials. Interestingly, CMO nanofibers 

exhibited a higher intrinsic activity than the single oxides. As shown in Figure 5e, the 

stability of CMO-650 was tested by 8000 CV cycling, and the after-reaction LSV curve was 

very close to the initial curve, which shows the strong stability of CMO-650. As the 

chronopotentiometry test of CMO-650 shows, it can be seen that the overpotentials at a 

current density of 50 mA cm−2 do not show significant attenuation after 80 h (Figure 5f). 

Figure 4. (a) LSV curves for CMO-550, CMO-750, CMO-650 powder, Co3O4, and MoO3 for HER
with a scan speed of 5 mV s−1. (b) Tafel slopes for CMO-550, CMO-750, CMO-650 powder, Co3O4,
and MoO3. (c) EIS pattern of the above catalysts. (d) The stability of CMO-650 initially and af-
ter 5000 cycles with the inline diagram of the chronopotentiometry test with a current density of
50 mA cm−2 for 80 h. (e) The different CV curves of CMO-650 ranging from 20–100 mV s−1. (f) The
line fitter between the scan rates and current densities of the above samples.
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Figure 5. (a) LSV curves for CMO-550, CMO-750, CMO-650 powder, Co3O4, and MoO3 for OER with a
scan speed of 5 mV s−1. (b) Tafel plots for CMO-550, CMO-750, CMO-650 powder, Co3O4 and MoO3.
(c) EIS pattern of the above catalysts. (d) The stability of CMO-650 initially and after 5000 cycles with the
inline diagram of the chronopotentiometry test with a current density of 50 mA cm−2 for 80 h. (e) The
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different CV curves of CMO-650 ranging from 20–100 mV s−1. (f) The line fitter between the scan
rates and current densities of the above samples.

As shown in Figure 6, CoMoO4 remained on both sides of the reaction, which reveals
the stability of the catalyst. More interestingly, there were no significant changes in the
samples during the HER test, while the CoOOH substance (PDF 26-0480) was synthesized
in the Co active site during the OER test. These results indicate that the real active materials
resulting from the reconstruction of the bimetallic oxide catalyst and the coupling synergies
between different metal elements enhance the electrochemical activity of the catalyst.
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3. Experimental Section
3.1. Materials

Cobalt acetate tetrahydrate (C4H6CoO4·4H2O), molybdenylacetylacetonate
(C10H14MoO6), potassium hydroxide (KOH), and N-dimethylformamide (DMF) were
purchased from Zhiyuan Reagent Corporation (Tianjin, China, Alfa Aesar, Ward Hill, MA,
USA). Polyacrylonitrile (PAN) was bought from Sigma-Aldrich Corporation (St. Louis,
MO, USA). All reagents were received commercially and used without further purification.

3.2. Synthesis of CoMoO4 Nanofibers

The electrospinning solution was prepared as follows: 99.63 mg C4H6CoO4·4H2O,
130.46 mg C10H14MoO6, and a certain amount of PAN was filled in 5 g DMF. The solution
was mixed for almost 24 h until it formed viscous and clear state. We replaced the solution
into the electrospin device with the voltage set at 7 kV. After a day, the production was
put into muffle, and we calcined the sample at 650 ◦C for 2 h; the purple nanofibers were
named CMO-650. To convert the above sample to the corresponding CMO-X, we changed
the relevant temperature (550 ◦C and 750 ◦C). For comparison, the CMO-650 powder was
synthesized by directly mixing and calcining the above metal salts in muffle at 650 ◦C.

For comparison, we synthesized Co3O4 nanofibers using the same method with CMO-
650 but not using C10H14MoO6.

3.3. Characterizations

The crystal structure of the preparations was determined by X-ray diffraction (XRD)
(D/max 2600, Rigaku, Tokyo, Japan). The morphology of the materials was described with
a scanning electron microscope (SEM, SU70, Hitachi, Tokyo, Japan). The atomic structure of
the catalysts was observed with a transmission electron microscope (TEM, FEI, Tecnai TF20).
The surface chemical qualities of the composites were measured by X-ray photoelectron
spectroscopy (XPS, Thermofisher Scientific, Waltham, MA, USA).
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3.4. Electrochemical Measurements

The electrochemical performance of the electrochemical workstation (VMP3): The
three-electrode was fabricated using catalysts as the working electrode, and the carbon rod
and Ag/AgCl were employed as the counter electrode and reference electrode, respectively.
For the working electrode preparation, the catalyst (8.0 mg) and carbon black (acetylene
black, 1.0 mg) were mixed in 160 µL of a 5 wt % PVDF solution under ultrasonication
for 30 min. After that, apply the above mixture to the carbon paper (evenly coat 20 µL of
mixture on carbon paper). All the catalysts were activated by a 50-fold CV test from 0–0.8 V
with a scan rate of 50 mV s−1. The linear sweep voltammetry (LSV) was conducted from 0
to 0.6 V (vs. Ag/AgCl) at 5 mV s−1 in 1 M KOH (pH = 14). For HER, the potential ranged
from 0 to −1 V (vs. Ag/AgCl) at 5 mV s−1.The LSV curves, corresponding Tafel slopes,
chronopotentiometric tests, and cyclic voltammetry were obtained with iR compensation.
We use the Single EIS frequency method of 100 kHz to auto iR compensation 85%. An
electrochemical impedance spectroscopy (EIS) measurement was conducted at a frequency
ranging from 100 kHz to 0.01 Hz at 0.5 V and −1.015 V (vs. Ag/Agcl) for HER and OER,
respectively. To measure the electrochemical surface area (ECSA) of all the samples, the Cdl
was calculated according to the cyclic voltammogram curves with different scan rates.

4. Conclusions

In summary, we used electrospun fiber felt as a precursor and selective calcination
in air, and different nanofibers were constructed. The HER reaction was tested in an
alkaline environment, and the CMO-650 showed a good activity and stability at a current
density of 10 mA cm–2. Additionally, we found a good electrochemical performance in
the OER test because the one-dimensional structure of CMO-650 can effectively combine
electrolytes for a rapid mass transfer. The long OER test for 50 mA cm–2 can continue
for 80 h. All the electrochemical tests with different oxides confirm that the unique fiber
structure and bimetallic synergy are preferred to HER and OER. According to XRD, there
is almost no change in the surface of the material after the HER reaction, but the material
that has undergone water oxidation exhibits a new substance, which is the active substance
that truly provides the activity. This work establishes an actionable strategy to provide
one-dimensional CMO-650 materials to be used in bifunctional electrochemical catalysis.
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