Assessment of the Effects of Roasting, Contact Grilling, Microwave Processing, and Steaming on the Functional Characteristics of Bell Pepper (Capsicum annuum L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Polyphenols Content
2.2. Total Antioxidant Activity vs. DPPH Radical
2.3. Total Antioxidant Activity vs. ABTS Radical
2.4. Total Reducing Activity
2.5. Reducing Sugars Content
2.6. Color Profile Change after Treatments
2.7. Textural Profile Changes after Treatments
3. Materials and Methods
3.1. Analytical Reagents and Standards Used
3.2. Plant Research Material
3.3. Heating Procedures
3.3.1. Steam Cooking
3.3.2. Contact Grilling
3.3.3. Roasting
3.3.4. Simultaneous Roasting and Microwave
3.4. Extract Preparation
3.5. Determination of Total Phenolic Compounds
3.6. Determination of Antioxidant and Oxidoreductive Activities
3.6.1. DPPH Test
3.6.2. ABTS Test
3.6.3. FRAP Test
3.7. Measurement of Reducing Sugar Content
3.8. Color Measurement
3.9. Texture Measurements
3.10. Dry Basis Assessment
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Zonneveld, M.; Ramirez, M.; Williams, D.E.; Petz, M.; Meckelmann, S.; Avila, T.; Bejarano, C.; Rios, L.; Pena, K.; Jager, M.; et al. Screening genetic resources of Capsicum peppers in their primary center of diversity in Bolivia and Peru. PLoS ONE 2015, 10, e0134663. [Google Scholar] [CrossRef] [PubMed]
- Xavier, A.A.O.; Perez-Galvez, A. Peppers and chilies. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldra, F., Eds.; Elsevier: Kidlington, UK, 2016; p. 301. [Google Scholar]
- Zhang, D.; Hamauzu, Y. Phenolic compounds, ascorbic acid, carotenoids and antioxidant properties of green, red and yellow bell peppers. J. Food. Agric. Environ. 2003, 1, 1–7. [Google Scholar]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food. Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Du, Q.; Meng, X.; Zhang, Y. Natural polyphenols: A potential prevention and treatment strategy for metabolic syndrome. Food Funct. 2022, 13, 9734–9753. [Google Scholar] [CrossRef]
- Agunloye, O.M.; Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Akindahunsi, A.A.; Oyagbemi, A.A.; Omobowale, T.O.; Ajibade, T.O.; Adedapo, A.A. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed. Pharmacother. 2019, 109, 450–458. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive polyphenols: Antioxidant and anti-inflammatory properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Agarwal, B.; Campen, M.J.; Channell, M.M.; Wherry, S.J.; Varamini, B.; Davis, J.G.; Baur, J.A.; Smoliga, J.M. Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium. Int. J. Cardiol. 2013, 166, 246–248. [Google Scholar] [CrossRef]
- Giordano, D.; Facchiano, A.; Minasi, P.; D’Agostino, N.; Parisi, M.; Carbone, V. Phenolic Compounds and Capsaicinoids in Three Capsicum annuum Varieties: From Analytical Characterization to In Silico Hypotheses on Biological Activity. Molecules 2023, 28, 6772. [Google Scholar] [CrossRef]
- Gade, A.; Kumar, M.S. Gut microbial metabolites of dietary polyphenols and their potential role in human health and diseases. J. Physiol. Biochem. 2023, 79, 695–718. [Google Scholar] [CrossRef]
- Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Daglia, M.; De Filippis, A.; Xiao, H.; Quiles, J.L.; Xiao, J.; et al. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Front. 2020, 1, 109–133. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.R.S.; Gómez, K.R.; Ordoñez, Y.M.; Ancona, D.B. Polyphenols, ascorbic acid and carotenoids contents and antioxidant properties of habanero pepper (Capsicum chinense) fruit. Food Nutr. Sci. 2013, 4, 47–54. [Google Scholar]
- Tundis, R.; Loizzo, M.R.; Menichini, F.; Bonesi, M.; Conforti, F.; Statti, G.; De Luca, D.; De Cindio, B.; Menichini, F. Comparative study on the chemical composition antioxidant properties and hypoglycaemic activities of two Capsicum annum L. cultivars (Acuminatum small and Cerasiferum). Plant Foods Hum. Nutr. 2011, 66, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.V.; de Andrade, M.R.; de Oliveira, R.A.; de Almeida, M.R.; Moresco, K.S.; de Souza Oliveira, T.C. Bioactive compounds and antioxidant activity of pepper (Capsicum sp.) genotypes. J. Food Sci. Technol. 2015, 52, 7457–7464. [Google Scholar] [CrossRef]
- Rivera-Madrid, R.; Carballo-Uicab, V.M.; Cárdenas-Conejo, Y.; Aguilar-Espinosa, M.; Siva, R. Overview of carotenoids and beneficial effects on human health. In Carotenoids: Properties, Processing and Applications; Academic Press: Cambridge, MA, USA, 2020; pp. 1–40. [Google Scholar]
- Martínez, S.; López, M.; González-Raurich, M.; Bernardo, A.A. The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.). Int. J. Food. Sci. Nutr. 2005, 56, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Marín, A.; Ferreres, F.; Tomás-Barberán, F.A.; Gil, M.I. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J. Agric. Food. Chem. 2004, 52, 3861–3869. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, M.; Fukuyama, R.; Minoshima, S.; Shimizu, N.; Yagi, K. Cloning and chromosomal mapping of the human nonfunctional gene for l-gulono-gamma-lactone oxidase, the enzyme for l-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 1994, 269, 13685–13688. [Google Scholar] [CrossRef]
- Pullar, J.M.; Carr, A.C.; Vissers, M.C.M. The roles of vitamin C in skin health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef]
- Maggini, S.; Wintergerst, E.S.; Beveridge, S.; Hornig, D.H. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr. 2007, 98, 29–35. [Google Scholar] [CrossRef]
- Sharma, P.; Raghavan, S.A.; Saini, R.; Dikshit, M. Ascorbate-mediated enhancement of reactive oxygen species generation from polymorphonuclear leukocytes: Modulatory effect of nitric oxide. J. Leukoc. Biol. 2004, 75, 1070–1078. [Google Scholar] [CrossRef]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Al-Juhaimi, F.; Ghafoor, K.; Özcan, M.M.; Jahurul, M.H.A.; Babiker, E.E.; Jinap, S.; Sahena, F.; Sharifudin, M.S.; Zaidul, I.S.M. Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. J. Food Sci. Technol. 2018, 55, 3872–3880. [Google Scholar] [CrossRef] [PubMed]
- Sanati, S.; Razavi, B.M.; Hosseinzadeh, H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran. J. Basic Med. Sci. 2018, 21, 439–448. [Google Scholar] [PubMed]
- Olędzki, R.; Harasym, J. Boiling vs. microwave heating—The impact on physicochemical characteristics of bell pepper (Capsicum annuum L.) at Different Ripening Stages. Appl. Sci. 2023, 13, 8175. [Google Scholar] [CrossRef]
- Özgür, M.; Özcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L. Functional compounds and antioxidant properties of dried green and red peppers. Afr. J. Agric. Res. 2011, 6, 5638–5644. [Google Scholar] [CrossRef]
- Hameed, A.; Fatima, N.; Iftikhar, H.; Mehmood, A.; Tariq, M.R.; Ali, S.W.; Ali, S.; Shafiq, M.; Ahmad, Z.; Ali, U.; et al. Effect of different drying and cooking treatments on phytochemicals and antioxidant activity in broccoli: An experimental in vitro study. Food Sci. Technol. 2023, 43, e101622. [Google Scholar] [CrossRef]
- Reis, R.C.; Castro, V.C.; Devilla, I.A.; Oliveira, C.A.; Barbosa, L.S.; Rodovalho, R. Effect of drying temperature on the nutritional and antioxidant qualities of Cumari peppers from Para (Capsicum chines Jacqui). Braz. J. Chem. Eng. 2013, 30, 337–343. [Google Scholar] [CrossRef]
- Özcan, M.M.; Uslu, N. Quantitative changes of bioactive properties and phenolic compounds in capia pepper (Capsicum annuum L.) fruits dried by the air, conventional heater, and microwave. J. Food Process. Preserv. 2022, 46, e16897. [Google Scholar] [CrossRef]
- Speranza, G.; Lo Scalzo, R.; Morelli, C.F.; Rabuffetti, M.; Bianchi, G. Influence of drying techniques and growing location on the chemical composition of sweet pepper (Capsicum annuum L., var. Senise). J. Food Biochem. 2019, 43, e13031. [Google Scholar] [CrossRef]
- Arfaoui, L. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef]
- Lewicki, P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop. 1998, 1, 1–22. [Google Scholar] [CrossRef]
- Zahoor, I.; Ganaie, T.A.; Wani, S.A. Effect of microwave assisted convective drying on physical properties, bioactive compounds, antioxidant potential and storage stability of red bell pepper. Food Chem. Adv. 2023, 3, 100440. [Google Scholar] [CrossRef]
- Ke, Y.; Deng, L.; Dai, T.; Xiao, M.; Chen, M.; Liang, R.; Liu, W.; Liu, C.; Chen, J. Effects of cell wall polysaccharides on the bioaccessibility of carotenoids, polyphenols, and minerals: An overview. Crit. Rev. Food Sci. Nutr. 2023, 63, 11385–11398. [Google Scholar] [CrossRef] [PubMed]
- Schweiggert, U.; Schieber, A.; Carle, R. Inactivation of peroxidase, polyphenoloxidase, and lipoxygenase in paprika and chili powder after immediate thermal treatment of the plant material. Innov. Food Sci. Emerg. Technol. 2005, 6, 403–411. [Google Scholar] [CrossRef]
- Desai, S.; Upadhyay, S.; Sharanagat, V.S.; Nema, P.K. Physico-functional and quality attributes of microwave-roasted black pepper (Piper nigrum L.). Int. J. Food Eng. 2023, 19, 561–572. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, K.; Singh, J.S. Drying kinetics, chemical, and bioactive compounds of yellow sweet pepper as affected by processing conditions. J. Food Process. Preserv. 2022, 46, e16330. [Google Scholar] [CrossRef]
- Sun, T.; Xu, Z.; Wu, T.C.; Janes, M.; Prinyawiwatkul, W.; No, H.K. Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). J. Food Sci. 2007, 72, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Reda, S.Y. Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil. Ciênc. Tecnol. Aliment. Camp. 2011, 31, 475–480. [Google Scholar] [CrossRef]
- Maiani, G.; Periago Castón, M.J.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Schlemmer, U. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, 194–218. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Rufián-Henares, J.Á.; Pastoriza, S. Effect of home cooking on the antioxidant capacity of vegetables: Relationship with Maillard reaction indicators. Food Res. Int. 2019, 121, 514–523. [Google Scholar] [CrossRef]
- Fong-in, S.; Khwanchai, P.; Prommajak, T.; Boonsom, S. Physicochemical, nutritional, phytochemical properties and antioxidant activity of edible Astraeusodoratus mushrooms: Effects of different cooking methods. Int. J. Gastron. Food Sci. 2023, 33, 100743. [Google Scholar] [CrossRef]
- Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.; Soffers, A.E.; Rietjens, I.M. The Influence of PH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic. Biol. Med. 2001, 31, 869–881. [Google Scholar] [CrossRef]
- Nandasiri, R.; Semenko, B.; Wijekoon, C.; Suh, M. Air-frying is a better thermal processing choice for improving antioxidant properties of brassica vegetables. Antioxidants 2023, 12, 490. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, G.; Lo Scalzo, R. Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. J. Food Biochem. 2018, 42, e12675. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Dills, W.L. Protein fructosylation: Fructose and the Maillard reaction. Am. J. Clin. Nutr. 1993, 58, 779S–787S. [Google Scholar] [CrossRef]
- Rana, J.N.; Mumtaz, S.; Choi, E.H.; Han, I. ROS production in response to high-power microwave pulses induces p53 activation and DNA damage in brain cells: Radiosensitivity and biological dosimetry evaluation. Front. Cell Dev. Biol. 2023, 23, 1067861. [Google Scholar] [CrossRef]
- Li, Y.; Lu, F.; Wang, X.; Hu, X.; Liao, X.; Zhang, Y. Biological transformation of chlorophyll-rich spinach (Spinacia oleracea L.) extracts under in vitro gastrointestinal digestion and colonic fermentation. Food Res. Int. 2021, 139, 109941. [Google Scholar] [CrossRef]
- Darıcı, M.; Süfer, Ö.; Simsek, M. Determination of microwave drying and rehydration kinetics of green peppers with the bioactive and textural properties. J. Food Process. Eng. 2021, 44, e13755. [Google Scholar] [CrossRef]
- Eyarkai, N.V.; Gupta, R.K.; Kumar, S.; Sharma, P.C. Degradation kinetics of bioactive components, antioxidant activity, colour and textural properties of selected vegetables during blanching. J. Food Sci. Technol. 2016, 53, 3073–3082. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Gupta, S.; Abu, G.N. Kinetic evaluation of colour, texture, polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment. Food Chem. 2012, 131, 63–72. [Google Scholar] [CrossRef]
- Bhat, R. Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice. Food Chem. 2016, 213, 635–640. [Google Scholar] [CrossRef]
- Ibarz, A.; Pagan, J.; Garza, S. Kinetic models for colour changes in pear puree during heating at relatively high temperatures. J. Food Eng. 1999, 39, 415–422. [Google Scholar] [CrossRef]
- Swain, S.; Samuel, D.V.K.; Bal, L.M.; Kar, A. Thermal kinetics of colour degradation of yellow sweet pepper (Capsicum annuum L.) undergoing microwave assisted convective drying. Int. J. Food Prop. 2014, 17, 1946–1964. [Google Scholar] [CrossRef]
- Deng, L.Z.; Yang, X.H.; Mujumdar, A.S.; Zhao, J.H.; Wang, D.; Qian, Z.; Wang, J.; Gao, Z.J.; Xiao, H.W. Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, N.; Sodhi, N.S. Physicochemical, cooking, textural and roasting characteristics of chickpea (Cicer arietinum L.) cultivars. J. Food Eng. 2005, 69, 511–517. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Lemus-Mondaca, R.; Bilboa-Sainz, C.; Yagnam, F.; Rojas, A. Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annuum L.): Mathematical modeling and evaluation of kinetic parameters. J. Food Process Eng. 2008, 31, 120–137. [Google Scholar] [CrossRef]
- Barut, Y.T.; Koç, G.Ç.; Ergün, A.R. Effect of different roasting methods on the proximate by composition, flow properties, amino acid compositions, colour, texture, and sensory profile of the chickpeas. Int. J. Food Sci. Technol. 2023, 58, 482–492. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Klymenko, S.; Kucharska, A.Z.; Sokół-Łętowska, A.; Piórecki, N. Antioxidant activities and phenolic compounds in fruits of cultivars of cornelian cherry (Cornus mas L.). Agrobiodivers. Improv. Nutr. Health Life Qual. 2019, 3, 484–499. [Google Scholar]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
R-Stage | Processing | SUGARS mg GlcE/g d.b. | TPC mg GAE/g d.b. | DPPH mg TE/g d.b. | ABTS mg TE/g d.b. | FRAP μM FeSO4/g d.b. |
---|---|---|---|---|---|---|
G | RM | 4.15 ± 0.17 b | 2.75 ± 0.42 a | 11.77 ±0.37 c | 0.68 ± 0.16 a | 10.54 ± 0.37 c |
CG | 1.99 ± 0.16 a | 15.43 ± 1.15 c | 7.27 ± 0.52 b | 3.32 ± 0.09 c | 1.37 ± 0.07 b | |
R | 2.27 ± 0.20 a | 7.09 ± 0.57 b | 1.57 ± 0.06 a | 0.58 ± 0.13 a | 1.43 ± 0.08 b | |
MWR | 1.88 ± 0.13 a | 15.24 ± 0.01 c | 1.94 ± 0.13 a | 1.05 ± 0.10 b | 0.76 ± 0.04 a | |
S | 2.07 ± 0.62 a | 6.25 ± 0.47 b | 7.18 ± 0.42 b | 3.79 ± 0.18 d | 1.44 ± 0.05 b | |
Y | RM | 5.61 ± 0.08 d | 17.00 ± 0.68 e | 14.29 ± 0.51 e | 5.03 ± 0.12 d | 19.93 ±1.64 b |
CG | 1.45 ± 0.21 c | 12.56 ± 0.68 c | 8.73 ± 0.77 d | 4.42 ± 0.11 c | 1.79 ± 0.13 a | |
R | 1.12 ± 0.08 b | 9.02 ± 0.28 b | 3.49 ± 0.11 b | 3.77 ± 0.06 a | 0.82 ± 0.04 a | |
MWR | 1.16 ± 0.06 b | 15.24 ± 0.35 d | 1.94 ± 0.16 a | 5.40 ± 0.04 e | 1.08 ± 0.04 a | |
S | 0.80 ± 0.04 a | 6.31 ± 0.11 a | 6.45 ± 0.50 c | 4.03 ± 0.04 b | 1.17 ± 0.00 a | |
R | RM | 4.41 ± 0.12 d | 17.26 ± 0.64 b | 20.00 ± 0.51 c | 5.28 ± 0.10 d | 39.79 ± 1.05 b |
CG | 2.19 ± 0.35 c | 17.20 ± 2.57 b | 9.29 ± 0.81 c | 4.34 ± 0.04 c | 1.62 ± 0.08 a | |
R | 0.88 ± 0.04 ab | 23.56 ± 0.35 c | 1.40 ± 0.14 a | 1.77 ± 0.06 a | 1.13 ± 0.04 a | |
MWR | 0.66 ± 0.01 a | 5.46 ± 0.36 a | 1.27 ± 0.05 a | 2.82 ± 0.14 b | 1.29 ± 0.01 a | |
S | 1.30 ± 0.26 b | 6.01 ± 0.69 a | 7.91 ± 0.55 b | 4.16 ± 0.18 c | 1.46 ± 0.20 a | |
processing | *** | *** | *** | *** | *** | |
R-stage | *** | *** | *** | *** | *** | |
processing × R-stage | *** | *** | *** | *** | *** |
R-Stage | Processing | L* | a* | b* | C | h |
---|---|---|---|---|---|---|
G | RM | 54.88 ± 2.00 a | −13.80 ± 0.46 b | 15.40 ± 0.63 a | 20.68± 0.76 b | 131.83 ± 0.50 e |
CG | 59.57 ± 0.07 b | −3.23 ± 0.06 d | 17.51 ± 0.02 b | 17.81 ± 0.03 a | 100.40 ± 0.17 a | |
R | 67.44 ± 0.40 d | −11.11 ± 0.39 c | 28.61 ± 0.98 d | 30.69 ± 1.05 c | 111.13 ± 0.25 b | |
MWR | 61.07 ± 0.23 b | −16.14 ± 0.10 a | 24.70 ± 0.21 c | 29.50 ± 0.23 c | 123.10 ± 0.10 c | |
S | 65.32 ± 1.58 c | −10.89 ± 0.66 c | 15.49 ± 1.37 a | 18.93 ± 1.50 a | 125.10 ± 0.69 d | |
Y | RM | 99.28 ± 0.49 e | 3.36 ± 0.18 c | 89.63 ± 0.84 e | 89.69 ± 0.83 e | 87.93 ± 0.15 c |
CG | 89.80 ± 0.68 c | 5.33 ± 0.16 d | 72.89 ± 0.96 c | 73.08 ± 0.97 c | 85.87 ± 0.06 b | |
R | 51.79 ± 0.42 a | −13.34 ± 0.07 a | 14.04 ± 0.22 a | 19.36 ± 0.21 a | 133.47 ± 0.31 e | |
MWR | 84.42 ± 1.15 b | −0.65 ± 0.07 b | 65.94 ± 2.11 b | 65.94 ± 2.11 b | 90.53 ± 0.06 d | |
S | 97.78 ± 0.12 d | 10.72 ± 0.10 e | 85.23 ± 1.16 d | 85.89 ± 1.17 d | 82.90 ± 0.00 a | |
R | RM | 64.25 ± 0.53 c | 54.82 ± 0.85 d | 36.65 ± 1.18 d | 65.94 ± 1.35 c | 33.70 ± 0.48 c |
CG | 57.52 ± 1.02 a | 47.68 ± 0.76 a | 27.82 ± 0.71 a | 55.20 ± 1.01 a | 30.20 ± 0.27 a | |
R | 62.18 ± 0.76 b | 51.49 ± 1.84 c | 33.47 ± 1.64 c | 61.41 ± 2.43 b | 32.95 ± 0.37 b | |
MWR | 62.66 ± 0.09 b | 45.20 ± 0.17 b | 29.95 ± 0.16 b | 54.22 ± 0.08 a | 33.45 ± 0.25 bc | |
S | 95.11 ± 0.47 d | 2.90 ± 1.08 e | 80.12 ± 0.48 e | 80.18 ± 0.50 c | 88.00 ± 0.74 d |
R-Stage | RM-R | RM-MVR | RM-S | RM-CG |
---|---|---|---|---|
G | 19.0 ± 2.2 | 11.4 ± 0.7 | 10.3 ± 3.2 | 11.7 ± 0.9 |
Y | 90.2 ± 1.0 | 28.1 ± 3.0 | 8.5 ± 0.6 | 18.2 ± 2.8 |
R | 5.1 ± 4.0 | 11.8 ± 1.5 | 74.4 ± 0.6 | 13.2 ± 1.2 |
R-Stage | Processing | Hardness [N] | Cohesiveness | Springiness | Chewiness [N] | Resilience |
---|---|---|---|---|---|---|
G | RM | 76.7 ± 0.1 e | 0.784 ± 0.023 ab | 0.667 ± 0.000 a | 40.01 ± 1.14 e | 0.68 ± 0.09 ab |
CG | 5.4 ± 0.1 a | 0.726 ± 0.028 a | 0.838 ± 0.028 b | 3.22 ± 0.18 a | 0.76 ± 0.11 bc | |
R | 8.7 ± 0.4 b | 0.839 ± 0.065 b | 0.926 ± 0.004 b | 6.69 ± 0.19 c | 0.57 ± 0.02 a | |
MWR | 10.4 ± 0.1 c | 0.755 ± 0.005 ab | 0.641 ± 0.037 a | 5.02 ± 0.17 b | 0.98 ± 0.06 d | |
S | 12.2 ± 0.9 d | 0.841 ± 0.030 b | 1.046 ± 0.064 c | 10.63 ± 0.50 d | 0.87 ± 0.02 cd | |
Y | RM | 34.4 ± 2.9 b | 0.818 ± 0.057 a | 0.701 ± 0.018 a | 19.73 ± 2.49 b | 0.86 ± 0.18 a |
CG | 10.4 ± 0.4 a | 0.824 ± 0.036 ab | 0.834 ± 0.235 a | 7.11 ± 2.08 a | 0.73 ± 0.21 a | |
R | 12.1 ± 1.0 a | 0.868 ± 0.009 ab | 0.727 ± 0.084 a | 7.64 ± 1.45 a | 0.68 ± 0.04 a | |
MWR | 10.6 ± 0.4 a | 0.798 ± 0.018 a | 0.691 ± 0.033 a | 5.87 ± 0.63 a | 0.66 ± 0.02 a | |
S | 12.1 ± 1.2 a | 0.914 ± 0.036 b | 0.731 ± 0.272 a | 7.94 ± 2.50 a | 0.77 ± 0.09 a | |
R | RM | 48.6 ± 1.1d | 0.720 ± 0.015 a | 0.622 ± 0.030 a | 21.73 ± 1.10 d | 0.73 ± 0.12 a |
CG | 3.3 ± 0.8 a | 0.698 ± 0.125 a | 1.084 ± 0.118 b | 2.56 ± 1.30 a | 0.67 ± 0.42 a | |
R | 11.5 ± 0.1 b | 0.896 ± 0.008 b | 0.763 ± 0.100 ab | 7.86 ± 1.05 b | 0.70 ± 0.10 a | |
MWR | 16.4 ± 2.9 c | 0.786 ± 0.013 ab | 0.818 ± 0.257 ab | 10.24 ± 1.64 bc | 0.74 ± 0.16 a | |
S | 19.6 ± 0.6 c | 0.813 ± 0.035 ab | 0.718 ± 0.072 a | 11.42 ± 1.00 c | 0.88 ± 0.14 a | |
processing | *** | * | ns | *** | ns | |
R-stage | *** | *** | * | *** | ns | |
Processing × R-stage | *** | ns | ns | *** | ns |
Processing | Green Bell Pepper | Yellow Bell Pepper | Red Bell Pepper |
---|---|---|---|
Raw Material—RM | |||
Steaming—S | |||
Roasting—R | |||
Roasting and Microwave—MWR | |||
Contact Grilling—CG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olędzki, R.; Harasym, J. Assessment of the Effects of Roasting, Contact Grilling, Microwave Processing, and Steaming on the Functional Characteristics of Bell Pepper (Capsicum annuum L.). Molecules 2024, 29, 77. https://doi.org/10.3390/molecules29010077
Olędzki R, Harasym J. Assessment of the Effects of Roasting, Contact Grilling, Microwave Processing, and Steaming on the Functional Characteristics of Bell Pepper (Capsicum annuum L.). Molecules. 2024; 29(1):77. https://doi.org/10.3390/molecules29010077
Chicago/Turabian StyleOlędzki, Remigiusz, and Joanna Harasym. 2024. "Assessment of the Effects of Roasting, Contact Grilling, Microwave Processing, and Steaming on the Functional Characteristics of Bell Pepper (Capsicum annuum L.)" Molecules 29, no. 1: 77. https://doi.org/10.3390/molecules29010077
APA StyleOlędzki, R., & Harasym, J. (2024). Assessment of the Effects of Roasting, Contact Grilling, Microwave Processing, and Steaming on the Functional Characteristics of Bell Pepper (Capsicum annuum L.). Molecules, 29(1), 77. https://doi.org/10.3390/molecules29010077