Discovery of a New Polymorph of 5-Methoxy-1H-Indole-2-Carboxylic Acid: Characterization by X-ray Diffraction, Infrared Spectroscopy, and DFT Calculations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure of MI2CA Polymorph 2
2.2. Molecular Structure and Intermolecular Interactions Present in the Crystal of MI2CA Polymorph 2, and Theoretical Results
2.3. MIR Spectra of MI2CA Polymorph 2
3. Materials and Methods
3.1. Preparation of MI2CA Polymorph 2
3.2. X-ray Structure Determination
3.3. Spectroscopic Measurements
3.4. Theoretical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules 2013, 18, 6620–6662. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Lee, J.H.; Lee, J. Diverse roles of microbial indole compounds in eukaryotic systems. Biol. Rev. 2021, 96, 2522–2545. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, L.; Mindt, M.; Wendisch, V.F.; Cankar, K. Indoles and the advances in their biotechnological production for industrial applications. Syst. Microbiol. Biomanuf. 2024, 4, 511–527. [Google Scholar] [CrossRef]
- Leveau, J.H.; Lindow, S.E. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 2005, 71, 2365–2371. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.L.; Chen, C.C.; Hsu, F.L.; Chen, C.F. A new lignan from Phyllanthus, virgatus. J. Nat. Prod. 1996, 59, 520–521. [Google Scholar] [CrossRef]
- Wu, J.; Jin, Z.; Yang, X.; Yan, L.J. Post-ischemic administration of 5-methoxyindole-2-carboxylic acid at the onset of reperfusion affords neuroprotection against stroke injury by preserving mitochondrial function and attenuating oxidative stress. Biochem. Biophys. Res. Commun. 2018, 497, 444–450. [Google Scholar] [CrossRef]
- Sumien, N.; Huang, R.; Chen, Z.; Vann, P.H.; Wong, J.M.; Li, W.; Yang, S.; Forster, M.J.; Yan, L.J. Effects of dietary 5-methoxyindole-2-carboxylic acid on brain functional recovery after ischemic stroke. Behav. Brain Res. 2020, 378, 112278. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Ebert, P.R. 5-Methoxyindole-2-carboxylic acid (MICA) suppresses Aβ-mediated pathology in C. elegans. Exp. Gerontol. 2018, 108, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Kärnell, R.; von Schoultz, E.; Hansson, L.O.; Nilsson, B.; Arstrand, K.; Kågedal, B. S100B protein, 5-S-cysteinyldopa and 6-hydroxy-5-methoxyindole-2-carboxylic acid as biochemical markers for survival prognosis in patients with malignant melanoma. Melanoma Res. 1997, 7, 393–399. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Ito, S. Identification of ester glucuronide and sulfate conjugates of 5-hydroxy-6-methoxyindole-2-carboxylic acid and 6-hydroxy-5-methoxyindole-2-carboxylic acid in melanoma urine. J. Dermatol. Sci. 1990, 1, 253–259. [Google Scholar] [CrossRef]
- Yan, L.J. Reexploring 5-methoxyindole-2-carboxylic acid (MICA) as a potential antidiabetic agent. Diabetes Metab. Syndr. Obes. 2018, 11, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Karle, I.L.; Britts, K.; Gum, P. Crystal and molecular structure of 3-indolylacetic acid. Acta Cryst. 1964, 17, 496–499. [Google Scholar] [CrossRef]
- Nigovic, B.; Antolic, S.; Kojic-Prodic, B.; Kiralj, R.; Magnus, V.; Salopek-Sondi, B. Correlation of structural and physico-chemical parameters with the bioactivity of alkylated derivatives of indole-3-acetic acid, a phytohormone (auxin). Acta Cryst. 2000, B56, 94. [Google Scholar] [CrossRef]
- Okabe, N.; Adachi, Y. 1H-Indole-3-propionic Acid. Acta Cryst. 1998, C54, 386–387. [Google Scholar] [CrossRef]
- Smith, G.; Wermuth, U.D.; Healy, P.C. Indole-3-carboxylic acid. Acta Cryst. 2003, E59, 1766–1767. [Google Scholar] [CrossRef]
- Morzyk-Ociepa, B.; Michalska, D.; Pietraszko, A. Structures and vibrational spectra of indolecarboxylic acids. Part II. 5-Methoxyindole-2-carboxylic acid. J. Mol. Struct. 2004, 688, 87–94. [Google Scholar] [CrossRef]
- Morzyk-Ociepa, B.; Michalska, D.; Pietraszko, A. Structures and vibrational spectra of indole carboxylic acids. Part I. Indole-2-carboxylic acid. J. Mol. Struct. 2004, 688, 79–86. [Google Scholar] [CrossRef]
- Balcerek, M.; Szmigiel-Bakalarz, K.; Lewańska, M.; Günther, G.; Oeckler, O.; Malik, M.; Morzyk-Ociepa, B. Experimental and computational study on dimers of 5-halo-1H-indole-2-carboxylic acids and their microbiological activity. J. Mol. Struct. 2023, 1274, 134492. [Google Scholar] [CrossRef]
- Morzyk-Ociepa, B. X-ray diffraction and vibrational spectroscopic studies of indolecarboxylic acids and their metal complexes: Part VII. Indole-2-carboxylic acid and catena-poly[[diaquazinc(II)]-bis(μ2-indole-2-carboxylato-O:O′)]. Vib. Spectrosc. 2009, 49, 68–79. [Google Scholar] [CrossRef]
- Morzyk-Ociepa, B. Vibrational spectroscopic studies of indolecarboxylic acids and their metal complexes: Part VIII. 5-Methoxyindole-2-carboxylic acid and its Zn(II) complex. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 72, 236–243. [Google Scholar] [CrossRef]
- Morzyk-Ociepa, B.; Kokot, M.; Różycka-Sokołowska, E.; Giełzak-Koćwin, K.; Filip-Psurska, B.; Wietrzyk, J.; Michalska, D. Crystal structure, infrared and EPR spectra and anticancer activity in vitro of the novel manganese(II) complexes of indolecarboxylic acids. Polyhedron 2014, 67, 464–470. [Google Scholar] [CrossRef]
- Morzyk-Ociepa, B.; Szmigiel, K.; Dysz, K.; Turowska-Tyrk, I.; Michalska, D. Metal-organic frameworks in cadmium(II) complexes with 5-methoxyindole-2-carboxylic acid: Structure, vibrational spectra and DFT calculations. J. Mol. Struct. 2016, 1123, 14–23. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Cheng, Z.; Zhang, Y.; Zhang, H.; He, D.; Zou, Z.; Tang, Q. Trinuclear iron cluster and layered manganese complexes based on indolecarboxylic acid showing magnetic and antibacterial properties. Inorg. Chem. Commun. 2021, 124, 108381. [Google Scholar] [CrossRef]
- Deng, C.; Song, B.Q.; Sensharma, D.; Gao, M.Y.; Bezrukov, A.A.; Nikolayenko, V.I.; Lusi, M.; Mukherjee, S.; Zaworotko, M.J. Effect of Extra-Framework Anion Substitution on the Properties of a Chiral Crystalline Sponge. Cryst. Growth Des. 2023, 23, 8139. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, B.S.; Zheng, M. Bis(2,2′-bipyridine-κ2N,N’)bis (1H-indole-2-carboxyl ato-κ2O,O’)cadmium-2,2′-bipyridine-water (1/0.5/2). Acta Cryst. 2011, E67, 879–880. [Google Scholar] [CrossRef]
- Viossat, V.; Lemoine, P.; Dayan, E.; Dung, N.H.; Viossat, B. Synthesis, crystal structure and IR spectroscopy of MnII(2-IC)2(NC)(DMSO) and [MnII(2-IC)2(phen)(H2O)]·DMA; (2-HIC, indole-2-carboxylic acid; phen, 1,10-phenanthroline; NC, 2,9-dimethyl-1,10-phenanthroline; DMSO, dimethyl sulfoxide; DMA, dimethyl acetamide); catalysts for the disproportionation of hydrogen peroxide. Polyhedron 2003, 22, 1461–1470. [Google Scholar] [CrossRef]
- Viossat, V.; Lemoine, P.; Dayan, E.; Dung, N.H.; Viossat, B. Synthesis, crystal structures and IR spectra of isotypic pseudopolymorphs complexes of Zn(II) by indole-2-carboxylic acid and 2,9-dimethyl-1,10-phenanthroline with different solvates (DMA, DMF or DMSO). J. Mol. Struct. 2005, 741, 45–52. [Google Scholar] [CrossRef]
- Zhang, B.S.; Liu, Z.X.; Liu, L.H.; Pan, T.; Ye, S.F. Aqua bis(2,2′-bipyridine-κ2N,N’)(1H-indole-2-carboxyl ato-κ O)nickel(II) 1H-indole-2-carboxylate dihydrate. Acta Cryst. 2009, E65, 48–49. [Google Scholar] [CrossRef]
- Lynch, D.E.; Latif, T.; Smith, G.; Byriel, K.A.; Kennard, C.H.L. Molecular co-crystals of carboxylic acids, part 29. The effect of competitive interactions on adduct formation involving 2-aminopyrimidine: The crystal structure of the 1:1 adduct of 2-aminopyrimidine with indole-2-carboxylic acid. J. Chem. Crystallogr. 1997, 27, 567–575. [Google Scholar] [CrossRef]
- Lynch, D.E.; Mistry, N.; Smith, G.; Byriel, K.A.; Kennard, C.H.L. Molecular Cocrystals of Carboxylic Acids. XXXIII The Crystal Structure of the 1:1 Adduct of Indole-2-carboxylic Acid with 5-Nitroquinoline. Aust. J. Chem. 1998, 51, 813–818. [Google Scholar] [CrossRef]
- Lynch, D.E.; Smith, G.; Byriel, K.A.; Kennard, C.H.L. Designing Linear Hydrogen-Bonded Arrays by Using Substituted Charge-Transfer Complexes. The Crystal Structure of the 1:1 Adduct of Indole-2-carboxylic Acid with 3,5-Dinitrobenzoic Acid. Aust. J. Chem. 1998, 51, 1019–1024. [Google Scholar] [CrossRef]
- Lynch, D.E.; Chatwin, S.; Parsons, S. Designing polymeric hydrogen-bonded networks using 4,4-dipyridyl and aromatic carboxylic acids containing N–H substituents. Cryst. Eng. 1999, 2, 137–144. [Google Scholar] [CrossRef]
- Lynch, D.E.; Sandhu, P.; Parsons, S. 1:1 Molecular Complexes of 4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzene-sulfonamide (Sulfamethazine) with Indole-2-carboxylic Acid and 2,4-Dinitrobenzoic Acid. Aust. J. Chem. 2000, 53, 383–387. [Google Scholar] [CrossRef]
- Lynch, D.E.; Singh, M.; Parsons, S. Molecular cocrystals of 2-amino-5-chlorobenzooxazole. Cryst. Eng. 2000, 3, 71–79. [Google Scholar] [CrossRef]
- Adalder, T.K.; Sankolli, R.; Dastidar, P. Homo- or Heterosynthon? A Crystallographic Study on a Series of New Cocrystals Derived from Pyrazinecarboxamide and Various Carboxylic Acids Equipped with Additional Hydrogen Bonding Sites. Cryst. Growth Des. 2012, 12, 2533–2542. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlis PRO; Rigaku Oxford Diffraction Ltd.: Oxfordshire, UK, 2015. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2000, 53, 226–235. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Balabanov, N.B.; Peterson, K.A. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. J. Chem. Phys. 2005, 123, 64107. [Google Scholar] [CrossRef]
- Zapata Trujillo, J.C.; McKemmish, L.K. Model chemistry recommendations for scaled harmonic frequency calculations: A benchmark study. J. Phys. Chem. 2023, A127, 1715–1735. [Google Scholar] [CrossRef]
- Legler, C.R.; Brown, N.R.; Dunbar, R.A.; Harness, M.D.; Nguyen, K.; Oyewole, O.; Collier, W.B. Scaled Quantum Mechanical scale factors for vibrational calculations using alternate polarized and augmented basis sets with the B3LYP density functional calculation model. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 145, 15–24. [Google Scholar] [CrossRef]
- Chemcraft—Graphical Software for Visualization of Quantum Chemistrzy Computations. Version 1.8, Build 682. Available online: https://www.chemcraftprog.com (accessed on 27 February 2024).
D−H | H···A | D···A | D−H···A | |
---|---|---|---|---|
O2−H∙∙∙O1i, exp. | 1.07(4) | 1.56(4) | 2.630(3) | 175(3) |
Dimer *, calc. Ci | 1.00 | 1.64 | 2.64 | 180 |
Dimer **, calc. Ci | 1.00 | 1.65 | 2.64 | 179 |
Trimer *, calc. C1 | 1.00 | 1.63/1.65 | 2.63/2.65 | 178.7/179.6 |
N1−H1∙∙∙O3ii, exp. | 0.86 | 2.16 | 2.965(2) | 156 |
Trimer *, calc. C1 | 1.02 | 1.93 | 2.91 | 160 |
C6−H6∙∙∙O1iii, exp. | 0.93 | 2.57 | 3.416(3) | 151 |
Trimer *, calc. C1 | 1.09 | 2.34 | 3.40 | 164 |
FT-IR | a | Assignments b |
---|---|---|
3342 s | 3373 | ν(N1H) |
3082 m | 3077 | ν(C4H) |
3067 m | 3066 | ν(C6H), ν(C7H) |
3033 m | 3054 | ν(C7H), ν(C6H) |
2993 m | 3011 | ν(Me) |
2963 m | 2973 | ν(O2H) |
2940 m | 2947 | ν(Me) |
2835 m | 2876 | ν(Me) |
1676 vs | 1687 | ν(C0=O1) |
1629 m | 1635 | ν(R6) |
1587 w | 1583 | ν(R6) |
1542 vs | 1537 | ν(R5/R6), ν(C1C0) |
1497 w | 1491 | ν(R5/R6), δ(N1H) |
1472 w | 1451 | δ(Me) |
1460 m | 1446 | δ(Me) |
1452 m | 1435 | δ(Me) |
1434 s | 1431 | ν(R5/R6) |
1375 w | 1419 | δ(Me) |
1345 m | 1339 | ν(R5), δ(O2H) |
1300 w | 1282 | δ(R5/R6) |
1259 vs | 1252 | ν(C0O2), ν(R5/R6) |
1227 vs | 1217 | δ(C4H) |
1220 vs | 1205 | ν(C5O3), δ(O3C5), δ(R5/R6) |
1200 m | 1191 | δ(N1H), ν(R5/R6), ν(O3C5), δ(Me) |
1165 s | 1161 | δ(Me), ν(O3C9) |
1132 s | 1128 | δ(Me) |
1101 w | 1102 | δ(C6H), δ(C7H) |
1036 s | 1043 | ν(O3C9, ν(R6) |
978 w | 963 | ν(R5), δ(R5) |
940 w | 945 | δ(R6), ν(R6), ν(C5O3) |
911 br | 931 | γ(OH) |
838 m | 855 | γ(C6H), γ(C4H) |
825 s | 844 | δ(R5/R6) |
800 s | 806 | γ(C6H), γ(C7H) |
763 s | 766 | γ(C2H) |
732 s | 738 | δ(R5/R6), δ(COO) |
640 br | 698 | γ(N1H) |
618 m | 618 | δ(R5/R6), δ(COO) |
607 m | 613 | τ(R5/R6) |
576 m | 599 | τ(R5/R6) |
561 m | 573 | δ(COO) |
536 m | 535 | δ(C5O3C9) |
473 w | 458 | δ(C5O3) |
430 m | 433 | τ(R5/R6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak, J.; Bąkowicz, J.; Morzyk-Ociepa, B. Discovery of a New Polymorph of 5-Methoxy-1H-Indole-2-Carboxylic Acid: Characterization by X-ray Diffraction, Infrared Spectroscopy, and DFT Calculations. Molecules 2024, 29, 2201. https://doi.org/10.3390/molecules29102201
Polak J, Bąkowicz J, Morzyk-Ociepa B. Discovery of a New Polymorph of 5-Methoxy-1H-Indole-2-Carboxylic Acid: Characterization by X-ray Diffraction, Infrared Spectroscopy, and DFT Calculations. Molecules. 2024; 29(10):2201. https://doi.org/10.3390/molecules29102201
Chicago/Turabian StylePolak, Julia, Julia Bąkowicz, and Barbara Morzyk-Ociepa. 2024. "Discovery of a New Polymorph of 5-Methoxy-1H-Indole-2-Carboxylic Acid: Characterization by X-ray Diffraction, Infrared Spectroscopy, and DFT Calculations" Molecules 29, no. 10: 2201. https://doi.org/10.3390/molecules29102201
APA StylePolak, J., Bąkowicz, J., & Morzyk-Ociepa, B. (2024). Discovery of a New Polymorph of 5-Methoxy-1H-Indole-2-Carboxylic Acid: Characterization by X-ray Diffraction, Infrared Spectroscopy, and DFT Calculations. Molecules, 29(10), 2201. https://doi.org/10.3390/molecules29102201