Polyphenols vs. Caffeine in Coffee from Franchise Coffee Shops: Which Serving of Coffee Provides the Optimal Amount of This Compounds to the Body
Abstract
:1. Introduction
2. Results
2.1. Polyphenol Content per 100 mL of Coffee
2.2. Polyphenol Content per Coffee Serving
2.3. Caffeine Content per 100 mL of Coffee
2.4. Caffeine Content per Coffee Serving
2.5. Relationship between Polyphenol and Caffeine Content
3. Discussion
4. Materials and Methods
4.1. Study Material
4.2. Total Polyphenol Content Determination
4.3. Selected Phenolic Acid and Flavonol Content Determination
4.4. Caffeine Content Determination
4.5. Calculation of Polyphenol and Caffeine Content in a Coffee Serving
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carlström, M.; Larsson, S.C. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta analysis. Nutr. Rev. 2018, 76, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Wierzejska, R. Coffee consumption and cardiovascular diseases—Has the time come to change dietary advice? A mini review. Pol. J. Food Nutr. Sci. 2016, 66, 5–10. [Google Scholar] [CrossRef]
- Pauwels, E.K.J.; Volterrani, D. Coffee consumption and cancer risk: An assessment of the health implications based on recent knowledge. Med. Princ. Pract. 2021, 30, 401–411. [Google Scholar] [CrossRef]
- Socała, K.; Szopa, A.; Serefko, A.; Poleszak, E.; Wlaź, P. Neuroprotective effects of coffee bioactive compounds: A review. Int. J. Mol. Sci. 2021, 22, 107. [Google Scholar] [CrossRef] [PubMed]
- Wachamo, H.L. Review on health benefit and risk of coffee consumption. Med. Aromat. Plants 2017, 6, 4. [Google Scholar] [CrossRef]
- Olechno, E.; Puścion-Jakubik, A.; Zujko, M.E.; Socha, K. Influence of various factors on caffeine content in coffee brews. Foods 2021, 10, 1208. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority—EFSA. Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on the safety of caffeine. EFSA J. 2015, 13, 4102. [Google Scholar] [CrossRef]
- Reyes, C.M.; Cornelis, M.C. Caffeine in the diet: Country-level consumption and guidelines. Nutrients 2018, 10, 1772. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Kempf, K.; Martin, S. Health effects of coffee: Mechanism unraveled? Nutrients 2020, 12, 1842. [Google Scholar] [CrossRef]
- Rojas-González, A.; Figueroa-Hernández, C.Y.; González-Rios, O.; Suárez-Quiroz, M.L.; González-Amaro, R.M.; Hernández-Estrada, Z.J.; Rayas-Duarte, P. Coffee chlorogenic acids incorporation for bioactivity enhancement of foods: A review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef]
- Derossi, A.; Ricci, I.; Caporizzi, R.; Fiore, A.; Severini, C. How grinding level and brewing method (Espresso, American, Turkish) could affect the antioxidant activity and bioactive compounds in a coffee cup. J. Sci. Food Agric. 2018, 98, 3198–3207. [Google Scholar] [CrossRef]
- Górecki, M.; Hallmann, E. The antioxidant content of coffee and its in vitro activity as an effect of its production method and roasting and brewing time. Antioxidants 2020, 9, 308. [Google Scholar] [CrossRef]
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Emran, T.B.; Simal-Gandara, J. From plantation to cup: Changes in bioactive compounds during coffee processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef] [PubMed]
- Severini, C.; Derossi, A.; Ricci, I.; Caporizzi, R.; Fiore, A. Roasting conditions, grinding level and brewing method highly affect the healthy benefits of a coffee cup. Int. J. Clin. Nutr. Diet. 2018, 4, 127. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.S.; Kim, H.T.; Jeong, I.H.; Hong, S.R.; Oh, M.S.; Yoon, M.H.; Shim, J.H.; Jeong, J.H.; Abd El-Aty, A.M. Contents of chlorogenic acids and caffeine in various coffee-related products. J. Adv. Res. 2019, 17, 85–94. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority—EFSA. Scientific Opinion on the substantiation of a health claim related to caffeine and increased alertness pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2014, 12, 3574. [Google Scholar] [CrossRef]
- Ding, M.; Bhupathiraju, S.N.; Satija, A.; van Dam, R.M.; Hu, F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and dose-response meta-analysis of prospective cohort studies. Circulation 2014, 129, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Rehm, C.D.; Ratliff, J.C.; Riedt, C.S.; Drewnowski, A. Coffee consumption among adults in the United States by demographic variables and purchase location: Analyses of NHANES 2011–2016 Data. Nutrients 2020, 12, 2463. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Sahebkar, A.; Banach, M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol. Res. 2023, 187, 106596. [Google Scholar] [CrossRef]
- Poole, R.; Ewings, S.; Parkes, J.; Fallowfield, J.A.; Roderick, P. Misclassification of coffee consumption data and the development of a standardised coffee unit measure. BMJ Nutr. Prev. Health 2019, 2, 11–19. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Mena, P.; Calani, L.; Cid, C.; del Rio, D.; Lean, M.E.J.; Crozier, A. Variations in caffeine and chlorogenic acid contents of coffees: What are we drinking? Food Funct. 2014, 5, 1718–1726. [Google Scholar] [CrossRef]
- Lean, M.E.J.; Crozier, A. Coffee, caffeine and health: What’s in your cup? Maturitas 2012, 72, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K. Do coffee polyphenols have a preventive action on metabolic syndrome associated endothelial dysfunctions? An assessment of the current evidence. Antioxidants 2018, 7, 26. [Google Scholar] [CrossRef]
- Fukushima, Y.; Tashiro, T.; Kumagai, A.; Ohyanagi, H.; Horiuchi, T.; Takizawa, K.; Sugihara, N.; Kishimoto, Y.; Taguchi, C.; Tani, M.; et al. Coffee and beverages are the major contributors to polyphenol consumption from food and beverages in Japanese middle-aged women. J. Nutr. Sci. 2014, 3, e48. [Google Scholar] [CrossRef] [PubMed]
- Crozier, T.W.M.; Stalmach, A.; Lean, M.E.J.; Croizer, A. Espresso coffees, caffeine and chlorogenic acid intake: Potential health implications. Food Funct. 2012, 3, 30–33. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef]
- Liczbiński, P.; Bukowska, B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. Ind. Crops Prod. 2022, 175, 114265. [Google Scholar] [CrossRef] [PubMed]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef]
- Heckman, M.A.; Weil, J.; de Mejia, E.G. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 2010, 75, 77–87. [Google Scholar] [CrossRef]
- Jee, H.J.; Lee, S.G.; Bormate, K.J.; Jung, Y. Effect of caffeine consumption on the risk for neurological and psychiatric disorders: Sex differences in human. Nutrients 2020, 12, 3080. [Google Scholar] [CrossRef]
- Higdon, J.V.; Frei, B. Coffee and health: A review of recent human research. Crit. Rev. Food Sci. Nutr. 2006, 46, 101–123. [Google Scholar] [CrossRef] [PubMed]
- Balat, O.; Balat, A.; Ugur, M.G.; Pençe, S. The effect of smoking and caffeine on the fetus and placenta in pregnancy. Clin. Exp. Obstet. Gynecol. 2003, 30, 57–59. [Google Scholar] [PubMed]
- Addicott, M.A.; Yang, L.L.; Peiffer, A.M.; Burnett, L.R.; Burdette, J.H.; Chen, M.Y.; Hayasaka, S.; Kraft, R.A.; Maldjian, J.A.; Laurienti, P.J. The effect of daily caffeine use on cerebral blood flow: How much caffeine can we tolerate? Hum. Brain Mapp. 2009, 30, 3102–3114. [Google Scholar] [CrossRef] [PubMed]
- McCusker, R.R.; Goldberger, B.A.; Cone, E.J. Caffeine content of specialty coffees. J. Anal. Toxicol. 2003, 27, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A. Effects of coffee/caffeine on brain health and disease: What should I tell my patients? Pract. Neurol. 2016, 16, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk-Bębenek, E.; Piórecka, B.; Kopytko, M.; Chadzińska, Z.; Jagielski, P.; Schlegel-Zawadzka, M. Evaluation of caffeine consumption among pregnant women from southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 2373. [Google Scholar] [CrossRef] [PubMed]
- Lamy, S.; Houivet, E.; Benichou, J.; Marret, S.; Thibaut, F. Caffeine use during pregnancy: Prevalence of use and newborn consequences in a cohort of French pregnant women. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 941–950. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.H.; DiNicolantonio, J.J.; Lavie, C.J. Coffee for cardioprotection and longevity. Prog. Cardiovasc. Dis. 2018, 61, 38–42. [Google Scholar] [CrossRef] [PubMed]
- USDA Food Composition Databases. Available online: https://fdc.nal.usda.gov/fdc-app.html#/?query=ndbNumber:14209 (accessed on 4 July 2019).
- van Dam, R.M.; Hu, F.B.; Willett, W.C. Coffee, caffeine, and health. N. Engl. J. Med. 2020, 383, 369–378. [Google Scholar] [CrossRef]
- Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the U.S. Food Chem. Toxicol. 2014, 63, 136–142. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Farinetti, A. Espresso coffee, caffeine and colon cancer. World J. Gastrointest. Oncol. 2020, 12, 601–603. [Google Scholar] [CrossRef] [PubMed]
- Sengpiel, V.; Elind, E.; Bacelis, J.; Nilsson, S.; Grove, J.; Myhre, R.; Haugen, M.; Meltzer, H.M.; Alexander, J.; Jacobsson, B.; et al. Maternal caffeine intake during pregnancy is associated with birth weight but not with gestational length: Results from a large prospective observational cohort study. BMC Med. 2013, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Wierzejska, R. Can coffee consumption lower the risk of Alzheimer’s disease and Parkinson’s disease? A literature review. Arch. Med. Sci. 2017, 13, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Czarniecka-Skubina, E.; Pielak, M.; Sałek, P.; Korzeniowska-Ginter, R.; Owczarek, T. Consumer choices and habits related to coffee consumption by Poles. Int. J. Environ. Res. Public Health 2021, 18, 3948. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Król, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The effect of roasting, storage, origin on the bioactive compounds in organic and conventional coffee (Caffea arabica). Eur. Food Res. Technol. 2019, 246, 33–39. [Google Scholar] [CrossRef]
- Gielecińska, I.; Cendrowski, A.; Mojska, H. Opracowanie i walidacja metody oznaczania zawartości kofeiny w napojach bezalkoholowych techniką HPLC-DAD. Żyw. Człow. Metabol. 2017, 44, 61–76. [Google Scholar]
- European Standard EN ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. CEN-CENELEC: Brussels, Belgium, 2017.
Components | Coffee Brew | p-Value | ||||
---|---|---|---|---|---|---|
Espresso | Caffè latte/Latte Macchiato | Cappuccino | Americano | Ice Latte/Latte Frappe | ||
total polyphenols | 232.9 ± 63.9 c (114.3–343.1) | 62.3 ± 10.8 ab (42.1–77.5) | 66.9 ± 10.8 ab (51.9–85.8) | 101.3 ± 45.2 b (46.0–194.1) | 43.3 ± 16.2 a (21.3–72.9) | <0.005 |
gallic acid | 56.3 ± 27.6 b (16.0–108.7) | 33.8 ± 20.0 bc (2.3–74.9) | 3.3 ± 1.4 a (1.8–5.2) | 47.0 ± 47.6 b (1.8–128.6) | 5.0 ± 4.3 ac (1.4–13.2) | <0.05 |
chlorogenic acid | 45.6 ± 19.2 b (13.3–72.2) | 4.9 ± 2.2 a (2.2–8.7) | 14.4 ± 11.0 b (1.3–33.4) | 43.8 ± 25.7 b (13.5–92.1) | 5.6 ± 2.0 a (2.5–8.6) | <0.0001 |
caffeic acid | 3.10 ± 1.79 b (0.34–5.46) | 0.24 ± 0.17 a (0.08–0.65) | 0.21 ± 0.10 a (0.10–0.40) | 0.64 ± 0.54 a (0.09–1.60) | 0.09 ± 0.09 a (0.02–0.26) | <0.0001 |
salicylic acid | 1.23 ± 1.42 (0.08–4.99) | 0.31 ± 0.32 (0.12–1.23) | 0.68 ± 0.92 (0.08–2.80) | 1.40 ± 1.50 (0.09–5.70) | 0.24 ± 0.16 (0.08–0.60) | n.s. |
epigallocatechin | 0.67 ± 0.89 b (0.01–2.15) | 0.07 ± 0.04 a (0.02–0.14) | 0.09 ± 0.07 a (0.01–0.28) | 0.75 ± 0.36 b (0.36–1.57) | 0.06 ± 0.03 a (0.01–0.10) | <0.05 |
quercetin-3-O-rutinoside | 0.15 ± 0.06 b (0.04–0.24) | 0.05 ± 0.02 a (0.03–0.09) | 0.08 ± 0.06 ab (0.02–0.23) | 0.23 ± 0.11 c (0.12–0.48) | 0.05 ± 0.02 a (0.02–0.09) | <0.05 |
kaempferol-3-O-glucoside | 0.28 ± 0.17 (0.12–0.73) | 0.33 ± 0.20 (0.09–0.58) | 0.28 ± 0.77 (0.10–0.22) | 0.27 ± 0.20 (0.12–0.82) | 0.43 ± 0.21 (0.10–0.78) | n.s. |
quercetin | 0.05 ± 0.01 (0.03–0.06) | 0.05 ± 0.01 (0.03–0.07) | 0.05 ± 0.02 (0.03–0.10) | 0.05 ± 0.01 (0.03–0.07) | 0.05 ± 0.01 (0.03–0.07) | n.s. |
quercetin-3-O-glucoside | 5.95 ± 2.92 b (1.03–11.20) | 4.69 ± 3.06 ab (1.39–9.06) | 2.75 ± 0.88 a (1.52–4.01) | 3.05 ± 1.85 ab (1.33–7.63) | 4.46 ± 3.92 ab (0.85–11.03) | <0.05 |
kaempferol | 1.64 ± 1.02 (0.63–3.76) | 1.26 ± 1.03 (0.60–4.31) | 1.38 ± 1.06 (0.53–4.31) | 1.57 ± 0.86 (0.62–2.87) | 1.14 ± 0.73 (0.53–2.62) | n.s. |
caffeine | 198.6 ± 68.3 b (109.9–370.4) | 48.0 ± 16.7 a (20.5–88.9) | 52.3 ± 17.5 a (27.1–96.7) | 55.5 ± 26.9 a (33.2–133.6) | 43.9 ± 14.2 a (21.8–70.6) | <0.0001 |
Components | Type of Coffee | p-Value | ||||
---|---|---|---|---|---|---|
Espresso | Caffè Latte/Latte Macchiato | Cappuccino | Americano | Ice Latte/Latte Frappe | ||
caffeine/total polyphenols | 0.65 ± 0.19 a (0.32–0.96) | 0.99 ± 0.48 ab (0.40–2.11) | 0.78 ± 0.39 ab (0.32–1.81) | 0.56 ± 0.34 a (0.21–1.37) | 1.17 ± 0.42 b (0.49–1.85) | <0.05 |
caffeine/chlorogenic acid | 4.3 ± 3.5 ab (1.8–13.4) | 14.8 ± 10.1 c (3.6–39.5) | 8.4 ± 9.4 ac (1.1–32.0) | 1.5 ± 1.0 a (0.4–3.6) | 9.2 ± 3.7 bc (3.7–14.6) | <0.05 |
caffeine/gallic acid | 3.4 ± 2.1 a (1.5–6.9) | 2.9 ± 3.4 a (1.0–13.6) | 18.2 ± 11.3 b (7.5–46.0) | 5.0 ± 9.5 a (0.3–34.3) | 15.7 ± 10.4 b (3.2–29.9) | <0.05 |
Time (min) | Flow (mg/mL) | % A | % B |
---|---|---|---|
Initial | 1.00 | 95 | 5 |
23 | 1.00 | 50 | 50 |
28 | 1.00 | 80 | 20 |
29 | 1.00 | 95 | 5 |
Total runtime: 38 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzejska, R.E.; Gielecińska, I.; Hallmann, E.; Wojda, B. Polyphenols vs. Caffeine in Coffee from Franchise Coffee Shops: Which Serving of Coffee Provides the Optimal Amount of This Compounds to the Body. Molecules 2024, 29, 2231. https://doi.org/10.3390/molecules29102231
Wierzejska RE, Gielecińska I, Hallmann E, Wojda B. Polyphenols vs. Caffeine in Coffee from Franchise Coffee Shops: Which Serving of Coffee Provides the Optimal Amount of This Compounds to the Body. Molecules. 2024; 29(10):2231. https://doi.org/10.3390/molecules29102231
Chicago/Turabian StyleWierzejska, Regina Ewa, Iwona Gielecińska, Ewelina Hallmann, and Barbara Wojda. 2024. "Polyphenols vs. Caffeine in Coffee from Franchise Coffee Shops: Which Serving of Coffee Provides the Optimal Amount of This Compounds to the Body" Molecules 29, no. 10: 2231. https://doi.org/10.3390/molecules29102231
APA StyleWierzejska, R. E., Gielecińska, I., Hallmann, E., & Wojda, B. (2024). Polyphenols vs. Caffeine in Coffee from Franchise Coffee Shops: Which Serving of Coffee Provides the Optimal Amount of This Compounds to the Body. Molecules, 29(10), 2231. https://doi.org/10.3390/molecules29102231