Decabromodifenyl Ether (BDE-209) in Surface Soils from Warsaw and Surrounding Areas: Characterization of Non-Carcinogenic Risk Associated with Oral and Dermal Exposure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Levels of BDE-209 in Surface Soils
2.2. Non Carcinogenic Human Health Risk Characterization
3. Material and Methods
3.1. Sample Collection
3.2. Standard, Reagents, and Chemicals
3.3. Analytical Method
3.4. Results of Validation of the Analytical Method Used for Analysing BDE-209
3.5. BDE-209 Levels, Exposure Estimation, and Non-Carcinogenic Human Risk Characterization
3.6. Literature Review
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klinčić, D.; Dvoršćak, M.; Jagić, K.; Mendaš, G.; Herceg, R.S. Levels and distribution of polybrominated diphenyl ethers in humans and environmental compartments: A comprehensive review of the last five years of research. Environ. Sci. Pollut. Res. 2020, 27, 5744–5758. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.-N.; Hu, P.; Macdonald, R.; Kannan, K.; Nikolaev, A.; Li, Y.F. Modeling gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in the atmosphere. A review. Sci. Total Environ. 2020, 729, 138962. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.J.; Ball, A.S.; Clarke, B.O. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles. Environ. Pollut. 2017, 230, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2019/1021; European Parliament and of the Council. Official Journal of the European Union: Brussels, Belgium, 2019.
- Ohajinwa, C.M.; van Bodegom, P.M.; Xie, Q.; Chen, J.; Vijver, M.G.; Osibanjo, O.O.; Peijnenburg, W.J.G.M. Hydrophobic Organic Pollutants in Soils and Dusts at Electronic Waste Recycling Sites: Occurrence and Possible Impacts of Polybrominated Diphenyl Ethers. Int. J. Environ. Res. Public Health 2019, 16, 360. [Google Scholar] [CrossRef] [PubMed]
- Oloruntoba, K.; Sindiku, O.; Osibanjo, O.; Balan, S.; Weber, R. Polybrominated diphenyl ethers (PBDEs) in chicken eggs and cow milk around municipal dumpsites in Abuja, Nigeria. Ecotox. Environ. Safe 2019, 179, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Oloruntoba, K.; Sindiku, O.; Osibanjo, O.; Herold, C.; Weber, R. Polybrominated diphenyl ethers (PBDEs) concentrations in soil and plants around municipal dumpsites in Abuja, Nigeria. Environ. Pollut. 2021, 277, 116794. [Google Scholar] [CrossRef] [PubMed]
- Rigby, H.; Acker, S.; Dowding, A.; Fernandes, A.; Humphries, D.; Petch, R.G.; Rautiu, R.; Reynolds, C.K.; Rose, M.; Smith, S.R. The physico-chemical properties and concentrations of organic contaminants in waste materials recycled in agriculture. In Proceedings of the Tinos 2015 3rd International Conference on Sustainable Solid Waste Management, Tinos Island, Greece, 2–4 July 2015; Available online: https://spiral.imperial.ac.uk/handle/10044/1/56507 (accessed on 23 March 2024).
- Rigby, H.; Dowding, A.; Fernandes, A.; Humphries, D.; Jones, N.R.; Lake, I.; Petch, R.G.; Reynolds, C.K.; Rose, M.; Smith, S.R. Concentrations of organic contaminants in industrial and municipal bioresources recycled in agriculture in the UK. Sci. Total Environ. 2021, 765, 142787. [Google Scholar] [CrossRef] [PubMed]
- Aretoulaki, E.; Ponis, S.; Plakas, G.; Agalianos, K. A systematic meta-review analysis of review papers in the marine plastic pollution literature. Mar. Pollut. Bull. 2020, 161, 111690. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.-S.; Wu, Y.-S.; Nagandran, S.; Batumalaie, K.; et al. Microplastic sources, formation, toxicity and remediation: A review. Environ. Chem. Lett. 2023, 21, 2129–2169. [Google Scholar] [CrossRef] [PubMed]
- Directive 2003/11/EC; European Parliament and of the Council. Official Journal of the European Union: Brussels, Belgium, 2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0011 (accessed on 15 May 2024).
- Commission regulation (EU) 2017/227; Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Bis(pentabromophenyl)ether. Official Journal of the European Union: Brussels, Belgium, 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0227 (accessed on 15 May 2024).
- The Stockholm Convention on Persistent Organic Pollutants. UNEP/POPS/COP.4/38 Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Fourth Meeting. 2009. Available online: https://chm.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP4/tabid/404/mctl/ViewDetails/EventModID/870/EventID/23/xmid/1673/Default.aspx (accessed on 15 May 2024).
- The Stockholm Convention on Persistent Organic Pollutants, UNEP/POPS/COP.8/32 Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Eight Meeting. 2017. Available online: https://chm.pops.int/theconvention/conferenceoftheparties/meetings/cop8/tabid/5309/default.aspx (accessed on 15 May 2024).
- Sharkey, M.; Harrad, S.; Abdallah, M.A.-E.; Drage, D.S.; Berresheim, H. Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide. Environ. Int. 2020, 144, 106041. [Google Scholar] [CrossRef]
- EFSA Scientific Committee. Scientific Opinion. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J. 2024, 22, e8497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yao, Y.; Wang, Y.; Zhang, Q.; Cheng, Z.; Li, Y.; Yang, X.; Wang, L.; Sun, H. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review. Environ. Pollut. 2021, 288, 117742. [Google Scholar] [CrossRef] [PubMed]
- Dobslaw, D.; Woiski, C.; Kiel, M.; Kuch, B.; Breuer, J. Plant uptake, translocation and metabolism of PBDEs in plants of food and feed industry. Rev. Environ. Sci. Biotechnol. 2021, 20, 75–142. [Google Scholar] [CrossRef]
- Zhao, P.; Ye, Q.; Yu, K.; Whalen, J.K.; Kumar, R.R.; Cheng, X.; Delgado-Moreno, L.; Wang, W. Uptake and transformation of decabromodiphenyl ether in different rice cultivars: Evidence from a carbon-14 study. Sci. Total Environ. 2020, 704, 135398. [Google Scholar] [CrossRef] [PubMed]
- The Stockholm Convention on Persistent Organic Pollutants. UNEP/POPS/POPRC.10/10/Add.2. Risk Profile on Decabromodiphenyl Ether (Commercial Mixture, c-decaBDE). 2014. Available online: https://www.pops.int/DNNADMIN/DataEntry/MandeepsHiddenModules/POPsChemicalsMandeeps/tabid/754/Default.aspx (accessed on 16 April 2024).
- Zhang, Y.; Zhang, H.; Yan, K.; You, Q.; Zeng, S.; Wu, Y.; Chen, F.; Chen, J.; Xu, J.; Wang, H. The Spatial Distribution and Potential Risk Assessment of POPs in Farmland around a Typical E-Waste Dismantling Site. Arch. Environ. Contam. Toxicol. 2023, 84, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; He, C.; Han, W.; Song, J.; Li, H.; Zhang, Y.; Jing, X.; Wu, W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. Environ. Res. 2020, 187, 109531. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.S.; Notz, W.I.; Flinger, M.A. The Basic Practice of Statistics, 6th ed.; W. H. Freeman and Company: New York, NY, USA, 2013. [Google Scholar]
- Korcz, W.; Struciński, P.; Góralczyk, K.; Hernik, A.; Łyczewska, M.; Matuszak, M.; Czaja, K.; Minorczyk, M.; Ludwicki, J.K. Levels of polybrominated diphenyl ethers in house dust in Central Poland. Indoor Air 2017, 27, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Korcz, W.; Czaja, K.; Liszewska, M.; Buckley, B.; Hernik, A.; Lewiński, R.; Słomczyńska, A.; Struciński, P. Occurrence of PBDEs in car and airplane dust in Poland—Exposure assessment and health risk characterization for selected age ranges. Ann. Agric. Environ. Med. 2023. [Google Scholar] [CrossRef]
- McGrath, T.J.; Morrison, P.D.; Ball, A.S.; Clarke, B.O. Spatial Distribution of Novel and Legacy Brominated Flame Retardants in Soils Surrounding Two Australian Electronic Waste Recycling Facilities. Environ. Sci. Technol. 2018, 52, 8194–8204. [Google Scholar] [CrossRef]
- Cristale, J.; Aragão Belé, T.G.; Lacorte, S.; de Marchi, M.R.R. Occurrence of flame retardants in landfills: A case study in Brazil. Environ. Res 2019, 168, 420–427. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, A.; Li, H.; Peng, Y.; Lou, X.; Liu, M.; Hu, J.; Liu, C.; Wei, B.; Jin, J. Concentrations and distributions of polybrominated diphenyl ethers (PBDEs) in surface soils and tree bark in Inner Mongolia, northern China, and the risks posed to humans. Chemosphere 2020, 247, 125950. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Zhong, L.; Gu, W.; Liang, M.; Wang, L.; Wang, Z.; Shi, L.; Sun, S. Occurrence and accumulation characteristics of legacy and novel brominated flame retardants in surface soil and river sediments from the downstream of Chuhe River basin, East China. Environ. Sci. Pollut. Res. Int. 2023, 30, 97416–97425. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Qian, W.; Li, J.; Zhang, X.; He, J.; Kong, D. Polybrominated diphenyl ethers (PBDEs) in soil and dust from plastic production and surrounding areas in eastern of China. Environ. Geochem. Health 2019, 41, 2315–2327. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Corella, P.; Ren, Z.-H.; Liu, Y.-E.; Rigol, A.; Lacorte, S.; Luo, X.-J. Presence of novel and legacy flame retardants and other pollutants in an e-waste site in China and associated risks. Environ. Res 2023, 216, 114768. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, A.; Neugebauer, F.; Lohmann, N.; Rüdel, H.; Teubner, D.; Grotti, M.; Rauert, C.; Koschorreck, J. Recent findings of halogenated flame retardants (HFR) in the German and Polar environment. Environ. Pollut. 2019, 253, 850–863. [Google Scholar] [CrossRef] [PubMed]
- Moeckel, C.; Breivik, K.; Nøst, T.H.; Sankoh, A.; Jones, K.C.; Sweetman, A. Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies. Environ. Int. 2020, 137, 105563. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-W.; Kim, C.-S.; Kim, H.-J.; Lee, C.-H.; Hwang, S.-M.; Choi, S.-D. Spatial distribution, source identification, and anthropogenic effects of brominated flame retardants in nationwide soil collected from South Korea. Environ. Pollut. 2021, 272, 116026. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.-H.; Ou, M.-H.; Wu, T.-Y.; Chen, D.-Y.; Shih, Y.-H. Temporal and spatial surveys of polybromodiphenyl ethers (PBDEs) contamination of soil near a factory using PBDEs in northern Taiwan. Chemosphere 2019, 236, 124117. [Google Scholar] [CrossRef]
- Rauert, C.; Lazarov, B.; Harrad, S.; Covaci, A.; Stranger, M. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants. Atmos. Environ. 2014, 82, 44–55. [Google Scholar] [CrossRef]
- Webster, T.F.; Harrad, S.; Millette, J.R.; Holbrook, R.D.; Davis, J.M.; Stapleton, H.M.; Allen, J.G.; McClean, M.D.; Ibarra, C.; Abdallah, M.A.-E.; et al. Identifying transfer mechanisms and sources of decabromodiphenyl ether (BDE 209) in indoor environments using environmental forensic microscopy. Environ. Sci. Technol. 2009, 43, 3067–3072. [Google Scholar] [CrossRef]
- Ge, X.; Ma, S.; Zhang, X.; Yang, Y.; Li, G.; Yu, Y. Halogenated and organophosphorous flame retardants in surface soils from an e-waste dismantling park and its surrounding area: Distributions, sources, and human health risks. Environ. Int. 2020, 139, 105741. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Yang, L.; Yang, S.; Wang, Y.; Shi, L.; Aamir, M.; Liu, W. Legacy and novel brominated flame retardants in agricultural soils of eastern China (2011–2021): Concentration level, temporal trend, and health risk assessment. J. Hazard. Mater. 2023, 446, 130631. [Google Scholar] [CrossRef] [PubMed]
- Korcz, W.; Struciński, P.; Góralczyk, K.; Hernik, A.; Łyczewska, M.; Czaja, K.; Matuszak, M.; Minorczyk, M.; Ludwicki, J.K. Development and validation of a method for determination of selected polybrominated diphenyl ether congeners in household dust. Rocz. Panstw. Zakl. Hig. 2014, 65, 93–100. [Google Scholar] [PubMed]
- European Food Safety Authority (EFSA). Use of Cut-Off Values on the Limits of Quantification Reported in Datasets Used to Estimate Dietary Exposure to Chemical Contaminants; EFSA: Parma, Italy, 2018. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Update for Chapter 5 of the Exposure Factors Handbook, Soil and Dust Ingestion. 2017. Available online: https://www.epa.gov/sites/default/files/2018-01/documents/efh-chapter05_2017.pdf (accessed on 16 April 2024).
- European Food Safety Authority (EFSA). Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J. 2012, 10, 2579. [Google Scholar] [CrossRef]
- Ohajinwa, C.M.; van Bodegom, P.M.; Osibanjo, O.; Xie, Q.; Chen, J.; Vijver, M.G.; Peijnenburg, W.J.G.M. Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites. Int. J. Environ. Res. Public Health 2019, 16, 906. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Chapter 7 of the Exposure Factors Handbook, Dermal Exposure Factors. 2011. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/efh-chapter07.pdf (accessed on 16 April 2024).
- European Food Safety Authority (EFSA). Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment of plant protection products. EFSA J. 2022, 20, 7032. [CrossRef]
- Ludwicki, J.K.; Góralczyk, K.; Struciński, P.; Wojtyniak, B.; Rabczenko, D.; Toft, G.; Lindh, C.H.; Jönsson, B.A.; Lenters, V.; Heederik, D.; et al. Hazard quotient profiles used as a risk assessment tool for PFOS and PFOA serum levels in three distinctive European populations. Environ. Int. 2015, 74, 112–118. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Toxicological Review of Decabromodiphenyl Ether (BDE-209) (CAS No. 1163-19-5) in Support of Summary Information on the Integrated Risk Information System (IRIS). 2008. Available online: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0035tr.pdf (accessed on 16 April 2024).
- Agency for Toxic Substances and Disease Registry (ATSDR). Public Health Assessment Guidance Manual. Atlanta: US Department of Health and Human Services, 2022. Available online: https://www.atsdr.cdc.gov/pha-guidance/index.html (accessed on 16 April 2024).
Statistics | BDE-209 |
---|---|
Median | 1.0 [ng g−1 d.w.] |
Mean | 8.9 [ng g−1 d.w.] |
First quartile | 0.4 [ng g−1 d.w.] |
Third quartile | 5.7 [ng g−1 d.w.] |
95th percentile | 29.3 [ng g−1 d.w.] |
Skewness | 5 |
Kurtosis | 31 |
Country | Details on Sampling Site | N | Mean | Median | Min | Max | Reference |
---|---|---|---|---|---|---|---|
[ng g−1 d.w.] | |||||||
Australia | The vicinity of an e-waste recycling facility | 18 | 6000 | 160 | <17 | 98,000 | [27] |
Inner-city urban parkland | 8 | 19 | 20 | ND * | 43 | [27] | |
Brazil | Landfill | 7 | 110 | 4.9 | ND | 715 | [28] |
China | Steel production site | 7 | 13.1 | - | 1.59 | 64.3 | [29] |
Agriculture area | 6 | 1.4 | - | 0.505 | 3.97 | [29] | |
Downstream of Chuhe river | 15 | - | 0.32 | ND | 41.4 | [30] | |
Neighbourhood of plastic production manufacture | 30 | 42.8 | - | 2.21 | 400 | [31] | |
Neighbourhood of e-waste recycling facility | 4 | 1500 | 1440 | 30 | 3100 | [32] | |
The vicinity of an abandoned E-waste dismantling facility | 253 | 25.39 | 19.77 | ND | 857.72 | [22] | |
Germany | Leipzig conurbation | 4 | 0.69 | - | ND | 1.57 | [33] |
Ghana | e-waste processing and dumping site | 15 | 1600 | - | ND | 8800 | [34] |
Korea | Suburban sites | 24 | 2.52 | - | 0.6 | 10.6 | [35] |
Urban sites | 24 | 10 | - | 0.6 | 94.9 | [35] | |
Industrial sites | 13 | 916 | - | 0.6 | 11,318 | [35] | |
Sierra Leone | General waste site | 10 | 23 | - | ND | 87 | [34] |
Taiwan | Neighbourhood of plastic production manufacture | 15 | 1772 | 604 | 130 | 5430 | [36] |
Poland | Warsaw and surroundings | 40 | 8.9 | 1.0 | <0.4 | 158 | This study |
Results | |
---|---|
Oral intake (low exposure scenario) | 6.25 × 10−10 mg kg−1 b.w. |
Oral intake (high exposure scenario) | 5.5 × 10−8 mg kg−1 b.w. |
Dermal intake (low exposure scenario) | 3.2 × 10−6 mg kg−1 b.w. |
Dermal intake (high exposure scenario) | 1.1 × 10−4 mg kg−1 b.w. |
HQ (oral; low exposure scenario) | 1 × 10−7 |
HQ (oral; high exposure scenario) | 7.9 × 10−6 |
HQ (dermal; low exposure scenario) | 4.6 × 10−4 |
HQ (dermal; high exposure scenario) | 1.5 × 10−2 |
Settings 1 | |
---|---|
Column | DB-XLB (15 m × 0.25 mm i.d. and film thickness 0.1 µm) |
Oven temperature program | 120 °C (1 min)–30 °C min−1–300 °C (8 min) |
Flow mode | Ramp flow |
Carrier gas flow ramp program | 1.5 mL min−1 (7 min)–15 mL min−1–3 mL min−1 |
PTV injector | “solvent vent mode”, ramp temperature program: 40 °C (0.3 min)–700 °C min−1–285 °C (3 min) |
Injection volume | 1 μL |
Carrier gas | helium |
Makeup (nitrogen) | 30 mL min−1 |
Detector temperature | 335 °C |
Settings 1 | |
---|---|
Column | Rtx-1614 (15 m × 0.25 mm i.d. and film thickness 0.1 µm) |
Oven temperature program | 120 °C (1.5 min)–15 °C min−1–300 °C–5 °C min−1–310 °C (4 min) |
Flow mode | Constant flow |
Carrier gas flow | 2.2 mL min−1 |
PTV injector | “solvent vent mode”, ramp temperature program: 40 °C (1.5 min)–700 °C min−1–400 °C (3 min) |
Injection volume | 3 × 1 μL (delay 10 s) |
Carrier gas | helium |
Makeup (nitrogen) | 30 mL min−1 |
Detector temperature | 345 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korcz, W.; Czaja, K.; Liszewska, M.; Lewiński, R.; Słomczyńska, A.; Struciński, P. Decabromodifenyl Ether (BDE-209) in Surface Soils from Warsaw and Surrounding Areas: Characterization of Non-Carcinogenic Risk Associated with Oral and Dermal Exposure. Molecules 2024, 29, 2335. https://doi.org/10.3390/molecules29102335
Korcz W, Czaja K, Liszewska M, Lewiński R, Słomczyńska A, Struciński P. Decabromodifenyl Ether (BDE-209) in Surface Soils from Warsaw and Surrounding Areas: Characterization of Non-Carcinogenic Risk Associated with Oral and Dermal Exposure. Molecules. 2024; 29(10):2335. https://doi.org/10.3390/molecules29102335
Chicago/Turabian StyleKorcz, Wojciech, Katarzyna Czaja, Monika Liszewska, Radosław Lewiński, Anna Słomczyńska, and Paweł Struciński. 2024. "Decabromodifenyl Ether (BDE-209) in Surface Soils from Warsaw and Surrounding Areas: Characterization of Non-Carcinogenic Risk Associated with Oral and Dermal Exposure" Molecules 29, no. 10: 2335. https://doi.org/10.3390/molecules29102335
APA StyleKorcz, W., Czaja, K., Liszewska, M., Lewiński, R., Słomczyńska, A., & Struciński, P. (2024). Decabromodifenyl Ether (BDE-209) in Surface Soils from Warsaw and Surrounding Areas: Characterization of Non-Carcinogenic Risk Associated with Oral and Dermal Exposure. Molecules, 29(10), 2335. https://doi.org/10.3390/molecules29102335