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Abstract: Polybrominated diphenyl ethers (PBDEs) have been used for many years as flame retardants.
Due to their physicochemical and toxicological properties, they are considered to be persistent organic
pollutants (POPs). BDE-209 is the main component of deca-BDE, the one PBDE commercial mixture
currently approved for use in the European Union. The aim of this study was to analyse BDE-209 in
surface soil samples from Warsaw and surrounding areas (Poland) as an indicator of environmental
pollution with PBDEs, and to characterise the associated health risk. A total of 40 samples were
analysed using gas chromatography with electron capture detection (GC-µECD). Concentrations
of BDE-209 in soil ranged from 0.4 ng g−1 d.w. (limit of quantification) to 158 ng g−1 d.w. Overall,
52.5% of results were above the method’s limit of quantification. The highest levels were found
at several locations with heavy traffic and in the vicinity of a CHP plant in the city. The lowest
concentrations were observed in most of the samples collected from low industrialized or green
areas (<0.4 to 1.68 ng g−1 d.w.). Exposure to BDE-209 was estimated for one of the most sensitive
populations, i.e., young children. The following exposure routes were selected: oral and dermal. No
risk was found to young children’s health.

Keywords: polybrominated diphenyl ethers; surface soil; oral and dermal intake; non-carcinogenic
health risk

1. Introduction

Polybrominated diphenyl ethers (PBDEs) have been used for many years as flame
retardants. They were added to many consumer products such as textiles, furniture, plastic
products, and electronic equipment. PBDEs are highly persistent in the environment. They
can bioconcentrate in animal and human tissue as well as being able to biomagnify in food
webs. Furthermore, due to their ability to be transported over long distances, e.g., in dust,
they are widespread in the environment [1–3]. Therefore, these compounds are considered
persistent organic pollutants (POPs) [4].

The main sources of emissions of these compounds are equipment containing PBDEs
(e.g., plastics, electronics and textiles) and landfills (containing electronic and electrical
waste and plastic waste), from which these compounds are released into the environment,
among other sources, as a result of photodegradation, abrasion, incineration and waste
treatment, and leakage into surface and groundwater [3–7]. The use of municipal sewage
sludge containing PBDEs as fertilizer can also lead to additional environment pollution [8,9].
Additionally, the increasing prevalence of plastics in the marine environment impacts the
problem of pollution [10,11].

The use of PBDEs has been restricted by international regulations such as Directive 2003/
11/EC on the restriction of the use of hazardous substances in the European Union [4,12,13]
and the Stockholm Convention on Persistent Organic Pollutants (POPs) [14–16]. Despite
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these limitations, these compounds are still detected in samples from various elements
of the environment and in food [17]. Plants can absorb PBDEs from soil and water, and
thus cause food contamination [18–20]. The deca-BDE is currently the only flame-retardant
PBDE commercial mixture approved for use in the European Union. It consists mainly
(up to 97%) of the decabromodiphenyl ether (BDE-209) [21]. BDE-209 is also the dominant
congener found in soil samples [17,22].

The main routes of human exposure to PBDEs are oral intake via food and dust,
inhalation, and dermal absorption. Exposure resulting from the intake of these compounds
by inhalation and dermal absorption is much lower than that from ingestion.

PBDEs intake may pose a risk to human health. In animal studies, many adverse
effects were observed. It has been shown that these compounds disrupt the hormonal
balance of mammals and have neurotoxic effects. They may cause reproductive disorders
in vertebrates. Furthermore, they cause damage related to oxidative stress in various
organs [17,23]. The aim of this study was to analyse BDE-209 congener in soil samples
from Warsaw and surrounding areas (Poland) as an indicator of environmental pollution
with polybrominated diphenyl ethers. The next goal was to characterise the health risks
associated with dermal and oral exposure.

2. Results and Discussion
2.1. Levels of BDE-209 in Surface Soils

Concentrations of BDE-209 in soil obtained in this study from Warsaw and the sur-
rounding area ranged from 0.4 ng g−1 d.w. (limit of quantification, LOQ) to 158 ng g−1 d.w.
In total, 52.5% were above the LOQ. The mean was 8.9 ng g−1 d.w., and the median was
1.0 ng g−1 d.w. (Table 1).

Table 1. Statistical parameters of the analytical results of BDE-209 concentrations in soil samples from
Warsaw and the surrounding areas.

Statistics BDE-209

Median 1.0 [ng g−1 d.w.]
Mean 8.9 [ng g−1 d.w.]

First quartile 0.4 [ng g−1 d.w.]
Third quartile 5.7 [ng g−1 d.w.]
95th percentile 29.3 [ng g−1 d.w.]

Skewness 5
Kurtosis 31

Furthermore, the median was lower than the mean, which is typical for right-skewed
distribution [24]. Results found in this study were lower than those analysed in earlier
studies of indoor dust [25,26]. In addition, widespread BDE-209 occurrence has also been
observed, e.g., in samples taken from less urbanised areas such as forests near Warsaw.
This supports the selection of BDE-209 as an indicator of environmental pollution with
polybrominated diphenyl ethers.

Levels of decabromodiphenyl ether found in this study were characterised by high
dispersion. The same spread of results was also observed by other authors (Table 2).
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Table 2. Comparison of BDE-209 levels found in surface soils obtained in studies from different
regions of the world.

Country Details on Sampling Site N
Mean Median Min Max

Reference
[ng g−1 d.w.]

Australia
The vicinity of an e-waste

recycling facility 18 6000 160 <17 98,000 [27]

Inner-city urban parkland 8 19 20 ND * 43 [27]

Brazil Landfill 7 110 4.9 ND 715 [28]

China

Steel production site 7 13.1 - 1.59 64.3 [29]
Agriculture area 6 1.4 - 0.505 3.97 [29]

Downstream of Chuhe river 15 - 0.32 ND 41.4 [30]
Neighbourhood of plastic
production manufacture 30 42.8 - 2.21 400 [31]

Neighbourhood of e-waste
recycling facility 4 1500 1440 30 3100 [32]

The vicinity of an abandoned
E-waste dismantling facility 253 25.39 19.77 ND 857.72 [22]

Germany Leipzig conurbation 4 0.69 - ND 1.57 [33]

Ghana e-waste processing and
dumping site 15 1600 - ND 8800 [34]

Korea
Suburban sites 24 2.52 - 0.6 10.6 [35]

Urban sites 24 10 - 0.6 94.9 [35]
Industrial sites 13 916 - 0.6 11,318 [35]

Sierra Leone General waste site 10 23 - ND 87 [34]

Taiwan Neighbourhood of plastic
production manufacture 15 1772 604 130 5430 [36]

Poland Warsaw and surroundings 40 8.9 1.0 <0.4 158 This study

* ND—not detected.

Similar levels of BDE-209 in soil samples from urbanised areas in Korea were deter-
mined by Jeon et al. [35]. In contrast, results found by Dreyer et al. [33] in samples from
Germany were an order of magnitude lower. Surface soils taken from the vicinity of landfills
including e-waste, as well as from the vicinity of plastic factories and recycling sites (from
different locations around the world), contained much higher levels of decabromodiphenyl
ether [27,28,31,32,34,36]. Based on this, it seems reasonable to claim that these sites may be
major sources of environmental contamination. Soil from less urbanised and rural sites was
less contaminated with this PBDE congener [31,35,36]. Likewise, in this study, the lowest
concentrations were observed in most of samples collected from low industrialised or green
areas (<0.4 to 1.68 ng g−1 d.w.). In the case of decabromodiphenyl ether, the predominant
mechanism of its “transfer” into the environment (from materials containing this com-
pound) is through abrasion, in which particles of material containing decabromodiphenyl
ether are ”released” and carried by air or by water (run-off and leaking) [37,38]. Zhang
et al. showed a significant negative correlation of BDE-209 concentrations with the distance
from an electro-waste disposal facility [22]. Therefore, soils from suburban and agricultural
areas located far from potential sources of BDE-209’s release into the environment is less
contaminated. In the present study, the highest levels were found at several locations
with heavy traffic and in the vicinity of a CHP plant in the city (up to the maximum of
158 ng g−1 d.w.).

2.2. Non Carcinogenic Human Health Risk Characterization

The exposure of small children to decabromodiphenyl ether ingested through soil
and by dermal absorption was estimated. Low (P50) and high (P95) exposure scenarios
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were considered. Furthermore, non-carcinogenic human health risk was characterised. The
results are presented in Table 3.

Table 3. Assessment of long-term exposure to BDE-209 in young children following oral and dermal
intake with soil. Characterization of associated risks (HQs).

Results

Oral intake (low exposure scenario) 6.25 × 10−10 mg kg−1 b.w.
Oral intake (high exposure scenario) 5.5 × 10−8 mg kg−1 b.w.

Dermal intake (low exposure scenario) 3.2 × 10−6 mg kg−1 b.w.
Dermal intake (high exposure scenario) 1.1 × 10−4 mg kg−1 b.w.

HQ (oral; low exposure scenario) 1 × 10−7

HQ (oral; high exposure scenario) 7.9 × 10−6

HQ (dermal; low exposure scenario) 4.6 × 10−4

HQ (dermal; high exposure scenario) 1.5 × 10−2

Under both exposure scenarios, health quotients (HQs) were low. Therefore, risks
resulted from BDE-209 intake via dermal and oral exposure routes can be considered
negligible. The highest exposure result corresponded to 1.5% RfD. Similar results were
obtained by other authors in the case of soil from both agricultural [36,39] and urbanised
areas, as well as from landfills or e-waste recycling sites [5,31,36,40].

It should be noted that some studies’ results cannot be fully compared due to differ-
ent assumptions used in calculations, such as different bioavailability factors or dermal
absorption coefficients. In our study, only one PBDE congener was analysed (dominant
congener in soil). Despite this, after the literature review, conclusions from the reviewed
studies were consistent and indicated a low health risk. Authors who tested the sum of
selected congeners also found no risk [5,31,40]. However, soil pollution by PBDEs should
be controlled because these compounds are constantly released into the environment.

3. Material and Methods
3.1. Sample Collection

Forty samples of surface soils from Warsaw and its suburbs were collected between
2019 and 2022. They were collected, among others, from places with heavy traffic, the
vicinity of industrial and waste processing plants, in municipal parks and forests. Samples
were dried and sifted through a 500 µm steel sieve using Retsch AS 200 basic shaker (Retsch
GmbH, Haan, Germany) and stored in aluminium bags until analysis at −20 ◦C.

3.2. Standard, Reagents, and Chemicals

BDE-209 standard, in the form of a 1.2 mL ampule with a 50 µg mL−1 concentration
in nonane was purchased from Cambridge Isotope Laboratories (Andover, MA, USA).
ECD and FID gas chromatography grade n-hexane and acetone were acquired from Merck
(Darmstadt, Germany). Dichloromethane for the analysis of pesticides residue, n-dodecane
for synthesis, silica gel 60 extra pure (70–230 mesh ASTM) (Merck KGaA, Darmstadt, Ger-
many) for column chromatography, glass wool, and aluminium oxide 90 active, neutral for
column chromatography were also obtained from Merck (Darmstadt, Germany). Sodium
sulphate anhydrous (12–60 mesh) was provided by J.T. Baker (Deventer, The Netherlands),
and sea sand extra pure was provided by Supelco (Darmstadt, Germany). Cellulose filter
tubes (43 × 123 mm) were acquired from Munktell (Barestein, Germany).

3.3. Analytical Method

An amount of 25 g of soil was extracted and purified using a slightly modified method
(without florisil addition during the extraction step), described by Korcz et al. [26,41]. In
brief, the extraction was made with a 3:1 (v/v) mixture of n-hexane–acetone using an
automated Büchi B-811extraction system. Clean-up procedure was performed in a glass
column (60 cm × 1.5 cm i.d.) containing the following layers, from the bottom: 0.5 cm
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of sodium sulphate anhydrous, 10 g of silica gel, 5 g of aluminium oxide and 0.5 cm of
sodium sulphate anhydrous. Then, the samples were analysed by gas chromatography
with electron capture detection (GC-µECD). Information on chromatographic settings used
for BDE-209 quantification is presented in Table 4.

Table 4. The chromatographic settings (Agilent Technologies 6890N) (Agilent, Wilmington, NC, USA)
used for quantification of the BDE-209 congener.

Settings 1

Column DB-XLB (15 m × 0.25 mm i.d. and film thickness 0.1 µm)
Oven temperature program 120 ◦C (1 min)–30 ◦C min−1–300 ◦C (8 min)

Flow mode Ramp flow
Carrier gas flow ramp program 1.5 mL min−1 (7 min)–15 mL min−1–3 mL min−1

PTV injector “solvent vent mode”, ramp temperature program: 40 ◦C (0.3 min)–700 ◦C min−1–285 ◦C (3 min)
Injection volume 1 µL

Carrier gas helium
Makeup (nitrogen) 30 mL min−1

Detector temperature 335 ◦C
1 The retention time for BDE-209 is 13.55 min.

Confirmation of identity was performed using another GC-µECD method with a
different chromatographic column. Details of the method are presented in Table 5.

Table 5. The chromatographic settings (Agilent Technologies 6890N) used for confirmatory purpose.

Settings 1

Column Rtx-1614 (15 m × 0.25 mm i.d. and film thickness 0.1 µm)
Oven temperature program 120 ◦C (1.5 min)–15 ◦C min−1–300 ◦C–5 ◦C min−1–310 ◦C (4 min)

Flow mode Constant flow
Carrier gas flow 2.2 mL min−1

PTV injector “solvent vent mode”, ramp temperature program: 40 ◦C (1.5 min)–700 ◦C min−1–400 ◦C (3 min)
Injection volume 3 × 1 µL (delay 10 s)

Carrier gas helium
Makeup (nitrogen) 30 mL min−1

Detector temperature 345 ◦C
1 The retention time for BDE-209 is 13.70 min.

3.4. Results of Validation of the Analytical Method Used for Analysing BDE-209

The analytical method’s recovery and precision were tested using the sea sand samples
spiked with BDE-209 at 3 levels of fortification (I-0.4 ng g−1 d.w., II-4 ng g−1 d.w. and III-
20 ng g−1 d.w.). Six samples per level were analysed. Recovery ranged from 71% to 130%,
and mean recovery was 104%, 89% and 96%, respectively. Relative standard deviations
(RSD%) calculated at these levels were 15% (I), 13% (II) and 16% (III). A calibration curve
was determined using seven standard solution concentrations. A coefficient of determina-
tion (R2) ≥ 0.999 was obtained. The LOQ (limit of quantification) was set at 0.4 ng g−1 d.w.
All the results were reported within the validated working range (0.4–20 ng g−1 d.w.).

The identity of BDE-209 was confirmed using another analytical method, whose
working range corresponded to the analogous range of the primary method. The linearity
and limit of quantification of this method were acceptable.

Based on the validation parameters, the analytical method is acceptable for analysing
BDE-209 in tested samples.

3.5. BDE-209 Levels, Exposure Estimation, and Non-Carcinogenic Human Risk Characterization

For statistical purposes, when results were below the limit of quantification, an LOQ
value was assigned accordingly to the upper bound approach [42].
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This study results at low (median) and high (P95) BDE-209 concentration in soil were
used for exposure calculations. Young children, as one of the most vulnerable populations,
were selected. Furthermore, in case of exposure, one of the most sensitive human sub-age
populations, i.e., young children was considered for exposure estimation.

The exposure to BDE-209 congener ingested with soil was calculated using the follow-
ing Equation (1) [26]:

Eing = C × IR × EF
BW

, (1)

where Eing—exposure via ingestion, C—concentration of BDE-209, IR—daily intake rate,
EF—exposure frequency factor, and BW—body weight.

The U.S. Environment Protection Agency (US EPA) recommends values for daily
soil ingestion [43] be used to estimate the IR parameter. In the case of young children
(2–6 years), recommended values were 30 mg day−1 (general population central tendency—
the value used for the low exposure scenario), and 90 mg day−1 (general population upper
percentile—value used for the high exposure scenario). According to EFSA recommenda-
tions, a body weight of 12 kg was adopted for young children [44]. Six hours of outdoor
activity per day ( 1

4 ) was used for the EF parameter.
In addition, dermal exposure to BDE-209 was estimated using the following

Equation (2) [45]:

Eder = C × SA × AF × ABS × EF × ED
BW × AT

× CF, (2)

where Eder—exposure via dermal contact, C—concentration of BDE-209, SA—skin sur-
face area, AF—skin adherence factor, ABS—dermal absorption factor, EF—exposure fre-
quency factor, ED—exposure duration, BW—body weight, AT—average time, and CF—
conversion factor.

The following values were used to estimate dermal exposure in the selected popu-
lation. Skin surface areas (for children aged 2 to 3 years old) for the low-exposure and
high-exposure scenarios were, respectively, 6100 and 7000 cm2 [46]. AF was adopted at
0.2 mg cm−2 per day [46], and a value of 0.1 was used for ABS [45]. ED was set at 4 years,
and EF was 45 days per year. In the case of BW, 10 kg was considered [47]. AT (ED x 365
days) was 1460 days, and the CF value was 10−6 [45].

The Equation (3) was used to calculate hazard quotients (HQs) [48]:

HQ =
E

R f D
(3)

where calculated exposure values (E—Eing or Eder) were compared to the corresponding
reference dose (RfD) value established by the U.S. Environment Protection Agency. The
RfD value for BDE-209 was 0.007 mg kg−1 of b.w. day−1 [49].

When the calculated HQ is higher than or equal to 1, it is assumed that there is a
potential non-carcinogenic risk of an adverse health outcome [50].

3.6. Literature Review

The following databases were included: Medline, Agricola, GreenFile and Academic
Search Ultimate, eBook Collection (EBSCOhost). Furthermore, keywords such as PBDEs,
BDE-209, decabromodiphenyl ether, decaBDE, soil, urban areas, PBDE + soil degradation,
exposure, and risk were also used.

4. Conclusions

The presence of BDE-209 in the surface layer of soil from Warsaw and the surrounding
area confirms the ubiquitous environmental pollution with polybrominated diphenyl ethers.
Similarly to other matrices (e.g., household or office dust), our results are characterised by
high spread, which is consistent with results of BDE-209 levels in soil in other countries
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and continents. It cannot be ruled out that the tested analyte may enter the human body
through oral and dermal routes. Using a conservative exposure scenario, we presented that
non-carcinogenic risk to the health of one of the most vulnerable subpopulations—young
children—associated with the intake of BDE-209 present in soil via the alimentary route and
by dermal exposure can be considered negligible. However, since deca-BDE is a persistent
organic pollutants (POP), its levels in the environment should be constantly monitored.
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