Changes in Metabolism and Content of Chlorophyll in Common Duckweed (Lemna minor L.) Caused by Environmental Contamination with Fluorides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Soil Extracts on the Growth of Duckweed (Environmental Samples)
2.2. Growth of Duckweed in Simulated Soil Extracts (50% MS Medium + F−)
2.3. Extracellular Reaction of Pure Chlorophyll a with Fluoride
3. Materials and Methods
3.1. Collection of Soil and Manure Samples and Preparation of Extracts
3.2. Axenic Cultures of Duckweed (Lemna minor L.)
3.3. Fluoride Content
3.4. Aminolevulinic Acid Dehydratase Assay
3.5. Chlorophyllase Assay
3.6. Chlorophyll Content Assay
3.7. Effect of Fluoride on Chlorophyll a
3.8. Experimental Procedure and Data Presentation
3.9. Statistics
4. Conclusions
- Manure resulting as a by-product of poultry production contains phytotoxic levels of fluorine.
- Extracts of such contaminated soil clearly affect the growth rate rather than morphology of Lemna minor as an indicator plant.
- Chlorophyll a turns out to be the target of phytotoxic action of fluorine on Lemna plants.
- This paper postulates the molecular mechanism of chlorophyll damage induced by fluorine, which is fluorine entering the porphyrin ring at position 32, and leaving magnesium ion at its central position.
- Aquatic plants can serve as indicators of environmental pollution with fluoride, but visual assessment of their condition is not sufficient for this purpose. It is necessary to use at least simple instrumental analyses to reveal chlorophyll damage or changes in the activity of enzymes associated with its biosynthesis and catabolism. It is necessary to use at least simple instrumental analyses to reveal chlorophyll damage or changes in the activity of enzymes associated with its biosynthesis and catabolism.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, G.; Kumari, B.; Sinam, G.; Kumar, N.; Mallick, S. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective—A review. Environ. Pollut. 2018, 239, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, M.; Bhattacharya, P. Fluoride in the environment: Sources, distribution and defluoridation. Environ. Chem. Lett. 2015, 13, 131–147. [Google Scholar] [CrossRef]
- Choudhary, S.; Rani, M.; Devika, O.S.; Patra, A.; Singh, R.K.; Prasad, S.K. Impact of fluoride on agriculture: A review on its sources, toxicity in plants and mitigation strategies. Int. J. Chem. Stud. 2019, 7, 1675–1680. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 1–51. [Google Scholar]
- Handa, B.K. Geochemistry and genesis of fluoride-containing ground waters in India. Groundwater 1975, 13, 275–281. [Google Scholar] [CrossRef]
- Jones, B.F.; Eugster, H.P.; Rettig, S.L. Hydrochemistry of the lake Magadi basin, Kenya. Geochim. Cosmochim. Acta 1977, 41, 53–72. [Google Scholar] [CrossRef]
- Kabir, H.; Gupta, A.K.; Tripathy, S. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1116–1193. [Google Scholar] [CrossRef]
- Ozsvath, D.L. Fluoride concentrations in a crystalline bedrock aquifer Marathon County, Wisconsin. Environ. Geol. 2006, 50, 132–138. [Google Scholar] [CrossRef]
- Sivasankar, V.; Darchen, A.; Omine, K.; Sakthivel, R. Fluoride: A world ubiquitous compound, its chemistry, and ways of contamination. In Surface Modified Carbons as Scavengers for Fluoride from Water; Sivasankar, V., Ed.; Springer: Cham, Switzerland, 2016; pp. 5–32. [Google Scholar]
- Pyle, D.M.; Mather, T.A. Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: A review. Chem. Geol. 2009, 263, 110–121. [Google Scholar] [CrossRef]
- Feng, Y.W.; Ogura, N.; Feng, Z.W.; Zhang, F.Z.; Shimizu, H. The concentrations and sources of fluoride in atmospheric depositions in Beijing, China. Water Air Soil Pollut. 2003, 145, 95–107. [Google Scholar] [CrossRef]
- Neal, C. Fluorine variations in Welsh streams and soil waters. Sci. Total Environ. 1989, 80, 213–223. [Google Scholar] [CrossRef]
- Walna, B.; Kurzyca, I.; Siepak, J. Variations in the fluoride level in precipitation in a region of human impact. In Acid Rain-Deposition to Recovery; Brimblecombe, P., Hara, H., Houle, D., Novak, M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 33–40. [Google Scholar]
- Tjahyono, N.; Gao, Y.; Wong, D.; Zhang, W.; Taylor, M.P. Fluoride emissions management guide (FEMG) for aluminium smelters. In Light Metals; Lindsay, S.J., Ed.; Springer: Cham, Switzerland, 2011; pp. 301–306. [Google Scholar]
- Tylenda, C.A. Toxicological Profile for Fluorides, Hydrogen Fluoride, and Fluorine; DIANE Publishing: Collingdale, PA, USA, 2011; pp. 211–213. [Google Scholar]
- Ranjan, R.; Ranjan, A. Sources of fluoride toxicity. In Fluoride Toxicity in Animals; Springer: Cham, Switzerland, 2015; pp. 11–20. [Google Scholar]
- Fuge, R. Fluorine in the environment, a review of its sources and geochemistry. J. Appl. Geochem. 2019, 100, 393–406. [Google Scholar] [CrossRef]
- Emamjomeh, M.M.; Sivakumar, M. Fluoride removal by a continuous flow electrocoagulation reactor. J. Environ. Manag. 2009, 90, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Ayoob, S.; Gupta, A.K. Fluoride in drinking water: A review on the status and stress effects. Crit. Rev. Environ. Sci. Technol. 2006, 36, 433–487. [Google Scholar] [CrossRef]
- Naseem, S.; Rafique, T.; Bashir, E.; Bhanger, M.I.; Laghari, A.; Usmani, T.H. Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere 2010, 78, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Messaïtfa, A. Fluoride contents in groundwaters and the main consumed foods (dates and tea) in Southern Algeria region. Environ. Geol. 2008, 55, 377–383. [Google Scholar] [CrossRef]
- Kruse, E.; Ainchil, J. Fluoride variations in groundwater of an area in Buenos Aires Province, Argentina. Environ. Geol. 2003, 44, 86–89. [Google Scholar] [CrossRef]
- Czarnowski, W.; Wrześniowska, K.; Krechniak, J. Fluoride in drinking water and human urine in northern and central Poland. Sci. Total Environ. 1996, 191, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Haidouti, C. Fluoride distribution in soils in the vicinity of a point emission source in Greece. Geoderma 1991, 49, 129–138. [Google Scholar] [CrossRef]
- Indermitte, E.; Saava, A.; Karro, E. Exposure to high fluoride drinking water and risk of dental fluorosis in Estonia. Int. J. Environ. Res. Public Health 2009, 6, 710–721. [Google Scholar] [CrossRef]
- Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. iScience 2020, 23, 101467. [Google Scholar] [CrossRef]
- Abbas, N.; Ijaz, M.; Shad, S.A.; Binyameen, M. Assessment of resistance risk to fipronil and cross resistance to other insecticides in the Musca domestica L. (Diptera: Muscidae). Vet. Parasitol. 2016, 223, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.; Khan, H.A.A.; Shad, S.A. Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: Mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicology 2014, 23, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.Q.; Ahmad, H.; Jaal, Z.; Rus, A.C. Comparative effectiveness of insecticides for use against the house fly (Diptera: Muscidae): Determination of resistance levels on a Malaysian poultry farm. J. Econ. Entomol. 2016, 109, 352–359. [Google Scholar] [CrossRef]
- Scott, J.G.; Alefantis, T.G.; Kaufman, P.E.; Rutz, D.A. Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manag. Sci. 2000, 56, 147–153. [Google Scholar] [CrossRef]
- Borah, J.; Saikia, D. Estimation of the concentration of fluoride in the ground water of Tinsukia Town master plan area of the Tinsukia district, Assam, India. Arch. Appl. Sci. Res. 2011, 3, 202–206. [Google Scholar]
- Pena, A.; Silva, L.J.G.; Pereira, A.; Meisel, L.; Lino, C.M. Determination of fluoroquinolone residues in poultry muscle in Portugal. Anal. Bioanal. Chem. 2010, 397, 2615–2621. [Google Scholar] [CrossRef] [PubMed]
- Mirlean, N.; Roisenberg, A. Fluoride distribution in the environment along the gradient of a phosphate-fertilizer production emission (southern Brazil). Environ. Geochem. Health 2007, 29, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Hyung, S.W.; Lee, C.H.; Kim, B. Development of certified reference materials for accurate determination of fluoroquinolone antibiotics in chicken meat. Food Chem. 2017, 229, 472–478. [Google Scholar] [CrossRef]
- Omotoso, A.B.; Omojola, A.B. Fluoroquinolone residues in raw meat from open markets in Ibadan, Southwest, Nigeria. Int. J. Health Animal Sci. Food Saf. 2015, 2, 32–40. [Google Scholar] [CrossRef]
- Pereira, A.M.; Silva, L.J.; Rodrigues, J.; Lino, C.; Pena, A. Risk assessment of fluoroquinolones from poultry muscle consumption: Comparing healthy adult and pre-school populations. Food Chem. Toxicol. 2018, 118, 340–347. [Google Scholar] [CrossRef]
- Pugajeva, I.; Avsejenko, J.; Judjallo, E.; Bērziņš, A.; Bartkiene, E.; Bartkevics, V. High occurrence rates of enrofloxacin and ciprofloxacin residues in retail poultry meat revealed by an ultra-sensitive mass-spectrometric method, and antimicrobial resistance to fluoroquinolones in Campylobacter spp. Food Addit. Contam. 2018, 35, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Widiastuti, R.; Martindah, E.; Anastasia, Y. Detection and dietary exposure assessment of fluoroquinolones residues in chicken meat from the districts of Malang and Blitar, Indonesia. Trop. Anim. Sci. J. 2022, 45, 98–103. [Google Scholar] [CrossRef]
- Ram, A.; Verma, P.; Gadi, B.R. Effect of fluoride and salicylic acid on seedling growth and biochemical parameters of watermelon (Citrullus lanatus). Fluoride 2014, 47, 49–55. [Google Scholar]
- Pulyaevskaya, M.A.; Varakina, N.N.; Gamburg, K.Z.; Rusaleva, T.M.; Stepanov, A.V.; Voinikov, V.K.; Rikhvanov, E.G. Sodium fluoride inhibits HSP synthesis in heat-stressed cultured cells of Arabidopsis thaliana. Russ. J. Plant Physiol. 2011, 58, 589–596. [Google Scholar] [CrossRef]
- Baunthiyal, M.; Ranghar, S. Physiological and biochemical responses of plants under fluoride stress: An overview. Fluoride 2014, 47, 287–293. [Google Scholar]
- Eleftheriou, E.P.; Tsekos, I. Fluoride effects on leaf cell ultrastructure of olive trees growing in the vicinity of the aluminium factory of Greece. Trees 1991, 5, 83–89. [Google Scholar] [CrossRef]
- Fornasiero, R.B. Phytotoxic effects of fluorides. Plant Sci. 2001, 161, 979–985. [Google Scholar] [CrossRef]
- Luo, J.; Ni, D.; Li, C.; Du, Y.; Chen, Y. The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions. Environ. Pollut. 2021, 270, 116283. [Google Scholar] [CrossRef] [PubMed]
- Panda, D. Fluoride toxicity stress: Physiological and biochemical consequences on plants. Int. J. Bio-Resour. Environ. Agric. Sci. 2015, 1, 70–84. [Google Scholar]
- Verma, K.K.; Verma, P.; Singh, M.; Verma, C.L. Influence of fluoride phytotoxicity in germinating seedlings of Pisum sativum: Modeling of morpho-physiological traits. Vegetos 2022, 35, 736–746. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Fluorine: A biohazardous agent for plants and phyto remediation strategies for its removal from the environment. Biol. Plant. 2019, 63, 104–112. [Google Scholar] [CrossRef]
- Junior, A.M.D.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Effects of fluoride emissions on two tropical grasses: Chloris gayana and Panicum maximum cv. Colonião. Ecotoxicol. Environ. Saf. 2007, 67, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Karamat, M.; Haider, A.; Jabeen, F.; Ahmad, M.N.; Ansari, M.; Zulfiqar, A.; Jalal, A.; Nizam, A. Ameliorative effects of salicylic acid on dry biomass and growth of Pisum sativum L. under sodium fluoride stress. Fluoride 2020, 53, 335–355. [Google Scholar]
- Doley, D.; Hill, R.J.; Riese, R.H. Environmental fluoride in Australasia: Ecological effects, regulation and management. Clean Air Environ. Qual. 2004, 38, 35–55. [Google Scholar]
- Singh, M.; Verma, K.K. Influence of fluoride-contaminated irrigation water on physiological responses of poplar seedlings (Populus deltoides clone-S7C15). Fluoride 2013, 46, 83–89. [Google Scholar]
- Barbier, O.; Arreola-Mendoza, L.; Del Razo, L.M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 2010, 188, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Rhimi, N.; Mezghani, I.; Elloumi, N.; Nasri, M.; Ben Abdallah, F. Morphological and anatomical responses of pear and almond trees to fluoride air pollution. Fluoride 2016, 49, 156–164. [Google Scholar]
- Gadi, B.R.; Kumar, R.; Goswami, B.; Rankawat, R.; Rao, S.R. Recent developments in understanding fluoride accumulation, toxicity, and tolerance mechanisms in plants: An overview. J. Soil Sci. Plant Nutr. 2021, 21, 209–228. [Google Scholar] [CrossRef]
- Hong, B.D.; Joo, R.N.; Lee, K.S.; Lee, D.S.; Rhie, J.H.; Min, S.W.; Song, S.G.; Chung, D.Y. Fluoride in soil and plant. Korean J. Agric. Sci. 2016, 43, 522–536. [Google Scholar] [CrossRef]
- Hosikian, A.; Lim, S.; Halim, R.; Danquah, M.K. Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int. J. Chem. Eng. 2010, 2010, 391632. [Google Scholar] [CrossRef]
- Manolopoulou, E.; Varzakas, T.; Petsalaki, A. Chlorophyll determination in green pepper using two different extraction methods. Curr. Res. Nutr. Food Sci. 2016, 4, 52–60. [Google Scholar] [CrossRef]
- Haddy, A.; Lee, I.; Shin, K.; Tai, H. Characterization of fluoride inhibition in photosystem II lacking extrinsic PsbP and PsbQ subunits. J. Photochem. Photobiol. B Biol. 2018, 185, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Chen, K.; Xu, J.; Khaldun, A.B.M.; Chen, Y.; Chen, L.; Yan, X. Physiological effects induced by aluminium and fluoride stress in tall fescue (Festuca arundinacea Schreb). Ecotoxical. Environ. Saf. 2022, 231, 113192. [Google Scholar] [CrossRef]
- Saxena, V.; Ahmed, S. Dissolution of fluoride in groundwater: A water-rock interaction study. Environ. Geol. 2001, 40, 1084–1087. [Google Scholar] [CrossRef]
- Saxena, V.; Ahmed, S. Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol. 2003, 43, 731–736. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Guo, Q.; Wang, Y.; Ma, T.; Ma, R. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J. Geochem. Explor. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Jacks, G.; Bhattacharya, P.; Chaudhary, V.; Singh, K.P. Controls on the genesis of some high-fluoride groundwaters in India. J. Appl. Geochem. 2005, 20, 221–228. [Google Scholar] [CrossRef]
- Jacks, G.; Rajagopalan, K.; Alveteg, T.; Jönsson, M. Genesis of high-F groundwaters, southern India. J. Appl. Geochem. 1993, 8, 241–244. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Arda, L.; Yalcin, B.; Yalcin, I.E.; Ucar, B.; Hocaoglu-Ozyigit, A. Lemna minor, a hyperaccumulator shows elevated levels of Cd accumulation and genomic template stability in binary application of Cd and Ni: A physiological and genetic approach. Int. J. Phytoremediat. 2021, 23, 1255–1269. [Google Scholar] [CrossRef]
- Sobrino, A.S.; Miranda, M.G.; Alvarez, C.; Quiroz, A. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L. (duckweed). J. Environ. Sci. Health-Toxic/Hazard. Subst. Environ. Eng. 2010, 45, 107–110. [Google Scholar] [CrossRef]
- Kim, Y.; Hyun, S.H.; Park, H.E.; Choi, H.K. Metabolic profiling, free-radical scavenging and tyrosinase inhibitory activities of Lemna minor whole plants cultivated in various concentrations of proline and sucrose. Process Biochem. 2012, 47, 62–68. [Google Scholar] [CrossRef]
- Krupka, M.; Michalczyk, D.J.; Žaltauskaitė, J.; Sujetovienė, G.; Głowacka, K.; Grajek, H.; Wierzbicka, M.; Piotrowicz-Cieślak, A.I. Physiological and biochemical parameters of common duckweed Lemna minor after the exposure to tetracycline and the recovery from this stress. Molecules 2021, 26, 6765. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, B.; Woźny, A.; Budna, I. Callus induction and plant regeneration in Lemna minor L. Biol. Plant. 2002, 45, 469–472. [Google Scholar] [CrossRef]
- Grajek, H.; Rydzyński, D.; Piotrowicz-Cieślak, A.; Herman, A.; Maciejczyk, M.; Wieczorek, Z. Cadmium ion-chlorophyll interaction–Examination of spectral properties and structure of the cadmium-chlorophyll complex and their relevance to photosynthesis inhibition. Chemosphere 2020, 261, 127434. [Google Scholar] [CrossRef] [PubMed]
- Küpper, H.; Küpper, F.; Spiller, M. Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J. Exp. Bot. 1996, 47, 259–266. [Google Scholar] [CrossRef]
- Küpper, H.; Parameswaran, A.; Leitenmaier, B.; Trtílek, M.; Setlík, I. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol. 2007, 175, 655–674. [Google Scholar] [CrossRef] [PubMed]
- Paunov, M.; Koleva, L.; Vassilev, A.; Vangronsveld, J.; Goltsev, V. Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int. J. Mol. Sci. 2018, 19, 787. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Goodchild, D.J.; Boardman, N.K. Composition of the photosystems and chloroplast structure in extreme shade plants. Biochim. Biophys. Acta Bioenerg. 1973, 325, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Croce, R.; Canino, G.; Ros, F.; Bassi, R. Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry 2002, 41, 7334–7343. [Google Scholar] [CrossRef]
- Ghirardi, M.L.; Melis, A. Chlorophyll b deficiency in soybean mutants. I. Effects on photosystem stoichiometry and chlorophyll antenna size. Biochim. Biophys. Acta Bioenerg. 1988, 932, 130–137. [Google Scholar] [CrossRef]
- Goodchild, D.J.; Park, R.B. Further evidence for stroma lamellae as a source of photosystem 1 fractions from spinach chloroplasts. Biochim. Biophys. Acta Bioenerg. 1971, 226, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Koshino, Y.; Sawa, S.; Ishiguro, S.; Okada, K.; Tanaka, A. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant J. 2001, 26, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Holm-Hansen, O.; Riemann, B. Chlorophyll a determination: Improvements in methodology. Oikos 1978, 30, 438–447. [Google Scholar] [CrossRef]
- Schwartz, S.J.; Lorenzo, T.V. Chlorophyll stability during continuous aseptic processing and storage. J. Food Sci. 1991, 56, 1059–1062. [Google Scholar] [CrossRef]
- Wasmund, N.; Topp, I.; Schories, D. Optimising the storage and extraction of chlorophyll samples. Oceanologia 2006, 48, 125–144. [Google Scholar]
- Aminot, A.; Rey, F. Chlorophyll a: Determination by spectroscopic methods. ICES Tech. Mar. Environ. Sci. 2002, 30, 1–17. [Google Scholar]
- Petrović, S.; Zvezdanović, J.; Marković, D. Chlorophyll degradation in aqueous mediums induced by light and UV-B irradiation: An UHPLC-ESI-MS study. Radiat. Phys. Chem. 2017, 141, 8–16. [Google Scholar] [CrossRef]
- King, V.A.E.; Liu, C.F.; Liu, Y.J. Chlorophyll stability in spinach dehydrated by freeze-drying and controlled low-temperature vacuum dehydration. Food Res. Int. 2001, 34, 167–175. [Google Scholar] [CrossRef]
- Cai, H.; Dong, Y.; Li, Y.; Li, D.; Peng, C.; Zhang, Z.; Wan, X. Physiological and cellular responses to fluoride stress in tea (Camellia sinensis) leaves. Acta Physiol. Plant. 2016, 38, 144. [Google Scholar] [CrossRef]
- Sharma, R.; Kaur, R. Insights into fluoride-induced oxidative stress and antioxidant defences in plants. Acta Physiol. Plant. 2018, 40, 181. [Google Scholar] [CrossRef]
- Rydzyński, D.; Piotrowicz-Cieślak, A.I.; Grajek, H.; Wasilewski, J. Investigation of chlorophyll degradation by tetracycline. Chemosphere 2019, 229, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, S.; Nakano, K.; Tamiaki, H. Synthesis of fluorinated chlorophylls-a and their bio/physico-chemical properties. Eur. J. Org. Chem. 2020, 2020, 5537–5543. [Google Scholar] [CrossRef]
- Debaene, G.; Niedźwiecki, J.; Pecio, A.; Żurek, A. Effect of the number of calibration samples on the prediction several soil properties at the farm-scale. Geoderma 2014, 214–215, 114–115. [Google Scholar] [CrossRef]
- Jaremko, D.; Kalembasa, D. A comparison of methods for the determination of cation exchange capacity of soils/Porównanie metod oznaczania pojemności wymiany kationów i sumy kationów wymiennych w glebach. Ecol. Chem. Eng. 2014, 21, 487–498. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for the rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Jiao, L.; Ding, H.; Wang, L.; Zhou, Q.; Huang, X. Bisphenol A effects on the chlorophyll contents in soybean at different growth stages. Environ. Pollut. 2017, 223, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z.; Li, J.; Wu, L.; Guo, J.; Ouyang, L.; Xia, Y.; Huang, X.; Pang, X. Correlation of leaf senescence and gene expression/activities of chlorophyll degradation enzymes in harvested Chinese flowering cabbage (Brassica rapa var. parachinensis). J. Plant Physiol. 2011, 168, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Seely, G.R.; Jensen, R.G. Effect of solvent on the spectrum of chlorophyll. Spectrochim. Acta 1965, 21, 1835–1845. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids. Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4-3. [Google Scholar] [CrossRef]
Soil | F− Content mg × kg−1 | Sand, % | Silt, % | Clay, % | USDA Soil Texture Classes | pHKCl | Hh cmol(+) × kg−1 | Al3+ g × kg−1 | Ca2+ cmol(+) × kg−1 |
---|---|---|---|---|---|---|---|---|---|
1 | 2.1 | 70.38 | 26.75 | 2.87 | sandy loam | 5.5 | 2.52 | 4.2 | 3.60 |
2 | 4.19 | 65.81 | 30.55 | 3.65 | sandy loam | 4.9 | 4.16 | 5.9 | 3.65 |
3 | 4.9 | 75.50 | 22.26 | 2.24 | loamy sand | 4.9 | 3.90 | 4.7 | 2.24 |
Chlorophyll a Lambert–Beer Method | Chlorophyll a Lichtenthaler, Buschmann Method | Chlorophyll b Lichtenthaler, Buschmann Method | |
---|---|---|---|
Content F− [mg × L−1] | C [M] × 10−5 ± SD | C [M] × 10−5 ± SD | C [M] × 10−5 ± SD |
2.10 | 6.24 ± 0.04 a | 6.25 ± 0.03 a | 1.82 ± 0.03 a |
4.19 | 5.27 ± 0.03 b | 5.27 ± 0.05 b | 1.61 ± 0.04 b |
4.90 | 2.68 ± 0.02 c | 2.68 ± 0.01 c | 0.89 ± 0.03 c |
Initial F− Content [mg × L−1] | Final F− Content [mg × L−1] | Reduction in F− [%] |
---|---|---|
2.10 | 0.25 ± 0.01 a | 88.0 a |
4.19 | 0.19 ± 0.01 b | 95.5 b |
4.90 | 0.17 ± 0.004 b | 96.5 b |
Chlorophyll a Lambert–Beer Method | Chlorophyll a Lichtenthaler, Buschmann Method | Chlorophyll b Lichtenthaler, Buschmann Method | |
---|---|---|---|
Initial F− Content [mg× L−1] | C [M] × 10−5 ± SD | C [M] × 10−5 ± SD | C [M] × 10−5 ± SD |
0 | 12.25 ± 0.08 a | 12.26 ± 0.08 a | 3.19 ± 0.06 a |
2.10 | 11.46 ± 0.08 b | 11.48 ± 0.08 b | 3.18 ± 0.06 b |
4.00 | 11.23 ± 0.09 b | 11.23 ± 0.10 b | 3.04 ± 0.07 b |
4.19 | 10.66 ± 0.02 c | 10.66 ± 0.08 c | 3.00 ± 0.08 b |
4.90 | 6.51 ± 0.01 d | 6.51 ± 0.08 d | 1.80 ± 0.08 b |
210 | 0 ± 0 e | 0 ± 0 e | 0 ± 0 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiński, J.; Stachelska-Wierzchowska, A.; Michalczyk, D.J.; Klimkowicz-Pawlas, A.; Olkowska, E.; Wolska, L.; Piotrowicz-Cieślak, A.I. Changes in Metabolism and Content of Chlorophyll in Common Duckweed (Lemna minor L.) Caused by Environmental Contamination with Fluorides. Molecules 2024, 29, 2336. https://doi.org/10.3390/molecules29102336
Kamiński J, Stachelska-Wierzchowska A, Michalczyk DJ, Klimkowicz-Pawlas A, Olkowska E, Wolska L, Piotrowicz-Cieślak AI. Changes in Metabolism and Content of Chlorophyll in Common Duckweed (Lemna minor L.) Caused by Environmental Contamination with Fluorides. Molecules. 2024; 29(10):2336. https://doi.org/10.3390/molecules29102336
Chicago/Turabian StyleKamiński, Jan, Alicja Stachelska-Wierzchowska, Dariusz J. Michalczyk, Agnieszka Klimkowicz-Pawlas, Ewa Olkowska, Lidia Wolska, and Agnieszka I. Piotrowicz-Cieślak. 2024. "Changes in Metabolism and Content of Chlorophyll in Common Duckweed (Lemna minor L.) Caused by Environmental Contamination with Fluorides" Molecules 29, no. 10: 2336. https://doi.org/10.3390/molecules29102336
APA StyleKamiński, J., Stachelska-Wierzchowska, A., Michalczyk, D. J., Klimkowicz-Pawlas, A., Olkowska, E., Wolska, L., & Piotrowicz-Cieślak, A. I. (2024). Changes in Metabolism and Content of Chlorophyll in Common Duckweed (Lemna minor L.) Caused by Environmental Contamination with Fluorides. Molecules, 29(10), 2336. https://doi.org/10.3390/molecules29102336