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Abstract: The impact of fluorine on plants remains poorly understood. We examined duckweed
growth in extracts of soil contaminated with fluorine leached from chicken manure. Additionally,
fluorine levels were analyzed in fresh manure, outdoor-stored manure, and soil samples at varying
distances from the manure pile. Fresh manure contained 37–48 mg F− × kg−1, while soil extracts
contained 2.1 to 4.9 mg F− × kg−1. We evaluated the physiological effects of fluorine on duckweed
cultured on soil extracts or in 50% Murashige–Skoog (MS) medium supplemented with fluorine
concentrations matching those in soil samples (2.1 to 4.9 mg F− × L−1), as well as at 0, 4, and
210 mg × L−1. Duckweed exposed to fluorine displayed similar toxicity symptoms whether in soil
extracts or supplemented medium. Fluoride at concentrations of 2.1 to 4.9 mg F− × L−1 reduced
the intact chlorophyll content, binding the porphyrin ring at position 32 without affecting Mg2+.
This reaction resulted in chlorophyll a absorption peak shifted towards shorter wavelengths and
formation of a new band of the F−-chlorophyll a complex at λ = 421 nm. Moreover, plants exposed
to low concentrations of fluorine exhibited increased activities of aminolevulinic acid dehydratase
and chlorophyllase, whereas the activities of both enzymes sharply declined when the fluoride
concentration exceeded 4.9 mg × L−1. Consequently, fluorine damages chlorophyll a, disrupts the
activity of chlorophyll-metabolizing enzymes, and diminishes the plant growth rate, even when the
effects of these disruptions are too subtle to be discerned by the naked human eye.

Keywords: chlorophyllase; aminolevulinic acid dehydratase; fluoride; chlorophyll absorption spectra;
intensive poultry farming

1. Introduction

Many human activities result in environmental pollution with pesticides, herbicides,
artificial fertilizers, antibiotics, and various other substances, which have toxic effects on
animals and plants [1,2]. Equally harmful are some naturally occurring pollutants and
human activities can increase their concentrations excessively. These environmental toxins
include fluorine and its compounds [3].

Fluorine is the 13th most abundant element in the Earth’s crust. Its average con-
centration in continental plates is as high 557 mg × kg−1 [4]. Fluorine anions and their
compounds, fluorides, are commonly found in groundwater and soil, especially in clay
soils. The bedrock can sometimes be a natural source of soil fluoride. Fluoride-containing
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rocks include granite, syenites, gneisses, and hornblende [5–9]. The concentration of F− in
soil at the site of gneisses and granites exceeds 5000 mg × kg−1 [2]. Through weathering of
fluoride-containing rocks, F− enters soils and groundwater. Volcanic eruptions could be
another natural source of F− [2]; however, they do not occur at this site. Fluorine escapes
from volcanoes as HF gas, which is partly adsorbed onto volcanic ash. Through the volcanic
route, an estimated 0.5 ± 0.2 Mt of fluorine enters the atmosphere annually [10]. However,
none of these factors were a source of fluoride in the analyzed soil.

Fluorine present in the environment has anthropogenic origins in addition to the natural
ones. The production of aluminum is one of the most important anthropogenic sources [11–13].
The production of 1 tonne of aluminum results in the release of 0.5–0.6 kg F [14]. Coal
combustion greatly contributes to the release of F to the atmosphere [15]. Hard coal
contains fluorine in amounts ranging from 4 to 40 g × kg−1 [1]. Annual HF emissions from
coal-fired power plants in 2001 were as high as 55.8 million tonnes [16]. The increased level
of fluorine in the environment is also due to the production of bricks and ceramic tiles [15].
This sector of industrial production releases 1.8 million tonnes F annually [17].

Fluorine compounds have been detected in groundwater in widely varying amounts
depending on the country and sampling location. Worldwide, its content can range from
0.01 to 48 mg × L−1 [18]. In many African countries, China, South Asia, and the Middle
East, groundwater is one of the main sources of drinking water [2,19]. According to WHO,
the highest acceptable level of F in drinking water is 1.5 mg × L−1. Values above this
level have been detected in many countries in North and South America and Eurasia. In
Pakistan, the fluorine content is 7.85 mg × L−1 [20], 2.3 mg × L−1 in Algeria [21], about
5 mg × L−1 in Argentina [22], 1.38 mg × L−1 in Poland at an industrial waste site [23],
0.3–9.2 mg × L−1 in Greece at aluminum processing plants [24], 3.2 and 6.5 mg × L−1

in the USA at industrial sites in Pennsylvania, and 7 mg × L−1 in Estonia in aquifers of
Silurian and Ordovician age [25].

Fluorine compounds are commonly used in agriculture. Fluorine-containing com-
pounds constitute 53% of all agrochemicals and insecticides represent over 70% of them [26].
Some fluorinated insecticidal agents are widely used against flies or other insects in poultry
houses. These include bifenthrin, indoxacarb [27,28], cyfluthrin, fipronil, and lambda-
cyhalothrin [26,29,30].

Intensification of agricultural production plays a significant role in the increase in
F− content in soil and groundwater. The use of phosphate fertilizers [15], pesticides,
fumigants, and fluoride-containing antibiotics increases the fluorine level in the environ-
ment [1,31,32]. Rainfall contaminated by emissions from phosphate fertilizer production
contains more than 1 mg × L−1 of fluoride and this concentration is observed at a distance
of up to 2 km from the emission source [33]. Fluoroquinolones are fluorine-containing an-
tibiotics commonly used in poultry husbandry. The presence of fluoroquinolones has even
been found in broiler meat. Of the fluoroquinolones analyzed (ciprofloxacin, norfloxacin,
enrofloxacin, sarafloxacin, ofloxacin), ciprofloxacin was present in the highest amounts,
exceeding 1 mg × kg−1 of poultry meat [34]. However, the content of other antibiotics can
also be significant. The levels of enrofloxacin and norfloxacin in broiler meat exceeded 242
and 113 µg × kg−1, respectively [32,35–38]. As can be seen above, agricultural production
leads to fluorine contamination of soil, water, and fertilizers through various pathways.

Fluorine present in the environment has extensively documented phytotoxic prop-
erties. Fluoride affects plants on many levels, including external morphology, tissue
structures, and intracellular structures. Fluorine decreases the rate of cell division and
growth, which hampers the overall plant growth and development [39]. Cell growth was
markedly inhibited, for instance, in Arabidopsis thaliana cell suspension treated with 1 mM
NaF [40]. Internal structure of cells gradually deteriorates with exposure time. This in-
volves expansion and aggregation of endoplasmic reticulum, mitochondria losing electron
density of the matrix, and eventual breakdown of tonoplast. Cells lose their shape and
eventually collapse [41–45]. Fluoride toxicity in plants is also manifested by damage of cell
membranes [46]. Fluoride stress induces lipoxygenase activity, which oxidizes membrane
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lipids and eventually causes electrolyte leakage. The significant role of membrane lipid
oxidation in F stress is also indicated by increased malondialdehyde content [47,48] and
increased amounts of small molecular antioxidants (ascorbate, GSH) were also detected in
plants responding to the fluoride-induced stress [47,49–51].

Fluoride ions interact with proteins, binding to their amino acid side chains, interfering
with protein folding, modifying the protein 3D structures, and disrupting their functions.
Moreover, increase in ROS resulting from F-induced stress causes carbonylation of amino
acids and permanently damages proteins. F− ions form complexes with metal cations
essential in enzyme function, like Mg, Mn, and Fe, which inhibits many enzymes [45].
Fluoride shows high affinity to Al, and F is often absorbed by plants in complexes with
Al. It was shown that the AlF4

− complex acts as an analogue of the phosphate anion, thus
inhibiting enzymes involving PO4

3−, like ATPases and G proteins [52]. It is important, as
enzymes involving phosphate are essential in all aspects of cell biology, including energy
metabolism, signaling, and biosynthesis of various substances. Metal complexation by F
interferes with other aspects of physiology, like Ca-related signaling.

Loss of chlorophyll is another widely documented and often very noticeable symp-
tom of fluoride stress. Chlorosis usually begins at the leaf margins, progressing between
veins towards the leaf base [1,3]. Leaves exposed to gaseous HF also show tissue dam-
age, progressing over exposure time. Fluoride-induced leaf damage first appears in the
spongy mesophyll and lower epidermis, followed by chloroplast damage in the palisade
parenchyma [45,53]. Chlorosis is among the most universal symptoms reported in plants
exposed to F− contamination [54,55]. The mechanism of chlorophyll loss due to F stress is
poorly understood. Complexation of Fe by F impairs chlorophyll biosynthesis [54]. Gaseous
HF produces an acidic environment, which dissociates magnesium from the chlorophyll
porphyrin ring. Both chlorophyll a and chlorophyll b levels decrease as a result of stress.
However, both in plants growing under optimum conditions and plants subjected to stress,
chlorophyll a usually clearly predominates in quantity [56,57].

F stress and disturbances in structure and contents of chlorophyll resulting from it
not only impair light absorption by the photosynthetic apparatus but they also affect the
photosynthetic electron transport chain. Total quantum efficiency of PSII is reduced due to
inhibited Hill reaction. Fluoride ions substitute Cl− in PSII, which blocks water photolysis
and generates ROS [58]. Fan et al. [59] explored electron transport chain efficiency in tall
fescue under combined F and Al stress. The PSI saturation with electrons dropped, while
transferring electrons from plastoquinone increased. Photosynthesis impairment is also
related to lowered activity of carbon-fixing and sugar-processing enzymes, like rubisco,
amylase, invertase, and sucrose synthase [41,46,54]. Virtually nothing is known about
reactions of fluoride ions with the carbon skeleton of chlorophyll.

The aim of this study was to evaluate the impact of extracts of soil contaminated with
manure from intensive poultry farming (and consequently contaminated with fluoride) on
plant physiological state. Duckweed (Lemna minor L.) was used as a bioindicator plant and
the following parameters were analyzed: fluoride and chlorophyll a content, rate of plant
growth, activities of chlorophyllase, and aminolevulinic acid dehydratase. In addition, we
studied the molecular mechanism of fluoride’s effect on chlorophyll in plants. To the best
of our knowledge, the detailed mechanism of fluoride-induced chlorophyll decay in plants
has not been fully understood to date.

2. Results and Discussion
2.1. Effect of Soil Extracts on the Growth of Duckweed (Environmental Samples)

Fluoride content was determined in three soil samples from fields located different
distances from the improperly managed poultry manure pile. The location of the sampling
points is shown in Figure 1. Soil sampling point 3 was located closest to the place where
the manure from the poultry house was stored. It was shown that the highest fluoride
content was in soils 2 and 3 and was 4.19 and 4.9 mg × kg−1 soil, respectively. A twice
lower content of 2.1 mg × kg−1 was found in soil 1, located at a considerable distance
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from the manure pile (Table 1). The assessed soil composition (soils 1, 2, 3) did not differ
significantly. Soils 1 and 2 were classified as sandy loam, while soil 3 was a loamy sand.
More detailed data on soil properties are given in Table S1.
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Figure 1. Place of sampling and location of manure pile.

Table 1. The content of fluoride ions, soil texture, extractable acidity, and exchangeable calcium cation
content in the analyzed soils.

Soil F− Content
mg × kg−1

Sand,
%

Silt,
%

Clay,
%

USDA Soil
Texture Classes pHKCl

Hh
cmol(+) × kg−1

Al3+

g × kg−1
Ca2+

cmol(+) × kg−1

1 2.1 70.38 26.75 2.87 sandy loam 5.5 2.52 4.2 3.60
2 4.19 65.81 30.55 3.65 sandy loam 4.9 4.16 5.9 3.65
3 4.9 75.50 22.26 2.24 loamy sand 4.9 3.90 4.7 2.24

The fluoride content in manure collected from the inside of the poultry house was
37–48 mg × kg−1 and the F− content in manure collected from the pile outside the chicken
house was 1 mg × kg−1.

The analyzed soils had a relatively low Ca2+ content, and total aluminum was at
the level of 4.2, 5.9, and 4.7 g × kg−1 (in soils 1, 2, and 3, respectively). Ca2+ and Al3+

contents were analyzed because these cations have a high affinity for F−, resulting in
high F retention in clay soils rich in Al and Ca [15,17]. The fluorine content of the soil is
also significantly affected by the soil pH. Under alkaline pH conditions, F mobility in the
soil increases [60,61]; the same pattern (higher F solubility) is also observed at pH below
5 [62]. It should be emphasized that the soils analyzed were acidic (Table 1). In addition,
fluoride-containing groundwater usually has a high pH and a high content of HCO3

− and
Na+ [5,63–65]. The soil parameters analyzed (Table 1 and Supplementary Table S1) clearly
indicate that the fluoride in analyzed samples was not a natural component of those soils
but was leaked from the manure. Moreover, the manure stored inside the chicken house
contained nearly fifty times more fluoride than the manure stored outside the chicken
house. Apparently, much of the initial content of fluorides in manure is gradually leaked
out due to atmospheric factors.
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Selecting the location of sampling points, we ruled out areas located close to industrial
centers, as Singh et al. [1] indicated that proximity to industrial plants can also be a source
of soil fluoride. Only the manure pile could be the source of fluorides in the soil studied in
this paper. It should be clearly stated that the source of fluoride ions in poultry excrement
is unknown. One can speculate that they could originate either in preparations used to
combat pests in broiler houses or medicinal substances containing fluorine.

Common duckweed was grown in soil extracts (samples taken from field at sites 1, 2,
3). We chose the duckweed as it is widely used as an indicator plant for the assessments of
effects of chemical pollutants on plant physiology and biochemistry. Previous studies have
mainly focused on heavy metal ions, especially Pb and Cd [66,67]. Common duckweed has
not been investigated for responses to fluoride contamination to date.

Across all of the soil extracts analyzed, it was shown that the duckweed showed
no morphological changes (Figure 2); the area of the shoots, their number, fresh and dry
weight, and color showed no significant differences across the analyzed samples. However,
with increased fluoride contents, there were significant decreases in chlorophyll content
(Table 2) and activity of the enzymes: chlorophyllase (Chlase) and delta-aminolevulinic
acid dehydratase (ALAD) (Figure 2H,I). The lowest ALAD value for soil 3 (fluoride level
4.9 mg × kg−1) was 98 nmol of porphobililinogen produced per 1 g of fresh weight within
1 h, while the Chlase activity for plants growing in this soil was 0.11 mmol of chlorophyllide
produced per 1 g of fresh weight within 1 h. A reduction in chlorophyll content was also
observed in these samples.
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Figure 2. General appearance of plants after 7 days of growth in soil extracts (initial number of plants
was ten)—(A–C); fresh weight [g]—(D); dry weight [g]—(E); percent frequency of green plants (green
bar), percent frequency of yellow fronds (yellow bar), number of green plants (blue bar), number of
yellow plants (red bar)—(F); surface area [cm2]—(G); chlorophyllase activity [mmol of chlorophyllide
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produced per 1 g of fresh weight within 1 h]—(H) and aminolevulinic acid dehydratase activity [as
nmol of porphobilinogen produced per 1 g of fresh weight within 1 h]—(I). Tests were conducted in
triplicates. The one-way analysis of variance (ANOVA) was carried out using Tukey’s post hoc test
(p ≤ 0.05). Small letters represent groups of significant difference.

Table 2. Chlorophyll concentration in common duckweed growing in aqueous soil extracts.
F− [mg × L−1], C [M] × 10−5 ± SD chlorophyll content. The one-way analysis of variance (ANOVA) was
carried out using Tukey’s post hoc test (p ≤ 0.05). Small letters represent groups of significant difference.

Chlorophyll a
Lambert–Beer Method

Chlorophyll a
Lichtenthaler,

Buschmann Method

Chlorophyll b
Lichtenthaler,

Buschmann Method

Content F−
[mg × L−1] C [M] × 10−5 ± SD C [M] × 10−5 ± SD C [M] × 10−5 ± SD

2.10 6.24 ± 0.04 a 6.25 ± 0.03 a 1.82 ± 0.03 a
4.19 5.27 ± 0.03 b 5.27 ± 0.05 b 1.61 ± 0.04 b
4.90 2.68 ± 0.02 c 2.68 ± 0.01 c 0.89 ± 0.03 c

Chlorophyll absorption spectra and chlorophyll concentrations calculated from the
Lambert–Beer law are shown in Supplementary Figure S1.

For soil 3, the chlorophyll content decreased by 57% relative to soil one (Table 2), but
the reduction in chlorophyll content was not noticeable when visually comparing plant
color (compare with Figure 2A–C). It should be noted that the amount of chlorophyll a was 3
to 4 times higher than chlorophyll b in all analyzed plants.

The F− content in duckweed was also assessed before as well as after culture in the
medium. It should be noted that the duckweed did take up F− and its content in the
surrounding medium decreased. The decrease in F− content is shown in Table 3.

Table 3. Fluoride ion content before and after seven-day growth of the common duckweed. The
one-way analysis of variance (ANOVA) was carried out using Tukey’s post hoc test (p ≤ 0.05). Small
letters represent groups of significant difference.

Initial F− Content [mg × L−1] Final F− Content [mg × L−1] Reduction in F− [%]

2.10 0.25 ± 0.01 a 88.0 a
4.19 0.19 ± 0.01 b 95.5 b
4.90 0.17 ± 0.004 b 96.5 b

2.2. Growth of Duckweed in Simulated Soil Extracts (50% MS Medium + F−)

To eliminate the influence of potential soil contaminants or deficiencies, other than the
presence of fluorine, some plants were grown in 50% MS medium supplemented with F−

at concentrations identical to those detected in the soil samples. It should be noted that
21 metals were detected in the analyzed soil, among them heavy metals, but none of them
exceeded the permissible levels (Table S1). Additionally, a treatment was used in which the
fluoride concentration was increased 100-fold compared to the soil with the lowest fluoride
content and a concentration of 4 mg × L−1 was additionally applied; 50% Murashige–
Skoog medium (50% MS) was used for duckweed, as it has been used successfully by other
researchers to test various types of environmental contaminants [68–70].

Plants grown on F−-supplemented 50% MS media showed no morphological differ-
ences from plants grown on soil extracts with the same F− concentrations; plant number,
surface area, and fresh and dry weight were identical in both types of treatments. Different
concentrations of fluorine also did not result in clear disturbances in plant appearance,
except for the highest F− concentration, which clearly caused plant death (Figure 3). At the
highest fluorine concentration (210 mg × L−1, not actually observed in studied soils), plants
did not increase in number from the first day of culture, and their shoots disintegrated into
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individual segments, which were totally chlorotic. Also, the ALAD and Chlase enzymes in
plants grown in 50% MS medium + fluorine showed similar activity patterns to those from
plants grown in soil extracts. An almost twofold increase in fluoride concentration from
2.10 to 4.19 or 4.90 mg × L−1 was not toxic to the plants. The only change that was observed
was a reduction in chlorophyll content, but even these changes were not detectable visually
but only by spectrophotometric determinations (Table 3).
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Figure 3. General appearance of plants after 7 days of growth in simulated soil extracts (50% MS
medium + F−)—(A–F); fresh weight [g]—(G); dry weight [g]—(H); percent frequency of green plants
(green bar), percent frequency of yellow fronds (yellow bar), number of green plants (blue bar),
number of yellow plants (red bar)—(I); surface area [cm2]—(J); chlorophyllase activity [mmol of
chlorophyllide produced per 1 g of fresh weight within 1 h]—(K) and aminolevulinic acid dehydratase
activity [as nmol of porphobilinogen produced per 1 g of fresh weight within 1 h]—(L). Tests were
conducted in triplicates. The one-way analysis of variance (ANOVA) was carried out using Tukey’s
post hoc test (p ≤ 0.05). Small letters represent groups of significant difference.

The chlorophyll decay profile was identical in plants grown on soil extracts to the
corresponding MS + fluorine plants with the same F− concentration. At a fluoride ion
dose of 210 mg × L−1, chlorophyll was present in trace amounts (0.02 × 10−7 M) and a
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reduction in chlorophyll content was visually apparent. Chlorophyll interactions with
heavy metals have been studied repeatedly in terrestrial as well as aquatic plants [71–74].
An important feature of the action of metals, including heavy metals, is the substitution
of Mg2+ ions in the porphyrin ring. Grajek et al. [71] indicated that after magnesium
replacement with cadmium, a 50% decrease in chlorophyll content is observed due to the
formation of the Cd-Chl complex. A decrease in fluorescence intensity and quenching by
the Cd-Chl complex was also observed. Fluoride ions cannot replace Mg2+, and therefore,
no color change was observed.

Plants growing in 50% MS medium took up nearly 100% of F− in the medium (Table 4),
similar to plants grown in soil extracts. Only at the highest F− concentration in 50% MS
did the plants take up no more than 30% of F− from the medium, and still it resulted in the
death of the plants.

Table 4. Molar concentration of chlorophyll C [M] extracted from common duckweed growing in
50% Murashige–Skoog medium. Small letters represent groups of significant difference.

Chlorophyll a
Lambert–Beer

Method

Chlorophyll a
Lichtenthaler,

Buschmann Method

Chlorophyll b
Lichtenthaler,

Buschmann Method

Initial F− Content
[mg× L−1] C [M] × 10−5 ± SD C [M] × 10−5 ± SD C [M] × 10−5 ± SD

0 12.25 ± 0.08 a 12.26 ± 0.08 a 3.19 ± 0.06 a
2.10 11.46 ± 0.08 b 11.48 ± 0.08 b 3.18 ± 0.06 b
4.00 11.23 ± 0.09 b 11.23 ± 0.10 b 3.04 ± 0.07 b
4.19 10.66 ± 0.02 c 10.66 ± 0.08 c 3.00 ± 0.08 b
4.90 6.51 ± 0.01 d 6.51 ± 0.08 d 1.80 ± 0.08 b
210 0 ± 0 e 0 ± 0 e 0 ± 0 e

2.3. Extracellular Reaction of Pure Chlorophyll a with Fluoride

In this section, we present the results of experiments on the effect of sodium fluoride on
pure (commercial) chlorophyll using spectroscopic methods (absorption and fluorescence).
Chlorophylls exhibit two main light absorption bands: the Soret band from 360 to 440 nm
and the Q band consisting of Qy from 640 to 680 nm and Qx from 600 to 640 nm. The
absorption and fluorescence measurement were carried out for a series of chlorophyll a solu-
tions with a constant concentration of 1 × 10−5 M and sodium fluoride with concentrations
corresponding to the fluorine content in the soil and Murashige and Skoog medium, and we
additionally used a sodium fluoride concentration of 420 mg × L−1. The experiment was
conducted for 21 weeks. We used chlorophyll a in our studies because its content in plants
is more than three times higher than that of chlorophyll b [75–79]; our results are shown
in Tables 2 and 4. Figures 4 and 5 show selected absorption and fluorescence spectra of
chlorophyll a with the addition of NaF at concentrations of 0, 0.021, 210, and 420 mg × L−1.
Figure 4A shows the results of chlorophyll a absorption tests without the addition of sodium
fluoride. It can be seen that without the presence of NaF, the absorption value of chloro-
phyll a in the Qy band at λ = 665 nm did not change. However, in the Soret band, the
maximum chlorophyll absorption at λ = 433 nm increased slightly over the 21 weeks of
the experiment. The fluorescence spectrum (Figure 4B) slightly shifted to the shortwave
side after 21 weeks of storing the solutions at 4 ◦C and in the dark. The temperature of
+4 ◦C was used in this study to minimize the degradation of chlorophyll a, and at the same
time, not to significantly limit the rate of the reaction between chlorophyll a and sodium
fluoride. It has been repeatedly shown that chlorophyll degradation is stimulated by
light and temperature [56,57,80–82]. For short-term storage of chlorophyll (for 3–4 weeks),
the recommended temperature is −20 ◦C, while for a longer storage, the recommended
temperature is −70 ◦C, and it prevents a significant decrease in the concentration of chloro-
phyll a [83]. In vitro, chlorophyll molecules are not protected against photooxidation [84].
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King et al. [85], however, showed that chlorophyll stored in vitro at temperatures close to
0 ◦C degrades much slower than at higher temperatures.
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In the case of treatment of chlorophyll with different doses of NaF, the absorbance value of
chlorophyll a decreased within 10 weeks from A = 0.602 to A = 0.577 for CNaF = 0.021 mg × L−1

(Figure 4C), and on the 10th week there was a shift in the absorption spectrum towards the
shortwave. In the Soret band, there was also a shift in the absorption spectrum towards the
short wavelength, and there was a large increase in the absorption of the newly created
band: from the value of A = 0.582 to A = 0.796. Two isosbestic points were visible in the
absorption spectra at wavelengths λ = 662 nm and λ = 435 nm, indicating the formation of
a new chlorophyll–fluoride complex. For the maximum concentration, Figure 5 shows a
fully developed spectrum of the complex (red line).

By carefully analyzing the Qy band for the max dose of NaF (Figure 5A), we see that
until the 10th week, the absorption band for chlorophyll decreases, and then this band
shifts significantly to the shortwave direction, and an increase in the newly formed band
at a wavelength of λ = 672 nm is observed. The value of this band reaches its maximum
at a concentration of 420 mg × L−1. The Soret band is changing significantly already in
the 10th week. Its vibronic structure is lost and a new band of the complex is created at a
wavelength of λ = 421 nm with a maximum of A = 1.026, for which the absorbance value in
week 21 was almost twice as high as for chlorophyll a with CNaF = 0.021 mg × L−1 (Figure 5).

The obtained results were fully confirmed by fluorescence tests. A strong shift of the
fluorescence spectrum towards the shortwave region was observed. A new fluorescence
band of the complex was created with a maximum at a wavelength of λ = 662 nm. A clear
isosbestic point was visible at a wavelength of λ = 666 nm and 702 mn (Figure 5B). The
reaction of HF with chlorophyll is known in the literature. However, this reaction causes
the removal of magnesium and the introduction of hydrogen in its place [86,87]. In our case,
we did not observe pheophytin production. The characteristic feature of the absorption
spectrum of pheophytin is two absorption bands at wavelengths of 506 and 536 nm, distin-
guishing this compound from chlorophyll. There were no peaks at wavelengths of 506 and
536 nm, which clearly indicates the absence of pheophytin formation. Furthermore, using
commercially highly purified pheophytin, we have shown that the presence of this com-
pound does not shift the chlorophyll absorption band along the wavelength axis towards
shorter wavelengths (Figure 6). We plotted pheophytin at two concentrations, chlorophyll a,
and the new chlorophyll-fluoride complex on a single graph to compare the absorption
spectra and demonstrate that there is no shift in absorption peaks concerning pheophytin.
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product of chlorophyll reaction with fluoride (—). The arrows show two peaks characteristic for
pheophytin at 506 and 536 nm.

The formation of pheophytin was observed during the reaction of tetracycline with
chlorophyll, where tetracycline “extracted” magnesium from the porphyrin ring of chloro-
phyll, which resulted in a distinct color change chlorosis [88]. Formation of the 3F2 chloro-
phyll a complex was demonstrated by Ogasawara et al. [89], showing that the formation
of such a complex causes a shift in the absorption spectrum by 3 nm. Our research also
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shows a 3 nm shift in the absorption spectra, confirming the incorporation of fluorine
in the same position. We also observed a significant shift in the fluorescence spectrum
of the resulting complex compared to pure chlorophyll. The fluorescence spectrum of
chemical compounds shifts only when the compound reacts and forms a complex [71].
In the analyzed solution, only two chemical compounds were present: chlorophyll and
fluoride, from which a new complex compound was formed. The appearance of two
isosbestic points (Figure 5B) at wavelengths 666 and 702 nm indicates the equilibrium
between chlorophyll and 3F2-chlorophyll in the solution. Based on the results obtained by
Ogasawara et al. [89], we suggest that in the new complex, fluorine was attached to the 32

position of chlorophyll. In our study, the formation of the fluorine derivative of chlorophyll
occurred under different conditions and via a different mechanism than that observed by
Ogasawara et al. [89]. In Ogasawara’s study, the reaction was conducted using pheophytin
as an intermediate product; however, as mentioned, this compound was undetectable in
our case, and the reaction proceeded with completely different dynamics (products visible
after 21 weeks). Spectroscopic analysis, however, suggests that the final product of the
reaction observed in this study was the same as that observed by Ogasawara et al. [89].

Therefore, we suggest that fluorine forms a new complex with chlorophyll a (Figures 4 and 5);
however, it does not knock out the magnesium (as is the case in plants responding to
tetracycline; [88]) but it is linked to the carbon in position 32 in the porphyrin ring, which
results in shifts of both the absorption and fluorescence spectra.

The paper confirms that antibiotics as environmental pollutants have a toxic effect on
plant metabolism, and particularly on photosynthesis. In the case of some pharmaceuticals
(e.g., tetracycline), these disorders are manifested by both restriction of growth rate and
pronounced chlorosis. Our research shows that the mechanism of phytotoxic action of
fluorides is different. As was found by many researchers [39–51], fluoride contamination
results in a broad spectrum of disruptions in plants. However, the focus of this paper is on
elucidating the mechanism of damage to chlorophyll molecules, as this aspect of fluorine
phytotoxicity has been inadequately understood thus far. Among the analyzed F− doses,
only the highest concentration (210 mg × kg−1) resulted in pronounced chlorosis and had
a lethal effect on the plants. We showed that F− even at low doses results in the formation
of a fluorinated derivative of chlorophyll with F− linked to the carbon in the porphyrin
ring in position 32. We sought to investigate whether, at the highest dose of F−, clearly
phytotoxic, its interaction with chlorophyll remains consistent with that observed at lower
doses. Our findings indicate that it does.

3. Materials and Methods
3.1. Collection of Soil and Manure Samples and Preparation of Extracts

Soil samples were taken directly from the surface layer (0–30 cm) of the arable lands
in the Warmia and Masuria voivodeship in Poland in an early spring 2021. Soil 1 was from
the arable field regularly fertilized with the manure and soils 2 and 3 were from the field in
near the manure pile (See Figure 1). Additionally, manure samples were collected from the
interior of the poultry houses and from the manure pile, located outdoors.

For each sampling site, six subsamples were collected from an area of 1 m2, homoge-
nized on the site after the removal of the upper layer of organic vegetative materials, and
mixed to provide a bulked sample for each site. The soils were characterized in terms
of their physicochemical properties (Table 1). Particle size distribution was measured by
laser diffraction method, using the Mastersizer 2000 apparatus with Hydro UM attachment
(Malvern Panalytical, Malvern, UK) [90]. The pH was measured potentiometrically in a
suspension in KCl solution (1 mol × L−1), extractable acidity was measured by Kappen
method, and exchangeable cations by atomic absorption spectroscopy after soil extraction
with 1 mol × L−1 CH3COONH4 [91].

In order to examine the effect of F pollution on common duckweed, water extracts were
made from the examined soils and used as growth media. For this purpose, 100 g of each
soil type was suspended in 100 mL of deionized water and shaken for 24 h on a Heidolph
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Unimax 1010 shaker (Heidolph, Schwabach, Germany) at 80 rpm. The samples were filtered
and the content of fluoride (F−) in the soil extract was determined (see Section 3.3). The
extracts were used as growth media for common duckweed.

3.2. Axenic Cultures of Duckweed (Lemna minor L.)

To eliminate other possible contaminants present in the soil, 50% Murashige and
Skoog medium [92] was used as a simulated soil extract and the fluorine was added at the
concentrations found in the soil extracts, at 2.1, 4.19, 4.9 mg × kg−1 of soil. Additionally,
the content of F− was increased 10 times compared to the lowest content detected in soil.

Axenic cultures of duckweed (Lemna minor L.), established at the Department of
Plant Physiology, Genetics and Biotechnology of the University of Warmia and Mazury
in Olsztyn, were used. Soil extract or 50% Murashige–Skoog (MS) medium (100 mL;
supplemented with an appropriate amount of fluoride) was placed in a glass jar (a capacity
of 250 mL) with 10 plants of duckweed, each with 3 visible fronds. The samples were
incubated for 7 days at 16 h/8 h photoperiod and day/night temperatures of 25 ◦C/17 ◦C
and with daytime light intensity of 3.4 klx (fluorescent lamp Osram L36W/77 Fluora,
Osram, Munich, Germany). After 7 days of culture, plant material from each jar was tested
for the activity of two enzymes: chlorophyllase (Chlase) and delta-aminolevulinic acid
dehydratase (ALAD). Chlorophyll contents and morphological parameters of plants from
each jar were also examined, including surface area of the fronds, fresh and dry weight,
and severity of chlorosis. Chlorosis was visually assessed using a stereo microscope and
by determining numbers of normal, green plants as opposed to the chlorotic plants. The
experiment was carried out with three replications.

3.3. Fluoride Content

Deionized water (with electroconductivity 0.05 µS × cm−1) from an R5 UV demineral-
izer (HydroLab, Straszyn, Poland) was used for preparation of fluoride standard solutions
and the mobile phase. A 3.6 mM Na2CO3 solution was used as the eluent (99.95–100.05%
ACS reagent, Sigma Aldrich, Buchs, Switzerland). Fluoride standards (1000 ± 2 mg × L−1,
TraceCERT® certified reference material) were obtained from Merck, Germany. Six-point
linear calibration curves with three replicates were made using F− standards in two ranges:
0.01–1 mg × L−1 and 1–40 mg × L−1. Samples were filtered through 0.45 µm pore size
25 mm PVDF syringe filters (ALWSCI Technologies Co., Shaoxing, China).

An ion chromatography system with a conductometric detector (CDD-10 AVP), sup-
plied by Shimadzu (Duisburg, Germany), was used to perform measurements. Eluent
conductivity suppression was performed using a XAMS anion membrane suppressor with
ASUREX-A100 automatic regenerator (Diduco AB, Umeå, Sweden). The Shodex SI-52 4E
column (PEEK, 5 µm particle size, 4 mm ID × 250 mm length) from Showa Denko KK,
Tokyo, Japan, was used. The eluent flow rate was 0.8 mL × min−1 with 30 min duration of
analysis. The oven containing the column and suppressor was heated to 40 ◦C. The volume
of each injected sample was 20 µL. The detection limit for F− was 3.1 µg × L−1. Calibration
curves for both ranges showed good linearity (R2 = 0.9996 and R2 = 0.9998, respectively).

3.4. Aminolevulinic Acid Dehydratase Assay

The analysis was performed according to Jiao et al. [93]. Plant material, 0.1 g of fresh
weight, was homogenized in 1 mL of 0.05 M Tris-HCl (pH 8.2) buffer containing 0.1 mM
DTT. The homogenate was centrifuged at 6000× g for 0.5 h at 4 ◦C. The supernatant was
used to measure enzymatic activity. Extract (1 mL) was added to 1.35 mL of 0.05 M Tris-HCl
buffer (pH 8.2) containing 0.1 mM DTT, 0.08 mL of 0.2 M MgCl2, and 0.27 mL of 1 mg × mL
aminolevulinic acid solution. The mixture was incubated for 1 h at 37 ◦C. Subsequently,
0.3 mL of 3 M TCA was added to stop the reaction. The sample was centrifuged at 6000× g
for 10 min. The supernatant was mixed with Ehrlich reagent added in 1:1 (v/v) ratio, and
after 10 min, the absorbance was measured at 555 nm. The molar absorption coefficient for
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PBG is 6.1 × 10−4. The activity of the enzyme was expressed as nmol of porphobilinogen
produced per 1 g of fresh weight within 1 h.

3.5. Chlorophyllase Assay

The analysis was carried out according to Zhang et al. [94]. The plant material was
homogenized in a mortar in liquid nitrogen. Plant material (1 g of fresh weight) was
added to 2 mL of extraction buffer composed of 0.1 M sodium-phosphate buffer (pH 6.0)
with 0.2% (v/v) Triton X-100, 30 g × L−1 PVPP, 1 mM PMSF and 5 mM cysteine. The
homogenate was centrifuged at 9000× g, 4 ◦C for 20 min. The supernatant was used to
measure enzymatic activity. Plant extract (0.2 mL) was added to 1 mL of 0.1 M sodium-
phosphate buffer (pH 7.0) with 0.15% Triton X-100 and 0.2 mL of chlorophyll a solution
in acetone. The mixture was incubated for 1 h at 40 ◦C, after which the reaction was
completed by adding 3 mL of hexane. The sample was stirred to produce an emulsion,
after which 9000× g at 4 ◦C was centrifuged for 2 min. Chlorophyllase activity was tested
by measuring the absorbance of the lower aqueous phase after centrifugation at 667 nm.
The molar absorption coefficient for chlorophyllide in acetone is 76.79 mM−1 × cm−1. The
enzyme activity was expressed in mmol of chlorophyllide produced per 1 g of fresh weight
within 1 h.

3.6. Chlorophyll Content Assay

Plants (fresh weight 300 mg) were homogenized in 5 mL methanol. The samples were
centrifuged at 7000× g for 5 min. The supernatant was collected and diluted 5× in methanol.
The absorbance of extract was determined using Cary 5000 UV-Vis NIR spectrophotometer.
Chlorophyll concentrations were calculated based on the Lambert–Beer law, using the
known molar extinction coefficient of chlorophyll a in methanol (ε = 66,600 M−1cm−1) [95].
Additionally, the content of chlorophyll a and b was determined using the formulas provided
by Lichtenthaler and Buschmann [96] for methanol solutions of chlorophyll. However,
absorbance values measured at A652 and 665 nm were substituted for A652.4 and A665.2,
respectively, in the Lichtenthaler and Buschmann formulas. This discrepancy arose because
our spectrophotometer was unable to set wavelength values containing fractions. The
obtained values in µg × mL−1 were then converted to mol × L−1.

Chl a (µg/mL) = 16.72 A665.2 − 9.16 A652.4

Chl b (µg/mL) = 34.09 A652.4−15.28 A665.2

3.7. Effect of Fluoride on Chlorophyll a

Chlorophyll a (Sigma) was dissolved in methanol (ChemPur, Karlsruhe, Germany)
to the concentration of 1 × 10−5 M and one of 3 concentrations of NaF, matching those
in previously tested soils and MS media. Samples were incubated at room temperature
in darkness for 10 days. Each day, spectrophotometric assay was performed using Cary
5000 UV-Vis NIR spectrophotometer for absorbance measurements and Cary Eclipse spec-
trophotometer for fluorescence measurements. Similarly, pheophytin (from ChromaDex,
Longmont, CO, USA) was dissolved in methanol at concentrations of 1 × 10−5 M and its
absorption was measured. All measurements were performed at temperatures of 25 ± 1 ◦C.
Absorbance was tested in the wavelength range from 310 to 750 nm, emission was tested
from 600 to 800 nm, and excitation was tested from 300 to 750 nm.

3.8. Experimental Procedure and Data Presentation

Each experiment was repeated three times and involved three internal replications.
The results were presented as means followed by standard deviations.
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3.9. Statistics

The results were analyzed using the one-way ANOVA test, and differences between
groups were analyzed using Tukey’s post hoc test with probability p ≤ 0.05. All analyses
were carried out using Statistica program 11.

4. Conclusions

1. Manure resulting as a by-product of poultry production contains phytotoxic levels
of fluorine.

2. Extracts of such contaminated soil clearly affect the growth rate rather than morphol-
ogy of Lemna minor as an indicator plant.

3. Chlorophyll a turns out to be the target of phytotoxic action of fluorine on Lemna plants.
4. This paper postulates the molecular mechanism of chlorophyll damage induced by

fluorine, which is fluorine entering the porphyrin ring at position 32, and leaving
magnesium ion at its central position.

5. Aquatic plants can serve as indicators of environmental pollution with fluoride, but
visual assessment of their condition is not sufficient for this purpose. It is necessary to
use at least simple instrumental analyses to reveal chlorophyll damage or changes in
the activity of enzymes associated with its biosynthesis and catabolism. It is necessary
to use at least simple instrumental analyses to reveal chlorophyll damage or changes
in the activity of enzymes associated with its biosynthesis and catabolism.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29102336/s1, Table S1: The content of fluoride ions
and physicochemical properties of soil—A, macroelements—B and other metals—C, D; Figure S1:
Absorption spectra of chlorophyll isolated from duckweed A—growing on soil extracts and—B in
conditions simulating soil extracts (50% MS + F− medium).
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70. Stefaniak, B.; Woźny, A.; Budna, I. Callus induction and plant regeneration in Lemna minor L. Biol. Plant. 2002, 45, 469–472.
[CrossRef]
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