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Abstract: Supercritical water gasification (SCWG) of lignocellulosic biomass is a promising pathway
for the production of hydrogen. However, SCWG is a complex thermochemical process, the modeling
of which is challenging via conventional methodologies. Therefore, eight machine learning models
(linear regression (LR), Gaussian process regression (GPR), artificial neural network (ANN), support
vector machine (SVM), decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and
categorical boosting regressor (CatBoost)) with particle swarm optimization (PSO) and a genetic
algorithm (GA) optimizer were developed and evaluated for prediction of H2, CO, CO2, and CH4

gas yields from SCWG of lignocellulosic biomass. A total of 12 input features of SCWG process
conditions (temperature, time, concentration, pressure) and biomass properties (C, H, N, S, VM,
moisture, ash, real feed) were utilized for the prediction of gas yields using 166 data points. Among
machine learning models, boosting ensemble tree models such as XGB and CatBoost demonstrated
the highest power for the prediction of gas yields. PSO-optimized XGB was the best performing
model for H2 yield with a test R2 of 0.84 and PSO-optimized CatBoost was best for prediction of
yields of CH4, CO, and CO2, with test R2 values of 0.83, 0.94, and 0.92, respectively. The effectiveness
of the PSO optimizer in improving the prediction ability of the unoptimized machine learning model
was higher compared to the GA optimizer for all gas yields. Feature analysis using Shapley additive
explanation (SHAP) based on best performing models showed that (21.93%) temperature, (24.85%) C,
(16.93%) ash, and (29.73%) C were the most dominant features for the prediction of H2, CH4, CO,
and CO2 gas yields, respectively. Even though temperature was the most dominant feature, the
cumulative feature importance of biomass characteristics variables (C, H, N, S, VM, moisture, ash,
real feed) as a group was higher than that of the SCWG process condition variables (temperature,
time, concentration, pressure) for the prediction of all gas yields. SHAP two-way analysis confirmed
the strong interactive behavior of input features on the prediction of gas yields.

Keywords: machine learning; artificial intelligence; biofuel; hydrogen; lignocellulosic biomass;
supercritical water gasification

1. Introduction

Ever-increasing urbanization, modernization, and industrialization of human society
have led to an exponential rise in energy consumption. Worldwide primary energy con-
sumption reached to 604 exajoules in 2022, which is a 2.1% rise from the 2021 level even
after the slowdown due to COVID-19 [1]. Nearly 494 exajoules of this energy demand is
fulfilled by fossil fuel sources, which amounts to 81.8% of total energy consumption [2].
Consumption of non-renewable fuel sources not only leads to fuel scarcity but also results
in environmental issues [3]. There is a pressing need of human society to reduce this
dependency on fossil fuels and shift to alternative renewable fuel sources.

Lignocellulosic biomass is easily available and abundant in nature, making it a cost-
effective, renewable, and sustainable source of energy generation [4]. Use of lignocellulosic
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biomass as a fuel source will also democratize the access to energy and improve the socio-
economics of countries that do not have reservoirs of fossil fuels [5]. At the recent COP 28
summit, 130 counties participated in the Global Renewables and Energy Efficiency Pro-
grams aimed to accelerate the clean energy transition by tripling the worldwide renewable
energy generation capacity to 11,000 GW by 2030 and rapidly improving the efficiency [6].
Sixty-six counties also set a target to reduce the emissions by 68% by 2050 compared to
2022 levels [7]. Sustainable production of biofuels from renewable lignocellulosic biomass
has the potential to not only aid the achievement of the net zero scenario, but also reduce
our dependency on non-renewable fossil fuel sources.

However, raw lignocellulosic biomass contains a high amount of moisture, which
requires pre-treatment for production of biofuels by conventional thermochemical pro-
cesses [8]. This reduces the efficiency of the convectional thermochemical processes for
processing of lignocellulosic biomass. Gasification of lignocellulosic biomass in the pres-
ence of supercritical water (SCW) can efficiently process high-moisture-containing biomass
without needing to pre-dry the feedstock [9]. At temperatures ≥ 371 ◦C and pressures ≥
22.1 MPa, water exists in its supercritical state, and is used as the reaction medium in the
supercritical water gasification (SCWG) process [10]. SCWG of lignocellulosic biomass is
a promising process for the production of hydrogen. Hydrogen can be used as a clean
source of energy for industry and transportation as it produces water as its only combustion
product apart from energy generation. It also finds an industrial use as a reducing agent for
steel production, in the hydrodesulfurization process in refineries, and for the production
of green chemicals, green ammonia, and methanol [11,12].

The SCWG process is a complex thermochemical conversion process involving various
competing reaction and complex reaction mechanisms [13]. Furthermore, due to the
heterogenous nature of lignocellulosic biomass, the chemical composition of biomass
differs between different biomass. Even the composition of biomass may change for the
same biomass depending on the source of biomass, difference in crop production, season,
and aging of the biomass. Biomass availability is also a serious supply chain issue for
biofuel production processes. The availability of biomass varies dramatically depending
on season, geographical location, cost, and ease of access. Additionally, industries typically
use a mixture of a variety of lignocellulosic biomass, the composition of which varies
drastically. Therefore, understanding the interactive influence and effects of the properties
of biomass on the gas yields of SCWG is pivotal for its commercialization. These properties
of biomass along with SCWG reaction conditions have interactive, complex, and non-linear
relationships on the gas yields of the SCWG process.

However, most of the studies have investigated only the effects of SCWG reaction
parameters on the SCWG process. Even though the conventional design of experiments
using response surface methodology or single univariate methods utilizes experimental
datasets, it can only study the effects of a limited number of input features on target features.
The number of experimental runs quickly increases with the increase in the number of
input features and the level of these features, making the performance of such experiments
infeasible. Moreover, univariate methods can only study the effect of one parameter at a
time and do not account for interactive behavior, whereas RSM utilizes linear regression
techniques which are prone to overfitting of the data. On the other hand, traditional
modeling techniques such as thermodynamic simulation, kinetics, and computational fluid
dynamics (CFD) are not capable of capturing these non-linear relationships and utilize
assumptions for simplifying the complex differential equations.

Since the advent of machine learning modeling, which is capable of efficiently solving
complex equations and captures these non-linear relationships using experimental data, it is
finding its use in various applications such as fraud detection [14], sentimental analysis [15],
and recommender systems [16]. Interpretable machine learning models are also being used
for thermochemical processes for conversion of biomass into biofuels [17–19].

Despite the widespread use of machine learning for investigation of complex processes,
the literature on the application of machine learning models to the SCWG process is still
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scarce. These studies have focused mostly on the prediction of hydrogen yields, while
other gas yields of SCWG are not considered; these other gases also constitute a significant
portion of SCWG gas yield and entail the mechanism of the SCWG process. Furthermore,
attention has been paid only towards the prediction power of machine learning models
themselves, and very little discussion has been provided about the interpretability of
these machine learning models; previous research also lacks the detailed reasoning of the
observed results of the effects of input features on gas yields. Moreover, extra parameters
such as reactor type, biomass type such as lignocellulosic or non-lignocellulosic, and nature
of feedstock such as real feed or model compounds are not considered or accounted for.

To address these knowledge gaps, in this study, eight machine learning models,
namely, linear regression (LR), Gaussian process regression (GPR), artificial neural network
(ANN), support vector machine (SVM), decision tree (DT), random forest (RF), extreme
gradient boosting (XGB), and categorical boosting regressor (CatBoost) with particle swarm
optimization (PSO) and a genetic algorithm (GA) optimizer were developed for hyperpa-
rameter tuning of machine learning models for prediction of H2, CH4 CO, and CO2 gas
yields of various lignocellulosic biomasses from the SCWG process. Reaction temperature
(temperature), reaction time (time), feedstock concentration (concentration), and reaction
pressure (pressure) were used as input features for SCWG reaction conditions. For biomass
characteristics, ultimate analysis (carbon content (C), hydrogen content (H), nitrogen con-
tent (N), and sulfur content (S)), proximate analysis (volatile matter (VM), moisture content
(moisture), ash content (ash)), and feed type (real feed) were used. In total, a dataset of
166 datapoints for the prediction of the H2 yield and 118 datapoints each for predictions
of CO, CO2, and CH4 gas yields, with no missing values, was developed using literature
studies, which utilized similar reactor setups and minimized variation in unaccounted-for
parameters. Shapley additive explanation (SHAP) was used for interpretable machine
learning to determine the most dominant features in the prediction of gas yields. Further-
more, one-way and two-way SHAP analyses were used to investigate the effects of input
features and their interactions on the prediction of gas yields. A detailed discussion on the
results of these analyses in the perspective of SCWG is provided with detailed reasoning.

2. Methods and Materials
2.1. Data Collection, Preprocessing, and Exploratory Data Analysis (EDA)

Data for the development of machine learning models were reviewed from research
articles on SCWG of biomass. Collected data were screened to only include lignocellulosic
biomass and batch reactors while filtering out the data points for non-lignocellulosic
biomass, and continuous and semi-batch reactors. Studies of only batch reactors were
included as most of the studies investigating SCWG of lignocellulosic biomass utilize the
batch reactor. This is due to the feed pumping limitation of lignocellulosic biomass slurry
in continuous reactors, especially at small research scale reactors. Furthermore, continuous
reactors suffer from fouling and scaling with local heat spots, deposition of feedstock, and
non-uniform heat transfer, especially for solid biomass. Moreover, the reaction mechanism
of degradation of biomass in continuous reactors differs greatly with the degradation
mechanism in batch reactors. Hence, to limit and eliminate the effects of the reactor on
gas yields to ensure consistency, only batch reactor studies of SCWG of lignocellulosic
biomass were considered. The dataset consisted of 28 types of different lignocellulosic
biomass collected from 16 research articles, which utilized a stainless steel (SS) 316 batch
reactor having nearly similar dimensions and reactor setups, which also minimized the
effects of unaccounted-for variables such as reactor material, heating rate, and reactor
dimensions. These lignocellulosic biomasses comprise cellulose, xylose, lignin, kraft lignin,
soybean straw, flax straw, canola straw, rice straw, cotton stalk, wheat straw, canola hull,
canola meal, pinewood, orange peel, aloe vera rind, banana peel, coconut shell, lemon peel,
pineapple peel, sugarcane bagasse, timothy grass, horse manure, pinecone, canola hull fuel
pellet, canola meal fuel pellet, oat hull fuel pellet, barley straw fuel pellet, and partially
burnt wood.
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Individual gas yields (H2, CO, CO2, and CH4) of SCWG of lignocellulosic biomass
in batch reactors were predicted. In total, 166 datapoints were used for the prediction of
hydrogen yield and 118 datapoints each were used for the predictions of CO, CO2, and CH4
gas yields, as some of the studies only reported hydrogen yield. SCWG of lignocellulosic
biomass is primarily dependent on SCWG process conditions and biomass characteristics.
Hence, SCWG reaction parameters and biomass characteristics were used as input variables.
Reaction temperature (temperature), feedstock concentration (concentration), reaction time
(time), and reaction pressure (pressure) were used as SCWG process condition variables. For
biomass characteristics, proximate analysis, ultimate analysis, and type of lignocellulosic
biomass were used as input features. Carbon content (C), hydrogen content (H), nitrogen
content (N), sulfur content (S) for ultimate analysis; while, ash content (ash), volatile matter
(VM), and moisture content (moisture) were used for proximate analysis. A categorical
feature (real feed) was used to represent the real feedstock or model compound. A value of
1 was assigned to ‘Real Feed’ for a real lignocellulosic biomass and a value of 0 was assigned
for model compounds of lignocellulosic biomass. Fixed carbon (FC) and oxygen content
(O) were filtered out to avoid collinearity, as these are indirectly calculated by subtracting
other components from 100% of proximate and ultimate analyses of biomass, respectively.

Exploratory data analysis (EDA) of the developed dataset was conducted for detailed
analysis, exploration of the dataset, and identifying the preliminary relationship between
input variables and target variables. The distribution of the input dataset is represented
via a box plot to analyze the spread of data and identify the outliers (Figure 1). The data
were preprocessed to remove outliers and the final dataset consisted of 166 datapoints for
hydrogen yield and 118 datapoints each for CO, CO2, and CH4 gas yields. The relationships
between the input variables and gas yields were analyzed using the Pearson correlation
coefficient (PCC) matrix (Figure 2). The values of PCC for any two variables vary from +1
to −1. A positive correlation between two features is represented by positive sign and +1
shows a strong positive relation, which indicates that a change in the value of one feature
will increase the value of the other feature positively with the same proportion. A negative
sign of the PCC value shows a negative relation between two features, meaning an increase
in the value of one feature will cause a decrement in the value of the other feature. A PCC
value of 0 shows that the two features are not related to each other and a change in the
value of either feature will not affect the other feature. PCC values among input features or
output features also represent the correlation between a pair of two input variables or a
pair of two output variables.

2.2. Machine Learning Model Development and Feature Analysis

Supervised machine learning models such as regression, artificial neural networks,
support vector machines, decision trees, and ensemble trees are commonly used machine
learning models for biomass conversion processes [17–19]. Supervised machine learn-
ing utilizes probabilistic and statistical approaches for model building, especially for a
structured dataset of a complex process [20]. The performance of these models varies
depending on the nature of the relationship between inputs and outputs, number and
quality of datapoints, and the complexity of the process. Thus, eight different types of
machine learning models (LR, GPR, ANN, SVM, DT, RF, XGB, and CatBoost) were screened
for the prediction of gas yields of SCWG.
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The LR machine learning model is simplest, and is based on simple regression tech-
niques. The LR model explains linear relationships quite well; however, it often fails to
capture the complex non-linear relationships of the thermochemical processes such as
SCWG. Nevertheless, the LR model is used as the baseline to compare and evaluate the
performance of other more advanced machine learning algorithms to model the complex
non-linear processes. GPR is a non-parametric probabilistic and Bayesian regressor [21].
It is highly flexible and can model complex processes, and the choice of kernel function
(covariance function) during the gradient process can control the smoothness, periodicity,
and other properties of the GPR model. ANN models are inspired by the functioning
and structure of the human brain. A typical ANN is composed of nodes (neurons) orga-
nized in layers and each node in one layer connects to nodes in the next layer through
weighted links [22]. ANNs are the most commonly used machine learning models for
thermochemical processes [17–19]. On the other hand, SVMs classify input vectors into
distinct categories within a high-dimensional space, and are adept at handling non-linear
separations through the use of kernels that project data into higher dimensions where they
can be linearly separated [23].

DT, RF, CatBoost, and XGB machine learning models fall under the category of tree-
based models. These tree-based models have high accuracy and can handle both categorical
and numerical variables having different ranges of values without needing to preprocess
the data. The decision tree (DT) model is the simplest and consists of a single tree model
based on feature splits on a Boolean condition (True or False) that results in the highest
information gain. However, a simple decision tree model is susceptible to overfitting and
noise. The RF model improves upon this by creating an ensemble of multiple decision
trees in a bagging fashion, each trained on a random subset of the data and features, the
results of which are averaged to reduce variance [24], whereas CatBoost and XGB are
gradient boosting models that build trees sequentially, where each new tree corrects the
errors of the previous trees. The CatBoost model provides an optimized approach and
it is a permutation-driven ordered boosting algorithm [25]. XGB is an advanced form of
gradient boosting, which offers a performance-oriented architecture that can efficiently
handle large-scale data [26]. However, it also requires intricate hyperparameter tuning to
achieve optimal performance.

Machine learning models have various parameters for the architect of the models, such
as the number of neurons and layers in ANN models, the number of nodes and maximum
depth in the case of the decision tree algorithm, or the type of kernel used in the SVM
algorithm. The performance of machine learning models is highly dependent on these
parameters. For example, a smaller number of neurons in an ANN model can lead to the
underfitting of the data, whereas a higher number of neurons can also lead to overfitting
and diminishing return, leading to intensive computing. Therefore, optimization of these
parameters, commonly referred to as hyperparameters of machine learning models, is
needed to ensure the optimal performance of machine learning models while ensuring
high efficiency.

In this study, two optimizer algorithms, particle swarm optimization (PSO) and the
genetic algorithm (GA), are utilized for hyperparameter tuning of machine learning models.
The genetic algorithm (GA) is based on the principle of genetics and natural selection for
the survival of the fittest [27]. GA algorithms first start with the initial population of the
solutions as analogues to genes or chromosomes, coded as the string of the binary (1 or
0) values. The GA algorithm utilizes genetic methodologies such as selection, mutation,
and crossover (recombination) to iteratively update the new generation of the population
to adapt to the changing environment, with aim of evolving the population towards the
optimal solutions [28]. Crossover and mutations introduce genetic diversity, enabling the
algorithm to explore new regions of the solution space. Over various populations, GA
converges to provide the population with high-quality genes or solutions.

Particle swarm optimization (PSO), on the other hand, is a heuristic algorithm, based
on the collective behavior of animals for feeding [29]. In PSO, each solution is analogous to
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the food and prey, and is referred to as a particle. A group or swarm of these particles is
initiated with a random position in the solution space [24]. These particles then iteratively
update their positions to hunt for the best position based on their current position and
surrounding points. The aim is to find the global optimum in the solution space. This gives
PSO the ability to handle non-linear and multidimensional optimization problems, which
is a key asset for optimization of the hyperparameters of the complex machine learning
models having multiple parameters to be optimized [30]. Thus, PSO effectively leverages
both position and velocity attributes in its search for optimal solutions.

For development of machine learning models, normalization of the clean and pre-
processed dataset was achieved using the StandardScaler operation of the sklearn library,
which normalizes the dataset around the mean of 0 and standard deviation of 1. This
helps to improve the prediction by scaling the input parameters and normalizing their
weightings to eliminate the effects of the range of input variables on prediction models.
These normalized data were then fed to machine learning models for development. Ma-
chine learning models were developed exclusively for each gas yield. The normalized
dataset was split into a training dataset and a test dataset. Splitting was performed using a
ratio of 80:20 for the training and testing datasets, using train_test_split from the sklearn
library of Python. Hyperparameters of each machine learning model for each gas yield
were optimized using PSO and GA algorithms, and the effectiveness of the optimizer was
compared with unoptimized machine learning models.

For evaluation of the predictive performance of each developed model, the coefficient
of determination (R2) and the mean squared error (MSE) were used as evaluation matrices.
R2 is the measurement of the explainability of the variation in target features (individual
gas yields) by the input features [31]. A model with a high value of R2 represents high
explainability of the target features, indicating a good fit by the developed machine learning
model. MSE is the measurement of the square of the difference between the predicted
value of the target feature by the machine learning model and the actual value of the target
feature in the experimental sample [32]. This represents the absolute measurement of the
fit of the dataset by machine learning models. The calculation equations of R2 and MSE are
provided in Equations (1) and (2).

Coefficient of determination (R2) = 1 − ∑N
n=1(yn − ŷn)

2

∑N
n=1(yn − y)2 (1)

Mean squared error (MSE) =
1
N

(yi − ŷi)
2 (2)

Here, N represents the total number of data points for output y. yn represents the
experimental value of output y for the nth datapoint and ŷn represents the predicted value
of output by the machine learning model for the nth datapoint, whereas y is the average or
mean of all predicted values of output y for all datapoints (N datapoints).

After the development and selection of the best performing model for each individual
gas yield, interpretation of machine learning is essential to understand how each input
feature contributes to and influences the prediction of the model. Shapley additive ex-
planation (SHAP) was used to explain the machine learning models. SHAP is based on
game theory, which allocates a contribution value to each input feature [33]. Traditionally,
Shapley values were used in corporate games among employees for the distribution of the
prizes based on their contribution. In SHAP, each feature is analogous to a player, which,
with other players (features), contributes to the prediction of the target feature. The SHAP
value is calculated by averaging the marginal contribution of a particular feature across all
possible combinations of input features. It helps to develop the relationship and interactive
influence of the input feature for each gas yield to understand degradation of complex
lignocellulosic biomass in SCWG. It also enables the interpretability of the machine learning
model to overcome their black-box nature.
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3. Results and Discussion
3.1. Exploratory Data Analysis (EDA)

EDA of dataset was conducted for preprocessing and assessment of the dataset. Anal-
ysis of the distribution and relationship between input features and target variables was
conducted to identify the outliers, handling of missing values, and cleaning of the dataset.
Missing values for some biomass properties features were filled using the other literature,
which had value of missing datapoint for the same feedstock from the same research group.
The final preprocessed and cleaned dataset consisted of 166 datapoints for hydrogen yield
prediction and 118 datapoints each for CO, CO2, and CH4 gas yield predictions.

The distribution of dataset was visualized using the box plot presented in Figure 1.
From Figure 1, it can be observed that the ranges of H2, CO, CO2, and CH4 gas yields were
(0.02–8.13 mmol/g), (0.00–1.64 mmol/g), (0.03–13.01 mmol/g), and (0.02–7.35 mmol/g),
respectively, while their means were 1.84, 0.38, 3.53, and 1.86 mmol/g, respectively. Sim-
ilarly, ranges of ‘Temperature’, ‘Time’, ‘Concentration’, ‘Pressure’, ‘C’, ‘H’, ‘N’, ‘S’, ‘VM’,
‘Moisture’, and ‘Ash’ input features were (300–651 ◦C), (10–80 min), (1.64–35.00 wt%),
(22–29 MPa), (36.10–85.00%), (3.39–6.80%), (0.00–6.40%), (0.00–11.20%), (21.90–95.00%),
(1.71–13.69%), and (0.00–16.70%), respectively. The dataset consisted of a wide range of
SCWG process conditions utilized for SCWG of lignocellulosic biomass for improving
the scope of the machine learning models. Furthermore, the dataset consisted of both
model compounds and real feed for lignocellulosic biomass, incorporating 28 different
types of lignocellulosic feedstocks comprising of cellulose, xylose, lignin, kraft lignin,
soybean straw, flax straw, canola straw, rice straw, cotton stalk, wheat straw, canola hull,
canola meal, pinewood, orange peel, aloe vera rind, banana peel, coconut shell, lemon peel,
pineapple peel, sugarcane bagasse, timothy grass, horse manure, pinecone, canola hull fuel
pellet, canola meal fuel pellet, oat hull fuel pellet, barley straw fuel pellet, and partially
burnt wood.

Correlations between pairs of two input features or pairs of two output variable, and
also between pairs of input features and output variables, are visualized using the PCC
correlation matrix (Figure 2). From Figure 2, both temperature and volatile matter (VM)
have the highest PCC coefficient of 0.29 for hydrogen yield. This shows that the increment in
temperature significantly increases hydrogen yield. It can be also observed that hydrogen
content (H) of biomass is highly correlated with VM, with PCC of 0.64. Furthermore,
hydrogen content has a high correlation with hydrogen yield, with PCC of 0.24. This shows
that the high volatile matter containing biomass usually has high hydrogen content, which
enhances the hydrogen yield. Among output parameters, hydrogen is strongly positively
correlated with CO2 yield. This is due to the fact that, in SCWG, hydrogen is produced
mainly via reforming and the water–gas shift reaction since the reforming reaction mainly
produces hydrogen with CO, which further undergoes a water–gas shift reaction to produce
more hydrogen or is consumed via a methanation reaction to produce methane. Since CO2
is also produced via a water–gas shift reaction along with hydrogen; thus, yields of CO2
and H2 are correlated.

3.2. Evaluation of Machine Learning Models

LR, GPR, ANN, SVM, DT, RF, XGB, and CatBoost machine learning models were
trained on the clean and preprocessed dataset for prediction of gas yields of SCWG of
lignocellulosic biomass. Hyperparameters of these machine learning models for each
gas yields were optimized using GA and PSO optimizer algorithms. The parameters of
GA and PSO optimizer algorithms are presented in Tables 1 and 2. Hyperparameters
and their ranges for optimization of each machine learning model for hydrogen yield
are presented in Table 3. The results of the optimized hyperparameters of each machine
learning model for hydrogen yield by GA and PSO optimizer algorithms are also presented
in Table 3. It can be observed that despite being heuristic optimization algorithms, both
GA and PSO algorithms are solved for different optimized hyperparameters. This is due to
differences in the search mechanisms of both algorithms to find optimal hyperparameters.
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Hyperparameters of each machine learning model for the prediction of other gas yields
were also optimized using GA and PSO optimizers.

Table 1. Parameters of the genetic algorithm (GA) for hyperparameter tuning of machine learn-
ing models.

Parameters Numbers

Generation (generations) 50

Crossover probability (crossover_prob) 0.8

Population size (population_size) 100

Mutation probability (mutation_prob) 0.2

Table 2. Parameters of the particle swarm optimization (PSO) algorithm for hyperparameter tuning
of machine learning models.

Parameters Numbers

Number of particles (n_particles) 30

Number of iterations (max_iter) 10

Inertial weight (alpha) 0.5

Personal attachment (beta) 1.5

Global attraction (gamma) 1.5

Table 3. Optimized hyperparameters of machine learning models by GA and PSO optimizers and the
search range for the prediction of hydrogen yield.

Hyperparameter Range Unoptimized GA PSO

Random forest (RF)

n_estimators 10–500 100 187 10

max_depth 1–50 NaN * 13 41

min_samples_split 2–10 2 3 2

min_samples_leaf 1–10 1 1 1

extreme gradient boosting (XGB)

learning_rate 0.01–0.5 NaN 0.402014 0.268485

n_estimators 50–500 NaN 408 500

max_depth 3–10 NaN 9 5

min_child_weight 1–7 NaN 5 1

gamma 0–0.5 NaN 0.141899 0.267668

subsample 0.5–1 NaN 0.989653 0.715084

colsample_bytree 0.5–1 NaN 0.975411 0.500000
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Table 3. Cont.

Hyperparameter Range Unoptimized GA PSO

Decision tree (DT)

max_depth 1–50 NaN 49 50

min_samples_split 2–50 NaN 8 4

min_samples_leaf 1–50 NaN 7 1

Support vector machine (SVM)

C 0.1–1000 1 462.771600 74.618075

epsilon 0.01–1 0.1 0.424860 0.141974

gamma 0.1–1 0.035418 0.045675

Categorical boosting regressor (CatBoost)

learning_rate 0.01–0.5 0.03 0.252239 0.439795

depth 4–10 6 7 5

l2_leaf_reg 1–10 3 7.786251 9.244647

Artificial neural network (ANN)

learning_rate_init 0.0001–0.1 0.001 0.010889 0.035365

hidden_layer_sizes 5–100 100 81.428966 36.580111

activation_function identity, logistic,
tanh, relu relu tanh logistic

Gaussian process regression (GPR)

sigma 0.0001–55 1 0.315774 0.050060

kernel_function RBF *, Matern RBF RBF RBF
* NaN: Not a Number; RBF: Radial Basis Function.

Unoptimized, GA-, and PSO-optimized machine learning models were compared and
evaluated using values of R2 and MSE of the respective machine learning models. The
results of R2 and MSE values during training and testing of the machine learning model are
presented in Figures 3–6. From Figure 3, it can be observed that for prediction of hydrogen
yield, the LR model demonstrated poor performance, with the lowest test R2 of just 0.14
and a very high test MSE of 1.79. This is due to the fact that the LR model utilizes a linear
regression mechanism during the learning of the machine learning model. It explains the
linear relationships between input features and output very well. However, it is not capable
of processing complex and non-linear datasets. The poor performance of the LR model
signifies the non-linear relationship between input features and hydrogen yield. Similarly,
GPR and SVM models also demonstrated moderate performance with a test R2 of 0.50 and
0.56, respectively. This is due to the fact that the GPR model is also based on regression
analysis, which also suffered due to non-linear relationship of SCWG features. The low
performance of the SVM model was also due to non-linearity of the SCWG process, which
affects the hyperplane separation and thus affects the performance of the SVM model.
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The ANN model usually shows relatively good performance for thermochemical
processes. However, the ANN model demonstrated moderate performance, with its test
R2 of 0.59. This is due to the fact that simple ANN models are susceptible to overfitting
of small datasets, especially those having non-linear complex relationships [34]. This is
also confirmed by its relatively high training R2 of 0.96 during the training of the model.
This highlights the overfitting and biasedness of the ANN model for prediction of the
hydrogen yield. A literature study also confirmed the susceptibility of the ANN model for
overfitting for prediction of the hydrogen yield. Zhao et al. [35] reported that for prediction
of the hydrogen yield from SCWG, ANN and GPR models suffered from overfitting due to
the use of a single training process, and these models do not utilize statical averaging or
bootstrap sampling compared to ensemble tree models. The SVM model is also susceptible
to overfitting due to similar reasons.

Among all unoptimized machine learning models, tree-based models demonstrated
high predictive power for hydrogen yield. The unoptimized XGB model showed a high
test R2 of 0.78 and low test MSE of 0.45. The XGB model also demonstrated high prediction
capabilities during training of the model, with a high training R2 of 0.999. This shows the
balanced performance of the unoptimized XGB model in both training and testing. The
unoptimized CatBoost model also performed well, with its test R2 of 0.72 followed by a
test R2 of 0.69 of the unoptimized RF model. Among tree-based models, the simple DT
model demonstrated the lowest test R2 of 0.61 compared to ensemble-based tree models. A
simple decision tree model is susceptible to overfitting of the dataset, which is minimized
in ensemble tree models. Ensemble tree models usually utilize a group of simple decision
tree models and either average the prediction of each tree model in the case of the RF model
or correct the error of the preceding tree sequentially in the case of the XGB and CatBoost
models [36]. This eliminates the biasedness of a single decision tree model and minimizes
the overfitting of the dataset by the machine learning model.

The use of GA and PSO optimizers improved the prediction power of nearly all
machine learning models. In general, hyperparameter-tuned machine learning models opti-
mized by the PSO algorithm outperformed the GA algorithm-optimized machine learning
models. This is due to the difference in the search mechanism of both algorithms for opti-
mal solutions, which resulted in the different optimized hyperparameters selected by both
algorithms. Since the performance of a machine learning model is dictated by its hyperpa-
rameters, GA- and PSO-optimized models differ in their prediction capabilities. Among all
unoptimized, GA-, and PSO-optimized machine learning models, the PSO-optimized XGB
model demonstrated the highest test R2 of 0.84 and the lowest test MSE of 0.34. Interestingly,
while the use of the PSO optimizer improved the test R2 of the XGB model, it also reduced
the training R2 to 0.98. In contrast, the training R2 scores were 0.999 for the unoptimized



Molecules 2024, 29, 2337 14 of 27

model and 0.98 for the GA-optimized model. This highlights the effectiveness of the PSO
optimizer algorithm in improving the robustness of the model by minimizing the biased-
ness and overfitting of the model, which resulted in improved performance on the test
dataset. PSO-optimized CatBoost also performed well, with its high test R2 of 0.80 and low
test MSE of 0.41. The order of test R2 values among PSO-optimized machine learning mod-
els was XGB-PSO > CAT-PSO > RF-PSO > DT-PSO > ANN-PSO > GPR-PSO > SVM-PSO.
On the other hand, the order of R2 among GA-optimized machine learning models was
CAT-GA > XGB-GA > RF-GA > SVM-GA > DT-GA > GPR-GA > ANN-GA.

For prediction of CH4 yield, among unoptimized machine learning models, the Cat-
Boost model showed superior performance, with its high test R2 of 0.78 for prediction
of methane yield from SCWG of lignocellulosic biomass (Figure 4). The unoptimized RF
model also performed well, with its test R2 of 0.66. Similar to the prediction of hydrogen
yield, the LR machine learning model performed worst among all machine learning models
for prediction of methane yield, with its lowest test R2 of 0.34 and highest test MSE of 1.60.
The performance of machine learning models was improved by the use of PSO and GA
optimizer algorithms. However, in general, the improvement in the prediction power of op-
timized machine learning models from unoptimized machine learning models was higher
with the PSO optimizer compared to the GA optimizer. Among all machine learning mod-
els, CatBoost models were the top three best performing models, with the PSO-optimized
CatBoost machine learning model resulting in the highest test R2 of 0.83, followed by 0.81
of the GA-optimized CatBoost model and 0.78 of the unoptimized CatBoost model. GA-
and PSO-optimized XGB models also showed comparable performance, with test R2 of 0.77
and 0.76. However, LR, GPR, and DT machine learning models demonstrated the worst
performance among all machine learning models.

Similar to the prediction of hydrogen yield and methane yield, CatBoost and XGB
were the best performing machine learning models for prediction of CO yield of SCWG
of lignocellulosic biomass (Figure 5). Among unoptimized machine learning models,
CatBoost models had the highest test R2 of 0.86, followed by 0.83 of XGB and 0.83 of the RF
model. The extent of improvement in the performance of machine learning models by the
PSO optimizer algorithm was also higher compared to the GA optimizer algorithm from
unoptimized machine learning models for the prediction of CO yield. The PSO-optimized
CatBoost model was the best performing machine learning model for prediction of CO
yield, with its highest test R2 of 0.94, followed by the GA-optimized CatBoost and PSO-
optimized XGB machine learning model. Among all machine learning models, LR and
GPR were the worst performing machine learning models.

The CatBoost model was also able to predict the CO2 gas yield of the SCWG process
(Figure 6). Among unoptimized machine learning models, the CatBoost model demon-
strated high prediction performance, with its test R2 of 0.83, followed by test R2 of 0.81
of XGB and 0.78 of RF. The PSO optimizer further improved the performance of machine
learning models, and the CatBoost-PSO model had the highest test R2 of 0.92 followed by
0.90 of XGB-PSO among all machine learning models. Similar to the prediction of other gas
yields, the PSO optimizer performed better compared to the GA optimizer in improving
the performance of unoptimized machine learning models. SVM, GPR, and LR had the
worst performance in the prediction of CO2 gas yield.

Thus, boosting ensemble-based machine learning models such as CatBoost and XGB
were clearly the best performing machine learning models for the prediction of gas yields
of the SCWG process. This is due to the use of the tabular and structured dataset, for which
ensemble tree-based model tends to perform the best [37]. Boosting ensemble tree models
have also demonstrated their superior prediction power in other thermochemical processes
such as pyrolysis [38], hydrothermal liquefaction [39], and hydrothermal carbonization [40].
Moreover, these boosting models utilize the decision of a group of multiple simple tree
models, which learn from the preceding tree specifically for the misclassified instances.
This limits overfitting, especially for smaller dataset. Studies also showed that the ensemble
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boosting algorithms outperform even the deep learning models for a variety of tabular
datasets [41].

In conclusion, XGB-PSO and CatBoost-PSO models demonstrated the highest pre-
diction power for the yields of H2, and CH4, CO, and CO2, respectively, for SCWG of
lignocellulosic biomass. Overall, the effectiveness of the PSO optimizer for hyperparameter
tuning of machine learning models was highest compared to the GA optimizer. Due to
the superior performance of these machine learning models, XGB-PSO and CatBoost-PSO
were selected for further analysis of the prediction of H2, and CH4, CO, and CO2 gas
yields, respectively.

3.3. Feature Analysis and Summary Plots

The impact of input features and their relative importance for prediction of gas yields
of SCWG process in machine learning models were studied using SHAP analysis. SHAP
analysis helps to overcome the black-box nature of machine learning models. SHAP values
quantify the contribution of each feature towards the prediction of a machine learning
model. The ‘base case’ refers to the model’s prediction using no feature information. Thus,
a positive SHAP value indicates that a feature has increased the prediction from the base
case, while a negative value indicates a decrease in the prediction power of the machine
learning model. A SHAP value of zero suggests the feature has no impact from the base case
prediction. This metric offers an intuitive means to interpret complex model predictions.

Feature importance plots, summary plots, and heat maps of SHAP values of input
features for prediction of H2, CH4, CO, and CO2 yields are presented in Figures 7–10. From
Figure 7, it can be observed that the temperature was the most dominant feature, with
feature importance of 21.93%, followed by (15.38%) hydrogen content (H), (11.68%) ash
content (ash), (10.84%) time, (9.41%) concentration, and (7.30%) carbon content (C) for
prediction of hydrogen yield by the XGB-PSO model. The high feature importance of
temperature for hydrogen yield is due to the endothermic nature of reforming, hydrolysis,
and water–gas shift reactions, which are favored at high reaction temperatures, enhancing
the hydrogen yield [42]. The SHAP summary plot also shows that an increase in the feature
value of temperature increased the SHAP values of hydrogen yield and shifted the SHAP
value points to right side (more positive). A more detailed analysis of each instance is
provided in the heat map of the SHAP value plot for hydrogen yield.
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Hydrogen content was the second most dominant feature for prediction of hydrogen
yield, which increased hydrogen yield with an increase in the value of hydrogen content.
This shows that hydrogen content of biomass contributes to the hydrogen yield, and
biomass with higher hydrogen content is recommended to achieve high hydrogen yield.
An increase in ash content also improved hydrogen yield. This is due to the presence of
alkali and alkaline earth metals (AAEMs) in the ash content of lignocellulosic biomass [43].
These AAEMs have catalytic effects in promoting reforming, hydrolysis, and water–gas
shift reactions, which improves the hydrogen yield [44]. However, higher values of ash
content also decreased the hydrogen yield, as indicated in the summary plot. Thus, only
the optimum amount of ash content in biomass is beneficial for hydrogen yield. Different
nature of components of ash content should also be considered as some of these components
in ash content may be less or more active in their catalytic activity for SCWG. For example,
silica (SiO2) present in ash content has very little catalytic activity compared to highly
active potassium (K) for the SCWG reaction.

Increase in reaction time (time) also increased the hydrogen yield since longer reac-
tion time allows sufficient time for hydrolysis and reforming reactions to take place that
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produce hydrogen and CO, enabling the water–gas shift reaction of CO in excess water for
production of more hydrogen [45]. Therefore, higher reaction time is beneficial for high
hydrogen yield. However, an increase in feedstock concentration decreased the hydrogen
yield since hydrogen is also produced from supercritical water (SCW), which acts as a
reactant in reforming, hydrolysis, and water–gas shift reactions. Additionally, feedstock
concentration measures the amount of biomass in a mixture of water and biomass, where
a high concentration indicates a greater amount of biomass in a relatively low amount of
water. Therefore, at high feed concentrations or at less water content in feedstock mix-
ture, reforming, hydrolysis, and water–gas shift reactions diminish as per Le Chatelier’s
principle, which decreases the hydrogen yield at high feedstock concentrations [46]. An
increase in carbon content (C) improved the hydrogen yield up to a certain extent; however,
a further increase in carbon content did not improve hydrogen yield. Thus, biomass with
high carbon content is only beneficial up to a certain extent.

These results are in agreement with the reported literature of SCWG of lignocellulosic
biomass, where the temperature is the most important parameter for the SCWG process,
followed by reaction time and feedstock concentration, while reaction pressure is the least
influential reaction parameter for SCWG of lignocellulosic biomass [47]. Among biomass
properties, hydrogen content (H), ash content (ash), and carbon content (C) were the most
dominant features, which indicates biomass with high hydrogen content and a moderate
amount of ash and carbon content is recommended for high hydrogen yield. Overall,
biomass properties had a high feature importance of 52.91% compared to feature importance
of 47.09% of SCWG reaction process parameters for the prediction of hydrogen yield. This
highlights the importance of screening most suitable lignocellulosic biomass feedstocks to
achieve high hydrogen yield. Thus, although optimization of SCWG conditions is necessary
for improving hydrogen yield, more attention should be paid to the selection of suitable
lignocellulose biomass for holistic optimization of the SCWG process for maximization of
hydrogen yield.

Feature analysis based on CatBoost-PSO for methane yield showed that the carbon
content (C) of the biomass was the most dominant feature, with its highest feature im-
portance of 24.85%, followed by (17.65%) temperature and (8.78%) volatile matter (VM)
of biomass (Figure 8). An increase in the carbon content of the biomass increased the
methane yield. This is due to the fact that carbon molecules in SCWG product gas are
facilitated by the carbon content of the biomass. An increase in reaction temperature
also increased the methane yield, which is due to the hydrogenation and methanation
of produced CO and CO2 at high reaction temperatures, which increased the methane
yield at high reaction temperatures [48]. Similarly, an increase in volatile matter (VM) of
biomass enhanced methane yield due to the ease of gasification of volatile matters in SCWG.
These volatile matters represent the alcohols, ketones, aldehydes, and organic acids. These
are the intermediates of the gasification in SCW, which are easily converted into gaseous
products such as methane, H2, and CO2 [13]. Therefore, an increase in the volatile matter
of biomass increased methane yield. Similar to hydrogen yield, biomass properties had
cumulative feature importance of 63.19% compared to 36.81% feature importance of SCWG
reaction conditions.

For CO gas yield, feature analysis revealed that the ash content (ash), volatile mat-
ter (VM), temperature, time, and concentration were the most influential features, with
feature importance of 16.93, 15.35, 15.05, 14.27, and 11.08%, respectively (Figure 9). Low
to moderate ash content had a negative impact, which is due to the fact that even though
AAEMs in ash content enhances reforming reactions, due to enhancement of water–gas
shift reactions, most of the produced CO is consumed for hydrogen production. Only at
a really high ash content, where the water–gas shift reaction attains equilibrium and an
increased content of AAEMs, the water–gas shift reaction is no longer enhanced, leading
to the increase in CO yield. This was also observed in hydrogen yield where really high
ash content actually decreased the hydrogen yield. Similarly, an increase in volatile matter
decreased the CO yield as high volatile matter promotes the further conversion of CO gas
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into methane and hydrogen via water–gas shift, methanation, and hydrogenation reactions.
Similarly, an increase in temperature and time also decreases CO yield, as at high reaction
temperature, water–gas shift reactions dominate and consume the CO. CO yield is high
at short reaction times as a short reaction time does not allow sufficient time for further
conversion of produced CO by consecutive water–gas shift and methanation reactions,
which are enabled at longer reaction times. This led to the decrement in CO yield at longer
reaction times. However, an increase in feedstock concentration increased the CO yield.
This is due to diminished activity of water–gas shift, methanation, and hydrogenation
reactions at high feedstock concentrations, which result in unutilized CO gas and thus
increases the yield of CO gas at higher feedstock concentrations [49].

Similar to methane yield, carbon content (C) of the biomass was the most dominant
feature for prediction of CO2 gas yield, having feature importance of 29.73%, which is fol-
lowed by (12.64%) temperature, (9.14%) volatile matter (VM), and (8.84%) time (Figure 10).
This is because most of the carbon content comes from the biomass itself, which resulted
in its highest feature importance for prediction of CO2 yield. Thus, an increase in carbon
content of biomass increased the CO2 gas yield. An increase in temperature increases the
conversion of CO to CO2 and hydrogen by enhancing the water–gas shift reaction. Similarly,
an increase in volatile matter of biomass favors the production of gaseous products due to
the ease of gasification of volatile matter resulting in an increase in yield of CO2 [50].

An increase in time also allows sufficient time for further conversion of produced CO
gas by enhanced water–gas shift reactions at longer reaction time, which increases the CO2
gas yield.

It can be observed that even though temperature has a high influence among SCWG
process features on gas yields of the SCWG process, biomass properties as a whole have
feature importance of 52.91, 63.19, 57.54, and 68.37% compared to 47.09, 36.81, 42.46, and
31.63% feature importance of SCWG process parameters for prediction of H2, CH4, CO,
and CO2 gas yields, respectively. Thus, biomass characteristic plays a key role in the SCWG
degradation mechanism of lignocellulosic biomass, which influences the gas distribution of
the SCWG process. The characteristics of biomass should be considered while optimizing
SCWG process parameters. These biomass properties and the SCWG process also have
interactive effects during the gasification of lignocellulosic biomass in SCW. Hence, study
of the interactive effects of these input features on gas yields of SCWG is important to
understand the degradation mechanism of lignocellulosic biomass in SCWG.

3.4. Two-Way SHAP Analysis

SHAP dependency plots for investigating the influence of interactive effects of the
most dominant input features for the prediction of gas yields are presented in Figures 11–14.
In a SHAP two-way dependency plot, the x-axis shows the value of feature 1 and the
primary y-axis represents the effect as the function of the SHAP values of the target variable
(gas yields). The effect of feature 2 is represented using the secondary y-axis and values are
represented using a gradient. This helps to visualize the interactive effects of the two input
variables on the SHAP values of the gas yields.
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Figure 12. SHAP two-way plot of interactive behavior of the most important input features on prediction of CH4 yield in the PSO-optimized CatBoost model. Figure 12. SHAP two-way plot of interactive behavior of the most important input features on prediction of CH4 yield in the PSO-optimized CatBoost model.
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Figure 13. SHAP two-way plot of interactive behavior of the most important input features on prediction of CO yield in the PSO-optimized CatBoost model. Figure 13. SHAP two-way plot of interactive behavior of the most important input features on prediction of CO yield in the PSO-optimized CatBoost model.
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Figure 14. SHAP two-way plot of interactive behavior of the most important input features on prediction of CO2 yield in the PSO-optimized CatBoost model. Figure 14. SHAP two-way plot of interactive behavior of the most important input features on prediction of CO2 yield in the PSO-optimized CatBoost model.
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From Figure 11, it can be observed that the input features had interactive effects on
the prediction of hydrogen yield. An increase in temperature for high hydrogen content
containing biomass resulted in the highest SHAP values for hydrogen yield. High SHAP
values for hydrogen yield can also be achieved for moderate hydrogen containing biomass
at high reaction temperatures. However, high hydrogen content at low reaction tempera-
tures does not necessarily translate into high hydrogen yield. Similarly, modest ash content
helped to achieve high hydrogen yields at high reaction temperatures. However, low
reaction temperature even at optimum Ash content does not result in high hydrogen yield.
For hydrogen content (H) and ash content of biomass, these features did not show much
interaction at a low hydrogen content and low ash content of biomass. Only at an optimum
ash content of biomass did an increase in hydrogen content of biomass result in the highest
hydrogen yield.

Similarly, for time and hydrogen content, the highest hydrogen yield was obtained at
highest hydrogen content and longer reaction time. However, at shorter reaction times and
low high hydrogen content, these features did now show much interaction for hydrogen
yield. This indicates that for efficient conversion of the hydrogen content of biomass into
hydrogen gas during gasification, higher reaction temperature, longer reaction time, and
optimum amount of ash content are required. Reaction temperature and reaction time
showed interactive behavior, where highest hydrogen yields were obtained at high reaction
temperature and longer reaction time. However, a comparable hydrogen yield can also be
obtained even at short reaction times at high reaction temperatures. Similarly, reaction time
and concentration also showed interactive behavior, and the highest hydrogen yield was
obtained at low feedstock concentration at longer reaction times. A high hydrogen yield
was obtained even at moderate to high concentrations at longer reaction times.

For prediction of methane yield, carbon content (C) and temperature showed high
interactive behavior (Figure 12). The highest SHAP values for methane yield were obtained
at high carbon content and high reaction temperatures. Strong interactive behavior was
observed at moderate to high values of carbon content and at high reaction temperatures.
Volatile matter (VM) and carbon content also showed high interactive behavior, and biomass
having high volatile matter usually had moderate to high carbon content, which resulted
in the highest methane yield. Temperature and VM of biomass also had strong interactive
behavior, and high methane yield was obtained at a high reaction temperature and high
amount of volatile matter. However, high SHAP values of methane yield were also observed
at moderate VM at high temperatures or, also at moderate temperatures for biomass having
high VM content. Temperature and time had interactive behavior for SHAP values of
methane yield at high temperature and longer reaction time. Similarly, hydrogen and
carbon content of biomass had an interactive effect on methane yield at high carbon and
high hydrogen content, which resulted in the highest SHAP values of methane yield.

Interestingly, ash content and volatile matter (VM) of biomass had interactive behavior
on SHAP values of CO yield; only at high ash content and moderate volatile matter were
the highest SHAP values of CO gas yield observed (Figure 13). However, temperature had
strong interactive behavior with ash content, volatile matter, and time. High SHAP values of
CO yield were obtained at low temperatures and low ash content of biomass. Similarly, low
temperature and moderate values of volatile matter resulted in the highest SHAP values of
CO yield. However, high values of CO yields were obtained at low reaction times at low
temperatures. Time also had strong interactive behavior with concentration and volatile
matter of biomass for CO yield, where high SHAP values of CO yield were observed at short
reaction times and high concentrations. However, low values of volatile matter at short
reaction times resulted in high SHAP values for CO yield. Volatile matter and concentration
themselves also had a strong interactive influence on CO yield, where high SHAP values of
CO yield were obtained at low volatile matter and high feedstock concentration.

Two-way SHAP analysis for prediction of CO2 yield showed that the carbon content
(C) of biomass and temperature had a strong interactive influence on SHAP values of
CO2 yield. The highest values of CO2 yield were observed at high carbon content and
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high temperatures (Figure 14). Similarly, carbon content of biomass also had interactive
behavior with volatile matter on CO2 yield, where an increase in volatile matter and carbon
content increased the SHAP values of CO2 yield. Temperature and volatile matter also
had interactive effects at high values of temperature and volatile matter, where an increase
in volatile matter at high reaction temperature increased the SHAP values of CO2 yield.
However, high comparable values of SHAP values were also observed at moderate volatile
matter at high temperatures.

Temperature and time also had a strong interactive influence on CO2 yield. Longer
reaction time and high temperature had the highest SHAP values of CO2 yield. Hydrogen
content also demonstrated strong interactive behavior with volatile matter and carbon
content of biomass on SHAP values of CO2 yield. High volatile matter and high hydrogen
content showed the highest values of CO2 yield. This is due to the relationship between
volatile matter and hydrogen content of biomass, as volatile matter of biomass represents
high quantities of organic acids, hydrocarbons, alcohols, aldehydes, and ketones. These
compounds usually have higher amounts of hydrogen atoms; thus, an increase in volatile
matter also represents an increase in hydrogen content, which had a positive interactive
influence on the SHAP values of CO2 yield. High values of hydrogen content and carbon
content also resulted in high values of CO2 yield.

Thus, the degradation of lignocellulosic biomass follows a complex reaction mech-
anism, and input variables such as SCWG reaction conditions and biomass properties
have an interactive influence during SCWG of lignocellulosic biomass. These interactive
influences of input features have an effect on the product distribution and individual gas
yields of the SCWG process. Two-way SHAP analysis highlighted the strong interactive
influence of the most dominant features on yields of H2, CH4, CO, and CO2. This shows
that the optimization of SCWG of lignocellulosic biomass is a complex process and requires
careful simultaneous tuning of various parameters to maximize the hydrogen yield of the
SCWG process.

Thus, this study presented a novel and comprehensive application of machine learning
models for SCWG of lignocellulosic biomass to elucidate the interactive effects of input
features and their complex relationship with gas yields. Utilization of only lab-scale
batch reactor data helped to better capture the relationships between input variables
and gas yields with minimum influence of other unaccounted-for variables. However, it
also resulted in limited scope of the prediction models only to a lab-scale batch reactor.
Nevertheless, the main objective of this study was to understand the complex degradation
behavior of lignocellulosic biomass during SCWG and interactive effects of input variables
on gas yields. This study presented a groundwork for comprehensive optimization of
SCWG reaction conditions and selection of suitable biomass, especially at industrial scale,
to maximize hydrogen gas yields with a high degree of certainty. This will foster efforts
being made for commercialization of SCWG at an industrial scale.

4. Conclusions

In conclusion, this study showed the successful implementation of machine learning
models for prediction of gas yields of SCWG of lignocellulosic biomass. Among the eight
screened machine learning model for eight prediction of gas yield of SCWG, boosting
ensemble tree models such as XGB and CatBoost models demonstrated superior prediction
power. For prediction of H2 yield, PSO-optimized XGB showed eight highest test R2 of
0.84, whereas, for prediction of CH4, CO, and CO2 gas yields, PSO-optimized CatBoost
showed highest test R2 of 0.83, 0.94, and 0.92, respectively. This is due to the use of series of
multiple simple decision tree models by boosting ensemble tree models, which improves
upon the preceding tree and prevents the overfitting of the dataset. Even though both
GA and PSO are heuristic algorithms, the use of the PSO optimizer was more effective
compared to the GA optimizer in hyperparameter tuning of machine learning models for
improving their prediction power. This is due to the difference in the search mechanisms of
these algorithms.
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Feature analysis based on PSO-optimized XGB showed that temperature was the most
dominant feature for prediction of H2 yield, with its highest feature importance of 21.93%.
For prediction of CH4, CO, and CO2 gas yields by the PSO-optimized CatBoost model,
carbon content (C), ash content (ash), and carbon content (C) were the most dominant
features, with feature importance of 24.85, 16.93, and 29.73%, respectively. Among SCWG
reaction conditions and biomass characteristics, biomass characteristics were most dom-
inant as a whole, with cumulative feature importance of 52.91, 63.19, 57.54, and 68.37%
for prediction of H2, CH4, CO, and CO2 gas yields from SCWG of lignocellulosic biomass,
respectively. SHAP two-way analysis revealed strong interactive behavior of input features
for the prediction of H2, CH4, CO, and CO2 gas yields and their effect on the SCWG reaction
mechanism. This also confirmed the complex and non-linear nature of the SCWG process.
Furthermore, the high importance of biomass characteristics highlights the importance of
the selection of suitable feedstocks and understanding the interactive behavior of compo-
nents of hydrogenous biomass for efficient conversion of lignocellulosic biomass into high
hydrogen yield. This work has laid the framework for a comprehensive optimization of the
SCWG process, which can be a key asset for the commercialization of the SCWG process at
an industrial scale.
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