Sugar-Based Surfactants: Effects of Structural Features on the Physicochemical Properties of Sugar Esters and Their Comparison to Commercial Octyl Glycosides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Solubility
2.3. Surface Activity
- −
- MeβGal-based esters show a much larger solubility limit than MeαGlc-based esters, suggesting that the solubility strongly depends on the head group configuration;
- −
- Ester group orientation also influences the dissolution of MeβGal-based esters and MeαGlc-based esters;
- −
- CMC is influenced by the ester orientation following the relationship: MeαGlc(C=O)OC8 < MeβGal(C=O)OC8 < MeβGalO(C=O)C7 < MeαGlcO(C=O)C7. The result suggests that the uronates derivatives exhibit lower CMC values than the acyl d-glycosides derivatives. The effect of ester group orientation on CMC was more evident for MeαGlc-derived esters than for MeβGal-derived esters;
- −
- γcmc is very similar for all these esters, suggesting that the ester linkage orientation does not play an important role in the effectiveness of reducing surface tension.
3. Materials and Methods
3.1. General
3.2. Synthesis of Methyl 6-O-acyl-d-glycopyranosides
3.2.1. General
3.2.2. General Procedure for One-Pot Protection/Selective Deprotection
3.2.3. General Procedure for Esterification
3.2.4. General Procedure for Deprotection
3.3. Compound Characterization Data
3.4. Physicochemical Characterizations
3.4.1. Solubility
3.4.2. Surface Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Von Rybinski, W.; Hill, K. Alkyl polyglycosides—Properties and applications of a new class of surfactants. Angew. Chem. Int. Ed. 1998, 37, 1328–1345. [Google Scholar] [CrossRef]
- Hill, K.; Rhode, O. Sugar-based surfactants for consumer products and technical applications. Fett-Lipid 1999, 101, 25–33. [Google Scholar] [CrossRef]
- Ruiz, C.C. Sugar-Based Surfactants: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2008; pp. 245–306. [Google Scholar]
- Rojas, O.J.; Stubenrauch, C.; Lucia, L.A.; Habibi, Y. Interfacial properties of sugar-based surfactants. In Biobased Surfactants and Detergents: Synthesis, Properties, and Applications; Hayes, D., Kitamoto, D., Solaiman, D., Ashby, R., Eds.; AOCS Press: Urbana, IL, USA, 2009; p. 457. [Google Scholar]
- Pal, A.; Mondal, M.H.; Adhikari, A.; Bhattarai, A.; Saha, B. Scientific information about sugar-based emulsifiers: A comprehensive review. RSC Adv. 2021, 11, 33004–33016. [Google Scholar] [CrossRef] [PubMed]
- Gaudin, T.; Lu, H.; Fayet, G.; Berthauld-Drelich, A.; Rotureau, P.; Pourceau, G.; Wadouachi, A.; Van Hecke, E.; Nesterenko, A.; Pezron, I. Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: A literature overview. Adv. Colloid Interface Sci. 2019, 270, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Razafindralambo, H.; Blecker, C.; Paquot, M. Screening of basic properties of amphiphilic molecular structures for colloidal system formation and stability. In Amphiphiles: Molecular Assembly and Applications; American Chemical Society: Washington, DC, USA, 2011; Volume 1070, Chapter 4; pp. 53–66. [Google Scholar]
- Razafindralambo, H.; Blecker, C.; Paquot, M. 8. Carbohydrate-based surfactants: Structure-activity relationships. In Advances in Chemical Engineering; Nawaz, Z., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Piispanen, P.S.; Persson, M.; Claesson, P.; Norin, T. Surface properties of surfactants derived from natural products. Part 1: Syntheses and structure/property relationships—Solubility and emulsification. J. Surf. Det. 2004, 7, 147–159. [Google Scholar] [CrossRef]
- Lu, B.; Vayssade, M.; Miao, Y.; Chagnault, V.; Grand, E.; Wadouachi, A.; Postel, D.; Drelich, A.; Egles, C.; Pezron, I. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations. Colloids Surf. B 2016, 145, 79–86. [Google Scholar] [CrossRef]
- Baker, I.J.A.; Matthews, B.; Suares, H.; Krodkiewska, I.; Furlong, D.N.; Grieser, F.; Drummond, C.J. Sugar fatty acid ester surfactants: Structure and ultimate aerobic biodegradability. J. Surf. Det. 2000, 3, 1–11. [Google Scholar] [CrossRef]
- Becerra, N.; Toro, C.; Zanocco, A.L.; Lemp, E.; Günther, G. Characterization of micelles formed by sucrose 6-O-monoesters. Colloids Surf. A 2008, 327, 134–139. [Google Scholar] [CrossRef]
- Cook, A.G.; Wardell, J.L.; Imrie, C.T. Carbohydrate liquid crystals: Synthesis and characterisation of the methyl-6-O-(n-acyl)-α-d-glucopyranosides. Chem. Phys. Lipids 2011, 164, 118–124. [Google Scholar] [CrossRef]
- Razafindralambo, H.; Richel, A.; Wathelet, B.; Blecker, C.; Wathelet, J.P.; Brasseur, R.; Lins, L.; Minones, J.; Paquot, M. Monolayer properties of uronic acid bicatenary derivatives at the air-water interface: Effect of hydroxyl group stereochemistry evidenced by experimental and computational approaches. Phys. Chem. Chem. Phys. 2011, 13, 15291–15298. [Google Scholar] [CrossRef]
- Ducret, A.; Giroux, A.; Trani, M.; Lortie, R. Enzymatic preparation of biosurfactants from sugars or sugar alcohols and fatty acids in organic media under reduced pressure. Biotechnol. Bioeng. 1995, 48, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Skagerlind, P.; Larsson, K.; Barfoed, M.; Hult, K. Glucoside ester synthesis in microemulsions catalyzed by Candida antartica component B lipase. J. Am. Oil Chem. Soc. 1997, 74, 39–42. [Google Scholar] [CrossRef]
- Blecker, C.; Piccicuto, S.; Lognay, G.; Deroanne, C.; Marlier, M.; Paquot, M. Enzymatically prepared n-alkyl esters of glucuronic acid: The effect of hydrophobic chain length on surface properties. J. Colloid Int. Sci. 2002, 247, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Moreau, B.; Lognay, G.C.; Blecker, C.; Brohée, J.C.; Chéry, F.; Rollin, P.; Paquot, M.; Marlier, M. Synthesis of novel D-glucuronic acid fatty esters using Candida antarctica lipase in tert-butanol. Biotechnol. Lett. 2004, 26, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Gouéth, P.Y.; Gogalis, P.; Bikanga, R.; Godé, P.; Postel, D.; Ronco, G.; Villa, P. Synthesis of Monoesters as Surfactants and Drugs from D-Glucose. J. Carbohydr. Chem. 1994, 13, 249–272. [Google Scholar] [CrossRef]
- Otto, R.T.; Bornscheuer, U.T.; Syldatk, C.; Schmid, R.D. Lipase-catalyzed synthesis of arylaliphatic esters of β-d(+)-glucose, n-alkyl- and arylglucosides and characterization of their surfactant properties. J. Biotechnol. 1998, 64, 231–237. [Google Scholar] [CrossRef]
- Savelli, M.P.; Van Roekeghem, P.; Douillet, O.; Cavé, G.; Godé, P.; Ronco, G.; Villa, P. Effects of tail alkyl chain length (n), head group structure and junction (Z) on amphiphilic properties of 1-Z-R-d,l-xylitol compounds (R=CnH2n+1). Int. J. Pharm. 1999, 182, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Garofalakis, G.; Murray, B.S.; Sarney, D.B. Surface Activity and Critical Aggregation Concentration of Pure Sugar Esters with Different Sugar Headgroups. J. Colloid Interface Sci. 2000, 229, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Kjellin, U.R.M.; Claesson, P.M.; Vulfson, E.N. Studies of N-Dodecyllactobionamide, Maltose 6′-O-Dodecanoate, and Octyl-β-glucoside with Surface Tension, Surface Force, and Wetting Techniques. Langmuir 2001, 17, 1941–1949. [Google Scholar] [CrossRef]
- Soultani, S.; Ognier, S.; Engasser, J.M.; Ghoul, M. Comparative study of some surface-active properties of fructose esters and commercial sucrose esters. Colloids Surf. A 2003, 227, 35–44. [Google Scholar] [CrossRef]
- Brown, G.M.; Dubreuil, P.; Ichhaporia, F.M.; Desnoyers, J.E. Synthesis and properties of some α-D-alkyl glucosides and mannosides: Apparent molal volumes and solubilization of nitrobenzene in water at 25 °C. Can. J. Chem. 1970, 48, 2525–2531. [Google Scholar] [CrossRef]
- Nilsson, F.; Söderman, O.; Johansson, I. Physical–Chemical Properties of the n-Octyl β-d-Glucoside/Water System. A Phase Diagram, Self-Diffusion NMR, and SAXS Study. Langmuir 1996, 12, 902–908. [Google Scholar] [CrossRef]
- Dupuy, C.; Auvray, X.; Petipas, C.; Rico-Lattes, I.; Lattes, A. Anomeric effects on the structure of micelles of alkyl maltosides in water. Langmuir 1997, 13, 3965–3967. [Google Scholar] [CrossRef]
- Fukada, K.; Kawasaki, M.; Seimiya, T.; Abe, Y.; Fujiwara, M.; Ohbu, K. Stereochemical aspects of micellar properties of esterified glucoside surfactants in water: Apparent molar volume, adiabatic compressibility, and aggregation number. Colloid Polym. Sci. 2000, 278, 576–580. [Google Scholar] [CrossRef]
- Lu, H.; Drelich, A.; Omri, M.; Pezron, I.; Wadouachi, A.; Pourceau, G. Catalytic synthesis of a new series of alkyl uronates and evaluation of their physicochemical properties. Molecules 2016, 21, 1301. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Pezron, I.; Gaudin, T.; Drelich, A. Non-equilibrium micelles formed by sugar-based surfactants under their Krafft temperature. Colloids Surf. A 2018, 540, 167–176. [Google Scholar] [CrossRef]
- Hato, M. Synthetic glycolipid/water systems. Curr. Opin. Colloid Interface Sci. 2001, 6, 268–276. [Google Scholar] [CrossRef]
- Matsumura, S.; Imai, K.; Yoshikawa, S.; Kawada, K.; Uchibor, T. Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides. J. Am. Oil Chem. Soc. 1990, 67, 996–1001. [Google Scholar] [CrossRef]
- Schmidt-Lassen, J.; Lindhorst, T.K. Exploring the meaning of sugar configuration in a supramolecular environment: Comparison of six octyl glycoside micelles by ITC and NMR spectroscopy. MedChemComm 2014, 5, 1218–1226. [Google Scholar] [CrossRef]
- Khan, A.A.; Chee, S.H.; McLaughlin, R.J.; Harper, J.L.; Kamena, F.; Timmer, M.S.M.; Stocker, B.L. Long-Chain Lipids Are Required for the Innate Immune Recognition of Trehalose Diesters by Macrophages. ChemBioChem 2011, 12, 2572–2576. [Google Scholar] [CrossRef]
- Kotena, Z.M.; Behjatmanesh-Ardakani, R.; Hashim, R. AIM and NBO analyses on hydrogen bonds formation in sugar-based surfactants (α/β-d-mannose and n-octyl-α/β-d-mannopyranoside): A density functional theory study. Liq. Cryst. 2014, 41, 784–792. [Google Scholar] [CrossRef]
- Straathof, A.J.J.; Van Bekkum, H.; Kieboom, A.P.G. Solid State and Solution Properties of Octyl D-Glucopyranosides. Starch 1988, 40, 438–440. [Google Scholar] [CrossRef]
- Sakya, P.; Seddon, J.M. Thermotropic and lyotropic phase behaviour of monoalkyl glycosides. Liq. Cryst. 1997, 23, 409–424. [Google Scholar] [CrossRef]
- Boyd, B.J.; Drummond, C.J.; Krodkiewska, I.; Grieser, F. How Chain Length, Headgroup Polymerization, and Anomeric Configuration Govern the Thermotropic and Lyotropic Liquid Crystalline Phase Behavior and the Air–Water Interfacial Adsorption of Glucose-Based Surfactants. Langmuir 2000, 16, 7359–7367. [Google Scholar] [CrossRef]
- Jmol Development Team. Jmol. 2016. Available online: http://jmol.sourceforge.net/ (accessed on 22 April 2024).
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena, 4th ed.; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-470-54194-4. [Google Scholar]
- Capalbi, A.; Gente, G.; La Mesa, C. Solution properties of alkyl glucosides, alkyl thioglucosides and alkyl maltosides. Colloids Surf. A 2004, 246, 99–108. [Google Scholar] [CrossRef]
- Lainez, A.; Del Burgo, P.; Junquera, E.; Aicart, E. Mixed Micelles Formed by n-Octyl-β-d-glucopyranoside and Tetradecyltrimethylammonium Bromide in Aqueous Media. Langmuir 2004, 20, 5745–5752. [Google Scholar] [CrossRef] [PubMed]
- Mańko, D.; Zdziennicka, A.; Jańczuk, B. Thermodynamic properties of adsorption and micellization of n-octyl-β-d-glucopyranoside. Colloids Surf. B 2014, 114, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.V.; Goulart, M.; Justino, J.; Neves, A.; Santos, F.; Caio, J.; Lucas, S.; Newton, A.; Sacoto, D.; Barbosa, E.; et al. Alkyl deoxy-arabino-hexopyranosides: Synthesis, surface properties, and biological activities. Bioorganic Med. Chem. 2008, 16, 4083–4092. [Google Scholar] [CrossRef]
- Frindi, M.; Michels, B.; Zana, R. Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solutions of nonionic surfactants with a short alkyl chain. 3. Surfactants with a sugar head group. J. Phys. Chem. 1992, 96, 8137–8141. [Google Scholar] [CrossRef]
- Shinoda, K.; Yamaguchi, T.; Hori, R. The Surface Tension and the Critical Micelle Concentration in Aqueous Solution of β-D-Alkyl Glucosides and their Mixtures. Bull. Chem. Soc. Jpn. 1961, 34, 237–241. [Google Scholar] [CrossRef]
- Sulthana, S.B.; Rao, P.V.C.; Bhat, S.G.T.; Nakano, T.Y.; Sugihara, G.; Rakshit, A.K. Solution Properties of Nonionic Surfactants and Their Mixtures: Polyoxyethylene (10) Alkyl Ether [CnE10] and MEGA-10. Langmuir 2000, 16, 980–987. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Li, Z.; Zhang, L.; Zhao, S.; An, J.; Yu, J. Synthesis and surface properties of several nonionic–anionic surfactants with straight chain alkyl-benzyl hydrophobic group. Colloids Surf. A 2007, 302, 532–539. [Google Scholar] [CrossRef]
- Alami, E.; Beinert, G.; Marie, P.; Zana, R. Alkanediyl-.alpha.,.omega.-bis(dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water interface. Langmuir 1993, 9, 1465–1467. [Google Scholar] [CrossRef]
- Ueno, M.; Takasawa, Y.; Miyashige, H.; Tabata, Y.; Meguro, K. Effects of alkyl chain length on surface and micellar properties of octaethyleneglycol-n alkyl ethers. Colloid Polym. Sci. 1981, 259, 761–766. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, H.; Xu, X.; Wang, X.; Wang, J.; Dong, G. Synthesis, surface and aggregation properties of nonionic poly(ethylene oxide) gemini surfactants. Colloids Surf. A 2008, 317, 339–343. [Google Scholar] [CrossRef]
- Razafindralambo, H.; Blecker, C.; Mezdour, S.; Deroanne, C.; Crowet, J.M.; Brasseur, R.; Lins, L.; Paquot, M. Impacts of the Carbonyl Group Location of Ester Bond on Interfacial Properties of Sugar-Based Surfactants: Experimental and Computational Evidences. J. Phys. Chem. B 2009, 113, 8872–8877. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-L.; Kung, K.K.-Y.; Wong, M.-K. Gold-catalyzed amide synthesis from aldehydes and amines in aqueous medium. Chem. Comm. 2012, 48, 4112–4114. [Google Scholar] [CrossRef]
- Wang, H.; Cui, Y.; Zou, R.; Cheng, Z.; Yao, W.; Mao, Y.; Zhang, Y. Synthesis of oligosaccharides using per-O-trimethylsilyl-glycosyl iodides as glycosyl donors. Carbohydr. Res. 2016, 427, 1–5. [Google Scholar] [CrossRef]
Family | Molecule | Tk (°C) | Solubility Limit (S/mM) | State |
---|---|---|---|---|
Alkyl glycosides | C8αGlc | 39 ± 1 | insoluble at RT; >100 at T > Tk | Powder |
C8βGlc | <4 | >100 at RT | Powder | |
C8αGal | <4 | >100 at RT | Highly viscous liquid | |
C8βGal | 29.0 ± 0.5 | 10 < S < 20 at RT; >100 at T > Tk | Powder | |
Alkyl uronates | MeαGlc(C=O)OC6 | <4 | ≤50 at RT | Wax |
MeαGlc(C=O)OC8 | <4 | 15~20 at RT | Wax | |
MeαGlc(C=O)OC10 | <4 | 0.5~0.75 at RT | Powder | |
MeαGlc(C=O)OC12 | 22.1 ± 0.2 | 0.02~0.05 at RT | Powder | |
MeβGal(C=O)OC8 | 31.6 ± 0.9 | insoluble at RT; >100 at T > Tk | Powder | |
Acyl glycosides | MeαGlcO(C=O)C5 | <4 | <40 at RT | Oil |
MeαGlcO(C=O)C7 | <4 | ≤10 at RT | Powder | |
MeαGlcO(C=O)C9 | 26.5 ± 0.2 | insoluble at RT; ≤1 at T > Tk | Powder | |
MeαGlcO(C=O)C11 | 42.9 ± 0.1 | insoluble at RT; ≤0.1 at T > Tk | Powder | |
MeβGalO(C=O)C7 | <4 | >100 at RT | Powder |
Family | Molecule | CMC (mM) | γcmc (mN/m) | Amin (Å2/molecule) | ΔGmic (kcal/mol) | ΔGads (kcal/mol) | C20 (mM) | pC20 | T (°C) |
---|---|---|---|---|---|---|---|---|---|
Alkyl glucosides | C8αGlc | 15.5 ± 0.5 | 30.7 ± 0.3 | 43 ± 1.8 | −4.7 | −7.0 | 2.8 | 2.6 | 50 |
C8βGlc | 21.2 ± 0.8 | 31.0 ± 0.15 | 38.5 ± 1.9 | −4.1 | −6.4 | 2.7 | 2.6 | 25 | |
C8αGal | 51.7 ± 1.5 | 29.5 ± 0.2 | 45.8 ± 0.9 | −3.6 | −6.4 | 3.8 | 2.4 | 25 | |
C8βGal | 20 ± 1 | 28.5 ± 0.5 | 46.3 ± 1.7 | −4.4 | −7.1 | 3.2 | 2.5 | 40 | |
Alkyl uronates | MeαGlc(C=O)OC6 | 55 ± 5 | 30.8 ± 0.8 | 39.2 ± 2.9 | −3.6 | −5.9 | 5.9 | 2.2 | 25 |
MeαGlc(C=O)OC8 | 6 ± 0.5 | 29.2 ± 0.35 | 41 ± 1 | −4.8 | −7.3 | 0.5 | 3.3 | 25 | |
MeαGlc(C=O)OC10 | 0.65 ± 0.5 | 28.1 ± 0.1 | 42.4 ± 2 | −5.9 | −8.6 | 0.05 | 4.3 | 25 | |
MeαGlc(C=O)OC12 | 0.056 ± 0.004 | 28.3 ± 0.3 | 45.6 ± 5 | −7.2 | −10.1 | 0.004 | 5.4 | 25 | |
MeβGal(C=O)OC8 | 6.9 ± 0.4 | 29.4 ± 0.36 | 42.9 ± 3.9 | −5.0 | −7.4 | 1.2 | 2.9 | 40 | |
Acyl glycosides | MeαGlcO(C=O)C5 | 105 ± 5 | 31 ± 0.1 | 40.1 ± 0.3 | −3.3 | −5.6 | 11.2 | 2.0 | 25 |
MeαGlcO(C=O)C7 | 9.8 ± 0.76 | 29.5 ± 0.5 | 39 ± 2 | −4.5 | −6.9 | 1.0 | 3.0 | 25 | |
MeαGlcO(C=O)C9 | 0.92 ± 0.08 | 27.9 ± 0.05 | 41.8 ± 0.9 | −5.8 | −8.4 | 0.08 | 4.1 | 30 | |
MeαGlcO(C=O)C11 | 0.08 ± 0.005 | 26.7 ± 0.25 | 45.8 ± 2.8 | −7.7 | −10.4 | 0.007 | 5.1 | 50 | |
MeβGalO(C=O)C7 | 8.5 ± 0.5 | 28.3 ± 0.35 | 42.7 ± 2.4 | −4.6 | −7.3 | 0.7 | 3.1 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Pourceau, G.; Briou, B.; Wadouachi, A.; Gaudin, T.; Pezron, I.; Drelich, A. Sugar-Based Surfactants: Effects of Structural Features on the Physicochemical Properties of Sugar Esters and Their Comparison to Commercial Octyl Glycosides. Molecules 2024, 29, 2338. https://doi.org/10.3390/molecules29102338
Lu H, Pourceau G, Briou B, Wadouachi A, Gaudin T, Pezron I, Drelich A. Sugar-Based Surfactants: Effects of Structural Features on the Physicochemical Properties of Sugar Esters and Their Comparison to Commercial Octyl Glycosides. Molecules. 2024; 29(10):2338. https://doi.org/10.3390/molecules29102338
Chicago/Turabian StyleLu, Huiling, Gwladys Pourceau, Benoit Briou, Anne Wadouachi, Théophile Gaudin, Isabelle Pezron, and Audrey Drelich. 2024. "Sugar-Based Surfactants: Effects of Structural Features on the Physicochemical Properties of Sugar Esters and Their Comparison to Commercial Octyl Glycosides" Molecules 29, no. 10: 2338. https://doi.org/10.3390/molecules29102338
APA StyleLu, H., Pourceau, G., Briou, B., Wadouachi, A., Gaudin, T., Pezron, I., & Drelich, A. (2024). Sugar-Based Surfactants: Effects of Structural Features on the Physicochemical Properties of Sugar Esters and Their Comparison to Commercial Octyl Glycosides. Molecules, 29(10), 2338. https://doi.org/10.3390/molecules29102338