Facile Synthesis of Dual-Functional Cross-Linked Membranes with Contact-Killing Antimicrobial Properties and Humidity-Response
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Copolymers
2.2. Cross-Linking Reaction of Copolymers
2.3. Quaternization of P(HEMA-co-DMAEMAx) Copolymers
2.4. Assessment of Antibacterial Activity
2.5. Humidity-Response Performances
3. Materials and Methods
3.1. Materials
3.2. Synthesis of P(HEMA-co-DMAEMAx) Copolymers
3.3. Synthesis of P(DMAm-co-GMAx) Copolymers
3.4. Post-Polymerization Quaternization
3.5. Preparation of Cross-Linked Membranes and Coatings
3.6. Chemical Characterization
3.6.1. Proton Nuclear Magnetic Resonance (1H-NMR)
3.6.2. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3.7. Physicochemical Characterization
3.7.1. Soluble Fraction and Water Uptake Studies
3.7.2. Contact Angle Measurements
3.8. Antimicrobial Activity Assay
3.8.1. Bacterial Culture Preparation
3.8.2. Bacterial Reduction Assay
3.9. Humidity-Driven Curvature Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, L.; Jiang, C.; Hu, G.; Liu, J.; Yang, B. Flexible noncontact sensing for human–machine interaction. Adv. Mater. 2021, 33, 2100218. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lou, Z.; Wang, K.; Zhao, S.; Yu, P. Biocompatible and biodegradable functional polysaccharides for flexible humidity sensors. Research 2020, 202, 8716847. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339. [Google Scholar] [CrossRef]
- Babutan, I.; Lucaci, A.D.; Botiz, I. Antimicrobial Polymeric Structures Assembled on Surfaces. Polymers 2021, 13, 1552. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.G.; Suratman, N.E.B.; Mah, J.J.Q.; Qu, C.; Li, Z. Surface antimicrobial functionalization with polymers: Fabrication, mechanisms and applications. J. Mater. Chem. B 2022, 10, 9349–9368. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, C.J. Progress for the development of antibacterial surface based on surface modification technology. Supramol. Mater. 2022, 1, 100008. [Google Scholar] [CrossRef]
- Jiao, Y.; Niu, L.; Ma, S.; Li, J.; Tay, F.R.; Chen, J. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017, 71, 53–90. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, L.; Magariños, B.; Torres, B.S.; Santos, Y.; Concheiro, A.; Hatton, T.A.; Alvarez-Lorenzo, C. Multifunctional polymeric guanidine and hydantoin halamines with broad biocidal activity. Int. J. Pharm. 2024, 651, 123779. [Google Scholar] [CrossRef]
- Taylor, P.; Zhou, Z.; Calabrese, D.R.; Taylor, W.; Finlay, J.A.; Callow, M.E.; Callow, J.A.; Fischer, D.; Kramer, E.J.; Ober, C.K. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. Biofouling J. Bioadhesion Biofilm. 2014, 30, 589–604. [Google Scholar] [CrossRef]
- Kanth, S.; Puttaiahgowda, Y.M.; Nagaraja, A.; Bukva, M. Recent advances in development of poly (dimethylaminoethyl methacrylate) antimicrobial polymers. Eur. Polym. J. 2022, 163, 110930. [Google Scholar] [CrossRef]
- Carmona-Ribeiro, A.; Carrasco, L.d.M. Cationic Antimicrobial Polymers and Their Assemblies. Int. J. Mol. Sci. 2013, 14, 9906–9946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Zhao, Y.Q.; Zhang, X.Y.; Ding, X.; Ding, X.; Yu, B.; Duan, S.; Xu, F.J. Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties. Biomater. Sci. 2020, 8, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yang, Y.; Yang, W.; Wang, X.; Liu, X.; Zhou, F.; Zhao, Y. One-step zwitterionization and quaternization of thick PDMAEMA layer grafted through subsurface-initiated ATRP for robust antibiofouling and antibacterial coating on PDMS. J. Colloid Interface Sci. 2022, 610, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Koufakis, E.; Manouras, T.; Anastasiadis, S.H.; Vamvakaki, M. Film Properties and Antimicrobial Efficacy of Quaternized PDMAEMA Brushes: Short vs Long Alkyl Chain Length. Langmuir 2020, 36, 3482–3493. [Google Scholar] [CrossRef]
- Mohammadi Sejoubsari, R.; Martinez, A.P.; Kutes, Y.; Wang, Z.; Dobrynin, A.V.; Adamson, D.H. “Grafting-Through”: Growing Polymer Brushes by Supplying Monomers through the Surface. Macromolecules 2016, 49, 2477–2483. [Google Scholar] [CrossRef]
- Assem, Y.; Khalaf, A.I. Preparation and Characterization of Polymeric Nanofibers by Electrospinning as Potential Antibacterial Materials. Colloid Surf. Sci. 2017, 2, 66–75. [Google Scholar]
- Druvari, D.; Koromilas, N.D.; Lainioti, G.C.; Bokias, G.; Vasilopoulos, G.; Vandarakis, A.; Baras, I.; Dourala, N.; Kallitsis, J.K. Polymeric Quaternary Ammonium-Containing Coatings with Potential Dual Contact-Based and Release-Based Antimicrobial Activity. ACS Appl. Mater. Interfaces 2016, 8, 35593–35605. [Google Scholar] [CrossRef]
- Druvari, D.; Koromilas, N.D.; Bekiari, V.; Bokias, G.; Kallitsis, J.K. Polymeric antimicrobial coatings based on quaternary ammonium compounds. Coatings 2018, 8, 8. [Google Scholar] [CrossRef]
- Druvari, D.; Kyriakopoulou, F.; Lainioti, G.C.; Vlamis, A.; Kallitsis, J.K. Humidity-Responsive Antimicrobial Membranes Based on Cross-Linked Copolymers Functionalized with Ionic Liquid Moieties. ACS Appl. Mater. Interfaces 2023, 15, 11193–11207. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, H.; Jacob, J.; Naumov, P. Photogated Humidity-Driven Motility. Nat. Commun. 2015, 6, 7429. [Google Scholar] [CrossRef]
- Palleau, E.; Morales, D.; Dickey, M.D.; Velev, O.D. Reversible Patterning and Actuation of Hydrogels by Electrically Assisted Ionoprinting. Nat. Commun. 2013, 4, 2257. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Jian, J.; Tu, T.; Yang, Z.; Ling, J.; Li, Y.; Wang, X.; Qiao, Y.; Tian, H.; Yang, Y.; et al. Wearable Humidity Sensor Based on Porous Graphene Network for Respiration Monitoring. Biosens. Bioelectron. 2018, 116, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.; Ha, J.; Lee, M.; Park, K.; Park, G.H.; Choi, T.H.; Cho, K.; Kim, H. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 2018, 3, 2629. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Liu, Z.; Guo, X.; Wang, Z.; Liu, J.; Wang, T.; Geng, S.; Chen, Y.; Cheng, P.; Zhang, Z. Engineering covalent organic frameworks with polyethylene glycol as self-sustained humidity-responsive actuators. Angew. Chem. Int. Ed. 2023, 62, e202216318. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhu, Y.; Zhou, P.; Weng, M. Multi-functional and integrated actuator based on carbon nanotube–cellulose nanofiber composites. Cellulose 2023, 30, 7221–7234. [Google Scholar] [CrossRef]
- Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Rezvani Ghomi, E.; Ramakrishna, S. pHEMA: An Overview for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6376. [Google Scholar] [CrossRef] [PubMed]
- Natsi, P.D.; Kanakis, M.; Sygellou, L.; Gartaganis, P.S.; Gartaganis, S.P.; Koutsoukos, P.G. Graphene-Derivative Coatings for the Prevention of Opacification Due to Calcification of Hydrophilic Intraocular Lenses. Crystals 2024, 14, 150. [Google Scholar] [CrossRef]
- Vivero-Lopez, M.; Pereira-da-Mota, A.F.; Carracedo, G.; Huete-Toral, F.; Parga, A.; Otero, A.; Concheiro, A.; Alvarez-Lorenzo, C. Phosphorylcholine-Based Contact Lenses for Sustained Release of Resveratrol: Design, Antioxidant and Antimicrobial Performances, and In Vivo Behavior. ACS Appl. Mater. Interfaces 2022, 14, 55431–55446. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bonilla, A.; López, D.; Fernández-García, M. Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative. Int. J. Mol. Sci. 2018, 19, 4120. [Google Scholar] [CrossRef]
- Druvari, D.; Tzoumani, I.; Piperigkou, Z.; Tzaferi, K.; Tselentis, D.; Vlamis-Gardikas, A.; Karamanos, N.; Bokias, G.; Kallitsis, J.K. Development of environmentally friendly biocidal coatings based on water-soluble copolymers for air-cleaning filters. ACS Omega 2022, 7, 35204–35216. [Google Scholar] [CrossRef]
- Ni, H.; Yang, Y.; Chen, Y.; Liu, J.; Zhang, L.; Wu, M. Preparation of a poly(DMAEMA-co-HEMA) self-supporting microfiltration membrane with high anionic permselectivity by electrospinning. e-Polymers 2017, 17, 149–157. [Google Scholar] [CrossRef]
- Vlachou, I.; Bokias, G. Investigation of Cross-Linked Chitosan-Based Membranes as Potential Adsorbents for the Removal of Cu2+ Ions from Aqueous Solutions. Materials 2023, 16, 1926. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, Y.; Song, Z.; Tan, Z.; Cheng, J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug Deliv. Rev. 2021, 170, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Vereshchagin, A.N.; Frolov, N.A.; Egorova, K.S.; Seitkalieva, M.M.; Ananikov, V.P. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int. J. Mol. Sci. 2021, 22, 6793. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Kong, L.; Ge, Q.; Zhang, W.; Zhou, X.; Zhang, L.; Wang, X. Antibacterial Activities of N-Alkyl Imidazolium-Based Poly(Ionic Liquid) Nanoparticles. Polym. Chem. 2019, 10, 209–218. [Google Scholar] [CrossRef]
- Li, P.; Zhou, C.; Rayatpisheh, S.; Ye, K.; Poon, Y.F.; Hammond, P.T.; Duan, H.; Chan-Park, M.B. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 2012, 24, 4130–4137. [Google Scholar] [CrossRef]
- Morrison, D.A.; Davis, T.P. Studies on the propagation reaction in the free radical polymerization of ethyl a-hydroxy methacrylate. Macromol. Chem. Phys. 2000, 201, 2128–2137. [Google Scholar] [CrossRef]
- Zhao, Z.; Hwang, Y.; Yang, Y.; Fan, T.; Song, J.; Suresh, S.; Cho, N.-J. Actuation and Locomotion Driven by Moisture in Paper Made with Natural Pollen. Proc. Natl. Acad. Sci. USA 2020, 117, 8711–8718. [Google Scholar] [CrossRef]
Complementary Copolymers | Composition % (w/w) | eqDMAEMA/eqGMA | Membrane |
---|---|---|---|
P(HEMA-co-DMAEMA80)/ P(DMAm-co-GMA42) | 50/50 | 1.5/1 | M1 |
70/30 | 3.5/1 | M2 | |
P(HEMA-co-DMAEMA58)/ P(DMAm-co-GMA42) | 50/50 | 1.2/1 | M3 |
70/30 | 2.8/1 | M4 | |
P(HEMA-co-DMAEMA40)/ P(DMAm-co-GMA42) | 50/50 | 0.8/1 | M5 |
70/30 | 2/1 | M6 | |
P(HEMA-co-DMAEMA22)/ P(DMAm-co-GMA40) | 50/50 | 0.4/1 | M7 |
70/30 | 1/1 | M8 | |
P(HEMA-co-DMAEMA80)/ P(DMAm-co-GMA23) | 50/50 | 2.8/1 | M9 |
70/30 | 6.6/1 | M10 | |
P(HEMA-co-DMAEMA58)/ P(DMAm-co-GMA23) | 50/50 | 2.2/1 | M11 |
70/30 | 5/1 | M12 | |
P(HEMA-co-DMAEMA40)/ P(DMAm-co-GMA23) | 50/50 | 1.5/1 | M13 |
70/30 | 3.6/1 | M14 | |
P(HEMA-co-DMAEMA22)/ P(DMAm-co-GMA23) | 50/50 | 0.8/1 | M15 |
70/30 | 2/1 | M16 |
Copolymers | Feed Composition (%mol qDMAEMA) | 1H-NMR Composition (%mol qDMAEMA) | Quaternized Copolymers |
---|---|---|---|
P(HEMA-co-DMAEMA22) | 16 | 13 | P(HEMA78-co-DMAEMA9-co-qDMAEMA13) |
P(HEMA-co-DMAEMA58) | 48 | 40 | P(HEMA42-co-DMAEMA18-co-qDMAEMA40) |
P(HEMA-co-DMAEMA80) | 80 | 71 | P(HEMA20-co-DMAEMA9-co-qDMAEMA71) |
Complementary Copolymers | Composition % (w/w) | eqDMAEMA/eqGMA | T (°C) | Soluble Fraction % | Water Uptake % |
---|---|---|---|---|---|
P(HEMA78-co-DMAEMA9co-qDMAEMA13)/ P(DMAm-co-GMA42) | 70/30 | 1/2 | 120 | 3 | 47 |
P(HEMA42-co-DMAEMA18-co-qDMAEMA40)/ P(DMAm-co-GMA42) | 70/30 | 1/3 | 120 | 10 | 209 |
Copolymers | Feed Composition (%mol DMAEMA) | 1H-NMR Composition (%mol DMAEMA) |
---|---|---|
P(HEMA-co-DMAEMA22) | 20 | 22 |
P(HEMA-co-DMAEMA40) | 40 | 40 |
P(HEMA-co-DMAEMA58) | 60 | 58 |
P(HEMA-co-DMAEMA80) | 80 | 80 |
Copolymers | Feed Composition (%mol GMA) | 1H-NMR Composition (%mol GMA) |
---|---|---|
P(DMAm-co-GMA23) | 20 | 23 |
P(DMAm-co-GMA42) | 40 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzoumani, I.; Druvari, D.; Evangelidis, M.; Vlamis-Gardikas, A.; Bokias, G.; Kallitsis, J.K. Facile Synthesis of Dual-Functional Cross-Linked Membranes with Contact-Killing Antimicrobial Properties and Humidity-Response. Molecules 2024, 29, 2372. https://doi.org/10.3390/molecules29102372
Tzoumani I, Druvari D, Evangelidis M, Vlamis-Gardikas A, Bokias G, Kallitsis JK. Facile Synthesis of Dual-Functional Cross-Linked Membranes with Contact-Killing Antimicrobial Properties and Humidity-Response. Molecules. 2024; 29(10):2372. https://doi.org/10.3390/molecules29102372
Chicago/Turabian StyleTzoumani, Ioanna, Denisa Druvari, Miltiadis Evangelidis, Alexios Vlamis-Gardikas, Georgios Bokias, and Joannis K. Kallitsis. 2024. "Facile Synthesis of Dual-Functional Cross-Linked Membranes with Contact-Killing Antimicrobial Properties and Humidity-Response" Molecules 29, no. 10: 2372. https://doi.org/10.3390/molecules29102372
APA StyleTzoumani, I., Druvari, D., Evangelidis, M., Vlamis-Gardikas, A., Bokias, G., & Kallitsis, J. K. (2024). Facile Synthesis of Dual-Functional Cross-Linked Membranes with Contact-Killing Antimicrobial Properties and Humidity-Response. Molecules, 29(10), 2372. https://doi.org/10.3390/molecules29102372