Recovery of Ellagic Acid from Pomegranate Peels with the Aid of Ultrasound-Assisted Alkaline Hydrolysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction of Free Phenolics from Pomegranate Peels
2.2. Extraction of Bound Phenolics from Pomegranate Peels
2.2.1. Model Fitting for TPC, ADPPH, AABTS, ACUPRAC, Punicalagin and Ellagic Acid Content
2.2.2. Major Effects of Ultrasound-Assisted Alkaline Hydrolysis Conditions
Effects on Total Phenol Content
Effects on In Vitro Antioxidant Activity
Effects on Punicalagin and Ellagic Acid Content
2.2.3. Multiple Response Optimisation for Ultrasound-Assisted Alkaline Hydrolysis Conditions
2.3. Target and Nontarget LC-QTOF-MS Analysis
2.4. GC-MS Analysis
3. Materials and Methods
3.1. Reagents and Solvents
3.2. Plant Material
3.3. Extraction of Free Phenolics Compounds from Pomegranate Peels
3.4. Experimental Design for Optimising the Ultrasound-Assisted Alkaline Hydrolysis of Pomegranate Peels towards the Recovery of Ellagic Acid
3.5. Spectrophotometric Determinations
3.5.1. Determination of the Total Phenol Content (TPC)
3.5.2. DPPH● Scavenging Activity (ADPPH)
3.5.3. ABTS●+ Scavenging Activity (AABTS)
3.5.4. Cupric ion Reducing Antioxidant Capacity (ACUPRAC)
3.6. RP-HPLC-DAD Analysis of Phenolic Compounds
3.7. LC-QTOF-MS Analysis
3.7.1. Screening Workflows
Target Screening
Nontarget Screening
3.8. GC-MS Analysis
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahramanoglu, I. Trends in pomegranate sector: Production, postharvest handling and marketing. Int. J. Agric. Life Sci. 2019, 3, 239–246. [Google Scholar]
- El Barnossi, A.; Moussaid, F.; Iraqi Housseini, A. Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. Biotechnol. Rep. 2021, 29, e00574. [Google Scholar] [CrossRef] [PubMed]
- Talekar, S.; Patti, A.F.; Vijayraghavan, R.; Arora, A. An integrated green biorefinery approach towards simultaneous recovery of pectin and polyphenols coupled with bioethanol production from waste pomegranate peels. Bioresour. Technol. 2018, 266, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Hussain, Z.; Aihetasham, A.; El-Sharnouby, M.; Abdul Rehman, R.; Azmat Ullah Khan, M.; Zahra, S.; Saleem, A.; Azhar, S.; Alhazmi, A.; et al. Pomegranate peels waste hydrolyzate optimization by Response Surface Methodology for Bioethanol production. Saudi J. Biol. Sci. 2021, 28, 4867–4875. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, D.; Orooji, Y.; Mazaheri, M.; Moghaddam, M.S.; Karimi-Maleh, H. Bioethanol production from pomegranate peel by simultaneous saccharification and fermentation process. Biomass Conv. Bioref. 2021. [Google Scholar] [CrossRef]
- Kaderides, K.; Kyriakoudi, A.; Mourtzinos, I.; Goula, A.M. Potential of pomegranate peel extract as a natural additive in foods. Trends Food Sci. Technol. 2021, 115, 380–390. [Google Scholar] [CrossRef]
- Gulsunoglu, Z.; Karbancioglu-Guler, F.; Raes, K.; Kilic-Akyilmaz, M. Soluble and insoluble-bound phenolics and antioxidant activity of various industrial plant wastes. Int. J. Food Prop. 2019, 22, 1501–1510. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Aguilar-Zárate, P.; Sepúlveda, L.; Buenrostro-Figueroa, J.; Ascacio-Valdés, J.A.; Aguilar, C.N. Effect of ultrasound on the extraction of ellagic acid and hydrolysis of ellagitannins from pomegranate husk. Environ. Technol. Innov. 2021, 24, 102063. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.; Wu, Q.; Chu, J.; Shi, J.; Shi, Q. An economic and eco-friendly method for the recovery of ellagic acid from waste pomegranate peel via thermal hydrolysis assisted extraction and liquid-liquid extraction. Sustain. Chem. Pharm. 2023, 33, 101139. [Google Scholar] [CrossRef]
- Mele, L.; Mena, P.; Piemontese, A.; Marino, V.; López-Gutiérrez, N.; Bernini, F.; Brighenti, F.; Zanotti, I.; Del Rio, D. Antiatherogenic effects of ellagic acid and urolithins in vitro. Arch. Biochem. Biophys. 2016, 599, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, G.; Andlauer, W. Innovative microwave-assisted hydrolysis of ellagitannins and quantification as ellagic acid equivalents. Food Chem. 2013, 138, 2430–2434. [Google Scholar] [CrossRef] [PubMed]
- Solomakou, N.; Kalfa, E.; Kyriakoudi, A.; Kaderides, K.; Mourtzinos, I.; Goula, A.M. An approach for the valorization of pomegranate by-products using ultrasound and enzymatic methods. Sustain. Chem. Environ. 2024, 5, 100060. [Google Scholar] [CrossRef]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Man, G.; Ma, Y.; Xu, L.; Liao, X.; Zhao, L. Comparison of thermal and non-thermal extraction methods on free and bound phenolics in pomegranate peel. Innov. Food Sci. Emerg. Technol. 2023, 84, 103291. [Google Scholar] [CrossRef]
- Liu, B.; Li, W.; Hu, L.; Zhao, J. Mild alkaline hydrolysis is an efficient and low-cost method for improving the free phenolic content and health benefit of pomegranate peel extract: Enhancing the phenolic content of pomegranate peel. J. Food Process. Preserv. 2013, 37, 694–700. [Google Scholar] [CrossRef]
- Dadwal, V.; Bhatt, S.; Sonkhla, K.; Joshi, R.; Gupta, M. Quantification of free and bound phenolics in bio-waste pomegranate peel and formulation of punicalagin rich rice extruded snacks. Int. J. Food Sci. Nutr. 2017, 4, 98–104. [Google Scholar] [CrossRef]
- Sun, S.; Huang, S.; Shi, Y.; Shao, Y.; Qiu, J.; Sedjoah, R.-C.A.-A.; Yan, Z.; Ding, L.; Zou, D.; Xin, Z. Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chem. 2021, 351, 129232. [Google Scholar] [CrossRef]
- Chaudhary, A.; Hussain, A.; Ahmad, Q.-A.; Manzoor, M.; Tahira, S.A.; Karita, S. Statistical optimization of alkaline treatment of pomegranate peel waste for bioethanol production. Biomass Convers. Bior. 2022. [Google Scholar] [CrossRef]
- Saleem, A.; Hussain, A.; Chaudhary, A.; Ahmad, Q.-A.; Iqtedar, M.; Javid, A.; Akram, A.M. Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Convers. Bior. 2022, 12, 1513–1524. [Google Scholar] [CrossRef]
- Moccia, F.; Flores-Gallegos, A.C.; Chávez-González, M.L.; Sepúlveda, L.; Marzorati, S.; Verotta, L.; Panzella, L.; Ascacio-Valdes, J.A.; Aguilar, C.N.; Napolitano, A. Ellagic acid recovery by solid state fermentation of pomegranate wastes by Aspergillus niger and Saccharomyces cerevisiae: A comparison. Molecules 2019, 24, 3689. [Google Scholar] [CrossRef] [PubMed]
- Gullon, B.; Pintado, M.E.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of polyphenolic profile and antibacterial activity of pomegranate peel (Punica granatum) flour obtained from co-product of juice extraction. Food Control 2016, 59, 94–98. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Licciardello, F.; Siracusa, L.; Muratore, G.; Hamdi, M.; Restuccia, C. Antimicrobial and antioxidant features of ‘Gabsiʼ pomegranate peel extracts. Ind. Crops Prod. 2018, 111, 345–352. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, X.; Shi, L.; Shalimu, D.; Ma, C.; Liu, Y. Phenolic profiles and antioxidant activities of six Chinese pomegranate (Punica granatum L.) cultivars. Int. J. Food Prop. 2017, 20, S94–S107. [Google Scholar] [CrossRef]
- Sabraoui, T.; Khider, T.; Nasser, B.; Eddoha, R.; Moujahid, A.; Benbachir, M.; Essamadi, A. Determination of punicalagins content, metal chelating, and antioxidant properties of edible pomegranate (Punica granatum L.) peels and seeds grown in Μοrocco. Int. J. Food Sci. 2020, 2020, 8885889. [Google Scholar] [CrossRef] [PubMed]
- Kaderides, K.; Goula, A.M.; Adamopoulos, K.G. A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innov. Food Sci. Emerg. Technol. 2015, 31, 204–215. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Misirli, K.; Mourtzinos, I.; Nenadis, N. Recovery of bound phenolic compounds from rice hulls via microwave-assisted alkaline hydrolysis. Sustainability 2023, 15, 8425. [Google Scholar] [CrossRef]
- Pyrka, I.; Mantzouridou, F.T.; Nenadis, N. Optimization of olive leaves’ thin layer, intermittent near-infrared-drying. Innov. Food Sci. Emerg. Technol. 2023, 84, 103264. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem. Rev. 2020, 19, 63–103. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; De Camargo, A.C.; Shahidi, F. Phenolic compounds of pomegranate by products (outer skin, mesocarp, divider membrane) and their antioxidant activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef] [PubMed]
- Man, G.; Xu, L.; Wang, Y.; Liao, X.; Xu, Z. Profiling phenolic composition in pomegranate peel from nine selected cultivars using UHPLC-QTOF-MS and UPLC-QQQ-MS. Front. Nutr. 2022, 8, 807447. [Google Scholar] [CrossRef] [PubMed]
- Nenadis, N.; Kyriakoudi, A.; Tsimidou, M.Z. Impact of alkaline or acid digestion to antioxidant activity, phenolic content and composition of rice hull extracts. LWT—Food Sci. Τechnol. 2013, 54, 207–215. [Google Scholar] [CrossRef]
- Proestos, C.; Sereli, D.; Komaitis, M. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chem. 2006, 95, 44–52. [Google Scholar] [CrossRef]
- Poyrazoğlu, E.; Gökmen, V.; Artιk, N. Organic acids and phenolic compounds in pomegranates (Punica granatum L.) grown in Turkey. J. Food Compos. Anal. 2002, 15, 567–575. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | Dependent Variables *,** | ||||||||
---|---|---|---|---|---|---|---|---|---|
Run | Duration of Sonication (min) (Χ1) | Solvent:Solid Ratio (v/w) (Χ2) | Concentration of ΝaOH (mol/L) (X3) | TPC (Y1) (mg GAE/100 g dry PPs) | ADPPH (Y2) (μmol Trolox/100 g PPs) | AABTS (Y3) (μmol Trolox/100 g PPs) | ACUPRAC (Y4) (μmol Trolox/100 g PPs) | Punicalagin Content (Y5) (mg/100 g PPs) | Ellagic Acid Content (Y6) (mg/100 g PPs) |
1 | 90 | 41 | 1 | 3892 ± 37 | 18,386 ± 803 | 24,441 ± 1103 | 37,011 ± 1872 | 22 ± 2 | 1426 ± 16 |
2 | 25 | 41 | 3 | 4390 ± 17 | 21,417 ± 533 | 29,907 ± 1143 | 26,884 ± 1088 | 58 ± 5 | 1560 ± 56 |
3 | 58 | 30 | 2 | 1577 | 9658 | 23,703 | 19,230 | 64 | 766 |
4 | 58 | 30 | 2 | 1562 | 9653 | 31,532 | 17,704 | 57 | 794 |
5 | 58 | 30 | 0.5 | 3640 ± 94 | 16,116 ± 651 | 17,634 ± 283 | 26,104 ± 1493 | 47 | 1803 |
6 | 25 | 18 | 3 | 2909 ± 64 | 11,310 ± 347 | 13,618 ± 577 | 15,118 ± 601 | 62 ± 1 | 885 ± 20 |
7 | 58 | 10 | 2 | 2716 ± 91 | 16,016 ± 643 | 18,819 ± 268 | 31,602 ± 840 | 72 ± 5 | 456 ± 17 |
8 | 25 | 18 | 1 | 2732 ± 50 | 69,832 ± 390 | 15,051 ± 1065 | 14,566 ± 729 | 41 ± 6 | 936 ± 55 |
9 | 90 | 18 | 1 | 3114 ± 41 | 11,163 ± 558 | 17,626 ± 1004 | 42,767 ± 1830 | 34 ± 4 | 930 ± 34 |
10 | 58 | 30 | 2 | 1364 | 8810 | 24,453 | 16,331 | 45 | 752 |
11 | 90 | 18 | 3 | 3757 ± 209 | 15,592 ± 630 | 21,064 ± 1070 | 28,818 ± 534 | 56 ± 5 | 1179 ± 53 |
12 | 3 | 30 | 2 | 2530 ± 116 | 12,837 ± 542 | 16,165 ± 381 | 25,688 ± 2250 | 58 ± 4 | 674 ± 54 |
13 | 58 | 30 | 2 | 1611 | 9136 | 26,189 | 15,225 | 68 | 791 |
14 | 25 | 41 | 1 | 5114 ± 253 | 22,211 ± 901 | 37,272 ± 920 | 32,168 ± 1080 | 52 ± 4 | 1553 ± 64 |
15 | 58 | 30 | 2 | 1316 | 9877 | 28,079 | 26,285 | 59 | 762 |
16 | 90 | 41 | 3 | 4282 ± 260 | 33,642 ± 777 | 32,340 ± 1372 | 31,396 ± 2643 | 32 ± 4 | 1828 ± 39 |
17 | 112 | 30 | 2 | 3032 ± 146 | 15,766 ± 191 | 21,045 ± 627 | 56,521 ± 220 | 28 ± 1 | 834 ± 50 |
18 | 58 | 30 | 2 | 1751 | 9939 | 29,993 | 28,841 | 61 | 727 |
19 | 58 | 30 | 4 | 5976 ± 173 | 18,709 ± 970 | 25,541 ± 922 | 26,501 ± 1078 | 109 ± 5 | 228 ± 17 |
20 | 58 | 49 | 2 | 4328 ± 103 | 29,547 ± 769 | 33,274 ± 1315 | 29,400 ± 636 | 48 ± 1 | 1412 ± 49 |
TPC | ADPPH● | AABTS●+ | ACUPRAC | Punicalagin Content | Ellagic Acid Content | |
---|---|---|---|---|---|---|
R2 (%) | 97.60% | 78.98% | 85.77% | 86.00% | 90.50% | 99.58% |
R2adj (%) | 95.20% | 57.90% | 71.54% | 72.01% | 80.99% | 99.17% |
R2pred (%) | 79.99% | 0.00% | 71.09% | 71.99% | 79.59% | 96.66% |
p-value/F-value/DF * | ||||||
Regression | 0.000/40.68/9 | 0.051/3.76/9 | 0.007/6.03/9 | 0.006/6.14/9 | 0.001/9.52/9 | 0.000/239.39/9 |
Lack of fit | 0.067/4.44/4 | 0.000/969.37/4 | 0.247/1.91/4 | 0.500/0.96/4 | 0.148/5.85/4 | 0.088/3.80/4 |
Linear Coefficients | 28.13/3 | 10.26/3 | 1.66/3 | 0.29/3 | 9.44/3 | 310.08/3 |
Χ1 | 0.456 | 0.260 | 0.578 | 0.001 | 0.000 | 0.001 |
Χ2 | 0.000 | 0.765 | 0.000 | 0.303 | 0.014 | 0.000 |
Χ3 | 0.210 | 0.334 | 0.477 | 0.089 | 0.021 | 0.000 |
Quadratic Coefficients | 92.36/3 | 3.04/3 | 3.15/3 | 7.45/3 | 2.84/3 | 401.76/3 |
X12 | 0.000 | 0.220 | 0.030 | 0.001 | 0.001 | 0.668 |
Χ22 | 0.000 | 0.033 | 0.940 | 0.074 | 0.320 | 0.000 |
Χ32 | 0.000 | 0.292 | 0.177 | 0.597 | 0.071 | 0.000 |
Interactive Coefficients | 6.50/3 | 7.26/3 | 2.55/3 | 1.73/3 | 2.75/3 | 16.23/3 |
X1X2 | 0.007 | 0.040 | 0.081 | 0.069 | 0.035 | 0.198 |
Χ1X3 | 0.059 | 0.014 | 0.085 | 0.371 | 0.832 | 0.000 |
X2X3 | 0.148 | 0.028 | 0.891 | 0.877 | 0.159 | 0.080 |
Model | Response | Actual Value of Factors |
---|---|---|
A | TPC | TPC = 8944.20 − 39.73X1 − 209.85X2 − 3997.66X3 + 0.47X12 + 5.70X22 + 1010.23X32 − 0.86X1X2 + 6.4X1X3 − 13.2X2X3 (Equation (1)) |
B | AABTS | AABTS = −10,047.7 + 330.03X1 + 907.86X2 + 5191.61X3 − 2.42X12 + 0.58X22 − 2054.08X32 − 6.83X1X2 + 81.52X1X3 − 16.83X2X3 (Equation (2)) |
C | ACUPRAC | ACUPRAC = 23,319.2 − 62.99X1 − 647.22X2 + 3658.91X3 + 6.43X12 + 23.01X22 − 1167.55X32 − 10.89X1X2 − 60.04X1X3 + 28.59X2X3 (Equation (3)) |
D | Punicalagin Content | Punicalagin Content = −18.5 + 0.96X1 + 1.76X2 + 33.2709X3 − 0.01X12 − 0.01X22 − 4.72X32 − 0.01X1X2 + 0.02X1X3 − 0.3X2X3 (Equation (4)) |
E | Ellagic Acid Content | Ellagic Acid Content = 2607.45 − 3.24X1 − 6.71X2 − 2115.82X3 + 0.004X12 + 0.51X22 + 481.16X32 − 0.05X1X2 + 2.82X1X3 +2.4X2X3 (Equation (5)) |
Factor | Optimum Actual Values | Predicted Values | Mean Experimental Values * |
---|---|---|---|
Duration (min) | 32 | TPC (mg GAE/100 g dry PPs) | |
4987 | 4230 ± 190 | ||
AABTS (μmol Trolox/100 g dry PPs) | |||
Solvent: Solid Ratio (v/w) | 48:1 | 36,230 | 32,398 ± 1817 |
ACUPRAC (μmol Trolox/100 g dry PPs) | |||
31,860 | 29,816 ± 1955 | ||
NaOH Concentration (mol/L) | 1.5 | Punicalagin Content (mg/100 g dry PPs) | |
56 | 59 ± 3 | ||
Ellagic Acid Content (mg/100 g dry PPs) | |||
1477 | 1457 ± 71 |
Retention Time (min) | Adduct Type | Chemical Formula | Concentration (μg/mL) | Compound Name |
---|---|---|---|---|
Target analytes | ||||
4.92 | [M − H]− | C15H14O6 | 0.09 | Catechin |
7.07 | [M − H]− | C27H30O16 | 0.22 | Rutin |
8.49 | [M − H]− | C15H10O7 | 0.05 | Quercetin |
8.77 | [M − H]− | C15H10O6 | 0.11 | Luteolin |
9.33 | [M − H]− | C15H10O6 | 0.13 | Kaempherol |
9.45 | [M − H]− | C15H10O5 | 0.29 | Apigenin |
6.46 | [M − H]− | C15H12O7 | 0.05 | Taxifolin |
4.11 | [M − H]− | C7H6O4 | 1.04 | Protocatechuic acid |
Non-target analytes | ||||
4.89 | [M − H]− | C9H8O4 | Not quantified | Caffeic acid |
6.49 | [M − H]− | C10H10O4 | Not quantified | Ferulic acid |
7.34 | [M − H]− | C14H6O8 | Not quantified | Ellagic acid |
7.51 | [M + H]− | C9H8O3 | Not quantified | p-Coumaric acid |
Compounds | Retention Time (Rt) | m/z |
---|---|---|
Amino acids | ||
Glycine | 8.37 | 174,145,130 |
Cystathionine | 9.65 | 366,206,147 |
Organic acids | ||
Succinic acid | 12.09 | 147,247,73 |
Fumaric acid | 12.59 | 245,147,75 |
Malic acid | 14.37 | 147,233,245 |
Citric acid | 18.27 | 273,147,363 |
Sugar alcohols | ||
Myo-inositol | 19.87 | 305,217,147 |
Saccharides (mono- and di-) | ||
Fructose | 18.19 | 437,217,204 |
D-Glucose | 18.93 | 204,191,217 |
D-Sorbitol | 19.30 | 319,205,147 |
D-Mannitol | 19.34 | 319,205,147 |
Phenolic acids | ||
Vanillic acid | 17.58 | 297,312,267 |
p-Coumaric acid | 17.86 | 308,293,219 |
Isoferulic acid | 19.20 | 338,323,308 |
Gallic acid | 19.58 | 458,281,73 |
Caffeic acid | 21.32 | 396,381,219 |
Sinapinic acid | 22.26 | 368,338,353 |
Ellagic acid | 30.19 | 575,487,73 |
Symbols | Variable | Level | ||||
---|---|---|---|---|---|---|
Coded value | ||||||
−a | −1 | 0 | +1 | +a | ||
Uncoded value | ||||||
Χ1 | Duration of sonication (min) | 3 | 25 | 58 | 90 | 112 |
Χ2 | Solvent:solid ratio (v/w) | 10:1 | 18:1 | 30:1 | 41:1 | 49:1 |
Χ3 | Concentration of NaOH (mol/L) | 0.5 | 1 | 2 | 3 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakoudi, A.; Kalfa, E.; Zymvrakaki, E.; Kalogiouri, N.; Mourtzinos, I. Recovery of Ellagic Acid from Pomegranate Peels with the Aid of Ultrasound-Assisted Alkaline Hydrolysis. Molecules 2024, 29, 2424. https://doi.org/10.3390/molecules29112424
Kyriakoudi A, Kalfa E, Zymvrakaki E, Kalogiouri N, Mourtzinos I. Recovery of Ellagic Acid from Pomegranate Peels with the Aid of Ultrasound-Assisted Alkaline Hydrolysis. Molecules. 2024; 29(11):2424. https://doi.org/10.3390/molecules29112424
Chicago/Turabian StyleKyriakoudi, Anastasia, Evmorfia Kalfa, Eleni Zymvrakaki, Natasa Kalogiouri, and Ioannis Mourtzinos. 2024. "Recovery of Ellagic Acid from Pomegranate Peels with the Aid of Ultrasound-Assisted Alkaline Hydrolysis" Molecules 29, no. 11: 2424. https://doi.org/10.3390/molecules29112424
APA StyleKyriakoudi, A., Kalfa, E., Zymvrakaki, E., Kalogiouri, N., & Mourtzinos, I. (2024). Recovery of Ellagic Acid from Pomegranate Peels with the Aid of Ultrasound-Assisted Alkaline Hydrolysis. Molecules, 29(11), 2424. https://doi.org/10.3390/molecules29112424